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1 INTRODUCTION

ABSTRACT

Reflected light photometry of terrestrial exoplanets could reveal the presence of oceans and
continents, hence placing direct constraints on the current and long-term habitability of these
worlds. Inferring the albedo map of a planet from its observed light curve is challenging because
different maps may yield indistinguishable light curves. This degeneracy is aggravated by
changing clouds. It has previously been suggested that disk-integrated photometry spanning
multiple days could be combined to obtain a cloud-free surface map of an exoplanet. We
demonstrate this technique as part of a Bayesian retrieval by simultaneously fitting for the
fixed surface map of a planet and the time-variable overlying clouds. We test this approach
on synthetic data then apply it to real disk-integrated observations of the Earth. We find that
eight days of continuous synthetic observations are sufficient to reconstruct a faithful low
resolution surface albedo map, without needing to make assumptions about cloud physics. For
lightcurves with negligible photometric uncertainties, the minimal top-of-atmosphere albedo
at a location is a good estimate of its surface albedo. When applied to observations from
the Earth Polychromating Imaging Camera aboard the DSCOVR spacecraft, our approach
removes only a small fraction of clouds. We attribute this difficulty to the full-phase geometry
of observations combined with the short correlation length for Earth clouds. For exoplanets
with Earth-like climatology, it may be hard to do much better than a cloud-averaged map. We
surmise that cloud removal will be most successful for exoplanets imaged near quarter phase
that harbour large cloud systems.

Key words: planets and satellites: atmospheres - planets and satellites: surfaces - planets and
satellites: terrestrial planets - method: numerical

are greater. Reflected light is believed to be a more straightforward
path towards directly imaging Earth twins and mapping their sur-

Surface maps of terrestrial exoplanets could constrain their current
and long-term habitability (Abbot et al. 2012; Robinson 2018).
Indeed, surface albedo maps could identify planetary features such
as oceans, continents, or even vegetation (Cowan et al. 2009, 2011;
Fujii et al. 2010, 2011; Fujii & Kawahara 2011; Fujii et al. 2017;
Kawahara & Fujii 2010, 2012; Lustig-Yaeger et al. 2018). For a
review of exo-cartography, see Cowan & Fujii (2017).
Exo-cartography of an Earth-like planet orbiting a Sun-like star
will require direct-imaging. The National Academies of Sciences,
Engineering, and Medicine (2018)’s Exoplanet Science Strategy re-
port states that even though direct imaging of mature planet in ther-
mal emission is easier than in reflected light in terms of flux ratio, the
technical challenges associated with imaging at longer wavelengths
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face. In particular, a space-based mission such as LUVOIR (The
LUVOIR Team 2019) or HABEX (Gaudi et al. 2020), equiped with
a coronograph or a starshade would be a great asset to charac-
terize Earth-size planets in reflected light. National Academies of
Sciences, Engineering, and Medicine (2021)’s Pathways to Discov-
ery in Astronomy and Astrophysics for the 2020’s recommends a
large infrared-optical-ultraviolet space telescope with high-contrast
imaging and spectroscopy. This new space observatory could pro-
vide the necessary reflected light to perform exo-cartography.

Mapping the atmosphere or surface of an exoplanet based on its
time-varying reflectivity is an under-constrained inverse problem:
different maps can produce the same light curve (Cowan et al.
2013). These degeneracies are made worse by clouds that change
from one planetary rotation to another (Cowan et al. 2009; Fujii
& Kawahara 2011). Previous research has either neglected clouds



2 Teinturier et al.

altogether or solved for a time-averaged top-of-atmosphere (TOA)
albedo map (Cowan et al. 2009, 2011; Farr et al. 2018; Fujii et al.
2011; Kawahara & Fujii 2010). Kawahara & Masuda (2020) instead
accounted for the changing cloud cover by explicitly modelling the
time-variable TOA albedo maps, but did not attempt to reconstruct
a cloud-free surface map. Luger et al. (2019) attempted to fit for a
time-varying cloud map, using serendipitous TESS photometry of
Earth. However, they do not estimate uncertainties on their retrieved
map, as they simply compute the maximal likelihood solution with
respect to their constraints. They detected time variable clouds, but
concluded that future work was warranted.

We set out to map the surface of an unresolved planet using
reflected light photometry despite time-variable clouds. Over the
course of days, clouds move and disperse. One expects that the min-
imum top-of-atmosphere albedo of some location will correspond
to the least cloudy epoch—and hence most closely resemble the
surface albedo. To provide more robust uncertainty estimates on the
surface albedo, we will simultaneously fit for the invariable surface
albedo and the changing cloud cover of the planet, with the goal of
retrieving a faithful surface albedo map.

In Section 2, we present our time-variable cloud model and the
generation of synthetic lightcurves. In Section 3, we demonstrate
the removal of clouds from synthetic data. In Section 4 we test our
scheme on data from the Deep Space Climate Observatory’s Earth
Polychromatic Imaging Camera. We discuss our results in Section
5 and we conclude in Section 6.

2 PRODUCING SYNTHETIC LIGHTCURVES

In this section, we present the time-variable cloud model we will use
to generate synthetic lightcurves, as well as in all of our retrievals

2.1 Forward Model

We longitudinally split the surface of a planet into equal width
slices, each with uniform cloud and surface albedo. While the effect
of clouds on top-of-atmosphere albedo is complex, the net shortwave
effect is usually to increase the TOA albedo because the albedo of
clouds is greater than that of most plausible surfaces. As a proof of
principle, we therefore adopt the very simplest model to combine
the surface and the cloud albedo:

ATOA,i,j = As,i + Ac,i,j M

where the subscript i denotes the slice and the subscript j the day,
As,i being the surface albedo of slice i, and A ; ; the increase of
albedo due to clouds in slice i, on day j.

2.2 Viewing Geometry and Light Curves

We quantify the planet’s reflectivity by its apparent albedo (Qiu
et al. 2003; Cowan et al. 2013):

¢ K(Q,1)Atoa(Q)dQ

A = § K(Q,1dQ

@

where Q specifies the co-latitude and longitude (6, ¢), the convo-
lution kernel K(€2,¢) is a function of location and time, and the
differential solid angle is dQ = sin 8dfd¢. If we presume Lamber-
tian reflection, then the kernel is simply the normalised product of
visibility V and illumination /: %V(Q, HI(Q,1).

The visibility and illumination functions are

V = max[sin 8 sin 0, cos(¢ — ¢, ) + cos 6 cos 6, 0] 3)
I = max|[sin 6 sin 65 cos(¢ — ¢s) + cos 6 cos 05, 0], ()

where the subscript o denotes the sub-observer point, and the sub-
script s the sub-stellar point.

To streamline comparison to Earth data, we adopt the viewing
geometry of the Deep Space Climate Observatory, located at the
first Earth—Sun Lagrange point (L;). For an observer at L, the sub-
stellar and sub-observer points are coincident: 65 = 6, and ¢5 = ¢, .
Since we will only use data spanning a few days, we assume that
both sub-stellar and sub-observer co-latitudes are equal to 7, which
is exactly correct at the equinoxes. The sub-observer longitude is
given by ¢, = ¢, (0) — wt, where w is the rotational angular speed
of the planet. One should also note that ¢ = 0 is defined at the prime
meridian and longitude increases eastwards.

In this work we only consider longitudinal variations in albedo
but allow for a time-variable albedo map so we replace Atpa (£2)
with A1oa (¢,t). Therefore, the apparent albedo of the planet is

L [y AToa(8. 1) sin® (0) cos? (¢ — ¢o)dOd¢
% ./lV sin3(6) cos2(¢ — ¢)d0dg

where the integral spans only the illuminated and visible lune, IV.
For an observer at L, this lune is simply the dayside hemisphere.

It is convenient to break down Eq. (5) into contributions from
each slice. After integrating over latitude, a single fully visible
longitudinal slice i spanning longitudes [¢;, #;41] contributes to
the instantaneous disk integrated albedo as

A*(t) =

&)

i+

2 1
40 = 2azoni [ o (8- 00 (0) o ©

i

The planet’s apparent albedo A*(¢) is the sum of the contribu-
tions from all m visible slices :

2 & min(7g, pi+1)
A1) = — ZATOA,i/
A m

cos (¢ = ¢o)do, ™
where Tg and Ty are the East and West terminators, respectively.
These limits of integration ensure that regions on the far side of the
planet cannot contribute reflected flux.
Integrating Eq. (7) yields

ax(Tw , ¢i)

sm(2¢ _ 2¢0) min(TE,¢i+l)

2 ®

1 m
AT = — > Aton.i| ¢+
i=1

max(Tw . é;)

for m slices between the West and East terminators. By combining
Egs. (1) and (8), we can now rapidly compute the light curve of a
planet given its surface albedo map and time-variable cloud map.
We provide a derivation of the forward model for arbitrary orbital
phase in Appendix A.

2.3 Synthetic lightcurves

To generate synthetic data we choose a number of longitudinal slices
for our map, then randomly generate a surface albedo map and daily
cloud albedo maps, A. Using the appropriate A ; and Eq. (1), we
compute the top-of-atmosphere albedo of each slice for that day.
Our default range for the surface albedo is between 0 and 0.5, and
between 0 and 1 for A.. Both sets of parameters are generated using
a uniform distribution between the mentioned bounds. This ensures
that clouds randomly change once a day. We then use Eq. (8) to

MNRAS 000, 1-9 (2020)



compute a light curve and add random Gaussian noise with a stan-
dard deviation equal to 2% of the mean of the light curve to simulate
photometric uncertainties. These are optimistic photometric uncer-
tainties for next-generation space telescopes (Cowan et al. 2009;
Fujii et al. 2010). An example synthetic light curve is shown in the
middle of Fig. 1, along with the best-fit model from the Markov
Chain Monte Carlo described below.

3 REMOVING CLOUDS FROM SYNTHETIC DATA

Fig. 1 summarises the process of generating a synthetic light curve
and then retrieving surface and cloud maps.

3.1 Inverse Problem

We wish to retrieve the surface albedo map and time-variable cloud
map of an unresolved planet based on its quasi-periodic rotational
light curve. We tackle the inverse problem by repeatedly comput-
ing light curves within a Markov Chain Monte-Carlo (specifically
emcee; Foreman-Mackey et al. 2013).

The natural logarithm of the likelihood of an observed
lightcurve a*(t) given a model A*(¢) is

o 1[ & (a) - A))?
In (p(a*|t, A¥, o)) =3 Z'O_—zl

i=1 i

+1n (2707)|, )

where a is a datum, o5 its uncertainty, and A7 is the prediction of
the forward model. We adopt uniform priors on A ; and In(A ;).
The log-uniform prior on cloud albedo means that clouds are kept
to the minimal value allowed by the data, thus breaking the surface—
cloud degeneracy manifest in Eq. 1 (attempts with uniform prior on
Ac never converge). Since all of our priors are uniform, the posterior
on the parameters is proportional to the likelihood. We constrain the
values of In (A¢) to be between -6 and 0 and Ag to be between 0
and 0.5.

The parameter space has dimensions of 1 X (14ay + 1), where
ng| is the number of slices in the map and n4,y is the number of days
spanned by the data. The number of slices in the retrieval maps needs
not equal the resolution of the map that produced the lightcurve.
We do not fit for the planet’s rotational period; previous work has
demonstrated that it can readily be measured with time-resolved
photometry (Pallé et al. 2008; Oakley & Cash 2009).

In order to ensure that we have fewer fitted parameters than
data, we derive an upper limit on the number of slices one should
use for a retrieval, as a function of ngay and ngyg,, the number of
data per day. This upper limit is given by
n;rllax _ Ndata X Nday . (10)

Nday + 1
For the EPIC data that we fit in Section 4, nq,, ranges between 13
and 22. An 8 day simulation with 22 data points per day yields a
ng‘fax = 19, while for 13 data points per day, nz?ax = 11. In practice,
however, we are constrained to far fewer slices given the lossy nature
of the map-to-lightcurve transformation.

Our experiment is run at full phase to mimic the viewing
geometry of the Deep Space Climate Observatory, so we always
have a convolution kernel spanning half of the planet. In order to
achieve Nyquist sampling of the convolution kernel, we need 4
slices, more than that will lead to over-fitting (Cowan et al. 2009,
2011). Therefore, our fiducial model uses four slices.

For this work, the walkers used for the MCMC retrievals are

MNRAS 000, 1-9 (2020)
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initialised in a Gaussian ball around best-fit values found using a
gradient descent algorithm. We use 200 walkers for each retrieval.
To check if the MCMC has converged, we iteratively check by eye
the trace of the walkers. We choose to run 20 000 steps and to burn
the first 15 000, as we find that it provides a good balance between
convergence and computational time.

3.2 How many planetary rotations are required to remove
clouds?

We now determine the number of planetary rotations needed to
retrieve an accurate surface albedo map and strip the effect of clouds
from a synthetic light curve. The EPIC observations have 13 to
22 data per rotation, so we generate synthetic light curves with
22 data per rotation, the most favourable scenario for EPIC data.
Since the number of cloud parameters is proportional to the number
of planetary rotations considered, choosing a number of days is
equivalent to choosing the number of fitted parameters. With a
four slice map, we generated synthetic lightcurves spanning 1, 2,
4, 8, or 16 rotations. Each simulation was repeated thirty times,
using a different map and light curve each time. We then define
the surface albedo accuracy as Agycf fit — Asurf, rue- and the surface
albedo precision as the mean of the estimated uncertainties.

As shown in Fig. 2, the bias on the surface albedo is reduced
when fitting more days. The number of fitted parameters and the
number of data are listed at the top of Fig. 2—both increase when
considering more days but the fit becomes more constrained. When
using only one planetary rotation the retrieved surface albedo map
is very poorly constrained because the surface and cloud maps are
entirely degenerate; retrievals performed on two and four rotations
only fare a bit better. The surface albedo is always over-estimated
indicating that cloud removal is imperfect even with 16 rotations of
data. We adopt 8 days for our fiducial model as a compromise be-
tween retrieval accuracy and the increasing programmatic challenge
of long continuous observations of directly-imaged exoplanets.

Log-uniform priors on the cloud albedo bias our cloud esti-
mates low. This leads to an overestimation of the surface albedo
that can only be ameliorated with longer continuous observations.
Indeed, the longer the observations, the better we break the surface-
cloud degeneracy. This trade-off between clouds-surface degener-
acy and biased clouds is necessary since linear (unbiased) priors
are unable to reach converged states. Therefore, one needs to use
continuous observations on the timescale of days to hope to break
the bias introduced by our model.

We also tested whether increasing the data points per day re-
duced the bias in retrieved surface albedo. Unsurprisingly, we find
a slight improvement of the retrievals when using twice as many
points per day. In practice, however, the time resolution of data will
likely be anti-correlated with their precision so we do not further
explore this parameter.

3.3 Results with 4 longitudinal slices and 8 days worth of
synthetic data

To assess the fidelity of our retrievals, we use the Z-score metric,

7 = Aﬁt,i - Atrue,i ) (11)
g

where o7 is the estimated uncertainty on the albedo of slice i

(half the difference between the 84™ and the 16T percentiles of

the marginalised posterior). Table 1 summarises the accuracy and

precision of retrieved maps.
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Figure 1. Schematic description of the different steps of our numerical experiment, from producing the synthetic light curves to the MCMC retrieval of the
surface albedo and time-varying clouds maps, AA. We only show days 1 and 8 in this illustration but the surface map is fitted using all eight days of data. Atpa
stands for the top-of-atmosphere albedo map.

MNRAS 000, 1-9 (2020)
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Table 1. Fidelity of retrieved map parameters. A Range: minima and maxima of A = fit — true. Bias: mean of A. Accuracy: standard deviation of A. Precision:
mean of the estimated uncertainty on a given quantity; Mean Z-score: how many o away from the truth the estimates are; Standard deviation of Z-scores: the
fidelity of the uncertainty estimates. For bias, accuracy, precision and mean z-scores, smaller values are better. For the standard deviation of z-scores, values
close to one reflect honest uncertainty estimates. The second to last row computes the metrics for the retrieved TOA albedo with respect to the true surface
albedo, Atpa — Ag,truth- Notably, the top-of-atmosphere albedo, while easier to retrieve, severely over-estimates the surface albedo. The last row computes the
metrics using the minimal retrieved TOA albedo as the surface albedo. In this scenario of 2% photometric uncertainties, this approach yields similar results

than using the fitted surface albedo.

A Range Bias Accuracy Precision Mean Z-score  Std of Z-score
Atoa — AToAwun  [-0.043:0.049]  77x107*  13x1072  2.0x 1072 -0.054 0.72
Ac = Aciruh [-0.37:0.033] -87x1072 83x1073 1.6x1072 -6.03 7.11
As — A truth [-0.022:0.35] 86x1072 82x1072 12x1072 7.21 7.44
Atoa — A truth [-0.013:0.91] 4.4x107!  26x1071  2.0x1072 22.01 12.94
ATOA.min-As. truth [-0.013:0.35] 92x1072 82x1072 20x1072 5.65 5.44

{Nparams : Ndata}

{8:22} {12:44} {20:88} {36:176} {68:352}
0.8 estimates
¢ Mean
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[ ]
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-
<
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Figure 2. Accuracy and precision of surface albedo as a function of the
number of days—or rotations of the planet—used in the retrieval. For each
nNgay We produce 30 lightcurves. Each blue dot represents a single slice of
a single simulation, and the red diamond is the overall mean and hence an
estimate of bias (closer to zero is better). The standard deviation is shown
as error bars and is indicative of accuracy (smaller is better). We use maps
with 4 longitudinal slices to generate the synthetic light curves and to fit
them. Retrieving a surface map from a single rotation is hopeless because
the surface and clouds maps are entirely degenerate, but with eight days
of photometry the retrieved surface albedo becomes less biased and more
accurate.

Our retrieval yields a top-of-atmosphere albedo maps for each
day of observation, since the cloud cover changes from one day to
another. The top-of-atmosphere maps, Atoa, show little bias and
a good accuracy. We slightly overestimate the uncertainties as the
standard deviation of the Z-score is only around 0.72.

Our estimates of the clouds, A, are less good than for the
top-of-atmosphere albedo. This makes intuitive sense because the
clouds only indirectly impact the lightcurve and each slice of a
cloud map only affects a single day of data. The cloud pattern is

MNRAS 000, 1-9 (2020)

utterly different from one day to the next, so the cloud cover is hard to
constrain. The bias is negative for the clouds estimates, which means
that our model slightly underestimates the albedo contribution of
clouds.

‘We can now analyse the surface maps, arguably the most inter-
esting features retrieved by our model. The retrieved surface albedo
maps, Ay, show a small positive bias due to the imperfect cloud re-
moval but have a good accuracy of 0.082 (Table 1). Therefore, our
retrieved maps are in good agreement with the maps used to create
the synthetic data. However, the standard deviation of the Z-score
are greater than the expected values of 0 and 1 respectively. This
shows that we over-estimate the surface albedo and under-estimate
its uncertainty.

The second to last row of Table 1 compares the retrieved TOA
albedo map to the true surface albedo. This is the status quo ap-
proach of optimistically treating the TOA map as a surface map.
The retrieved mean Z-score shows that our TOA albedo map is 220
too high, on average; this performance is about 7x worse than our
cloud removal scheme. Indeed, as the clouds are more reflective
than the surface, interpreting the TOA albedo as the surface albedo
lead to a dramatic overestimation of the surface albedo.

The last row of Table 1 interprets the minimal TOA albedo
of a slice as the surface albedo of that slice. This approach yields
comparably good estimates of the surface albedo maps. However,
in experiments with greater uncertainties (4% rather than 2%), the
fidelity of the minimum TOA albedo approach deteriorates much
more than actually fitting the surface concurrently with the clouds.

4 REMOVING CLOUDS FROM THE EPIC DATA

In this section, we apply our cloud removal scheme to observa-
tions of Earth in an attempt to produce a cloudless map of its
surface. Specifically, we use data from the Deep Space Climate Ob-
servatory’s Earth Polychromatic Imaging Camera (DSCOVR EPIC;
Marshak et al. 2018). This satellite is situated at the Sun—Earth sys-
tem’s first Lagrange point, and has spent years observing the day
side of Earth. In order to mimic observations of a directly-imaged
exoplanet, each EPIC image is averaged to a single apparent albedo
datum (Jiang et al. 2018) (for a review of Earth-as-an-exoplanet
experiments, see Robinson & Reinhard 2018).
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4.1 EPIC data

EPIC acquires images of Earth at 10 different wavelengths every 68
to 110 minutes. Therefore, it takes between 13 and 22 images per
day (Jiang et al. 2018). The light curves acquired by this instrument
for all ten wavelengths were provided by J.H. Jiang. More than two
years of data were provided, starting on June 2015 at 00:00:00 UTC.
For the purpose of this study, we only use the 551nm and the 779.5
nm EPIC channel, since cloud coverage is respectively the most and
the least impactful at these wavelengths according to Jiang et al.
(2018). We adopt the same uncertainties for the EPIC data as for
the synthetic lightcurves: Gaussian noise with a standard deviation
equal to 2% of the mean of the lightcurve considered.

We fitted 8 days of EPIC photometry starting on day 730, i.e.,
on the 12 of June 2017 (see Fig. 3). We use this 8-day stretch as
it is the time-series with the highest-cadence observations in the
entire data set.

4.2 Results on EPIC data

We performed retrievals on the EPIC data in the same manner as
the retrievals on synthetic lightcurves: emcee with 200 walkers and
20 000 steps, burning in for the first 15 000 steps, to retrieve 4-
slice maps of surface and cloud albedo. Fig. 3 shows the fitted EPIC
779.5 nm light curve as well as the surface albedo map and the eight
day average top-of-atmosphere map. The bottom panel shows the
ground truth we hoped to recover, computed using MODIS data!
following Cowan et al. (2009).

Our retrieved surface albedo map is a poor approximation of the
surface features of Earth. In fact the retrieved surface albedo is only
1.4% lower than the TOA albedo, on average. The small difference
between top-of-atmosphere and surface maps is unsurprising given
the lack of variability in TOA albedo from one day to another.
Indeed, the standard deviation of the daily top-of-atmosphere maps
on all slices is less than 1%. The 551 nm channel performs even
more poorly. The top-of-atmosphere albedo varies half as much
in this channel as at 779.5 nm so essentially all of the albedo is
attributed to a static surface rather than clouds. Our approach is
limited to only remove clouds insofar as they vary.

5 DISCUSSION

Despite encouraging performances on synthetic lightcurves, our
cloud removal scheme struggles on the real clouds of EPIC data.
The EPIC lightcurves change by only 1% from one rotation to
another so our method was only able to reduce the impact of clouds
at that level. The small change in ATps Was unexpected because
the characteristic timescale for clouds to change on Earth is a few
days (Peix6to & Oort 1984), shorter than the eight day observing
campaigns we fitted.

The poor performance of our cloud removal scheme for Earth
is likely due to the small spatial scale of weather patterns combined
with unfavourable viewing geometry. We performed our experi-
ment at full phase in order to match the EPIC viewing geometry,
observing Earth from L. We average the local variability of clouds
over a whole hemisphere, so it evens out to a small global vari-
ability in EPIC data. Observing Earth at larger phase angles would
reduce this smoothing of local cloud variability and allow us to
better remove clouds from the retrieved surface maps. Moreover,

! https://modis.gsfc.nasa.gov/data/

exoplanets cannot be directly imaged near full phase since the coro-
nagraph/starshade gets in the way.

Direct imaging is most likely to see planets near quadrature
(quarter phase). In principle, this should facilitate the mapping and
removal of clouds: at quarter phases the convolution kernel is nar-
rower than the one we used at full phase, so the phase-dependent
maximal number of slices would be closer to 8 than to 4 (Cowan
etal. 2009, 2011). Moreover, at quarter phases, the scattering phase
function should be close to Lambertian, unaffected by the forward
and back-scattering peaks that impact observations at crescent and
full phase (Burrows & Orton 2010; Robinson et al. 2010).

We performed simulations in the same fashion as in Section
3 but at quarter phase; we again assumed edge-on orbit and zero
obliquity. We tested the impact of the numbers of days on the re-
trieved quantities and unsurprisingly reach the identical conclu-
sions. Moreover, we tested the effect of using 8 slices instead of
4 in the retrievals. Our results show a bigger range (in the sense
of the 1st column of Table 1) of the retrieved parameters. This
intuitively makes sense because the spatial resolution is increased
while keeping the amount of available information constant. We
find very similar bias, accuracy and precision. In particular, the
positive bias of the surface albedo is still present, a manifestation
of the log-uniform priors on the clouds (see Section 3.2). However,
we find that the mean Z-score and associated standard deviations
are better constrained than in the full phase case. This confirms for
surface albedo that the quarter phase geometry is more favourable
to mapping.

Our choice of 4 slices for our retrievals was motivated by the
width of the convolution kernel at full phase. Surface features on
Earth happen to have a characteristic scale of ~10% km (Farr et al.
2018), one quarter the circumference of the planet. Nonetheless,
there is no reason to believe that surface and cloud features on an
exoplanet always span a quarter of the globe. In order to quantify the
impact of intrinsic vs. retrieved length scales, we generated thirty
light curves with two and eight-slice planets, each spanning eight
days, and we tried to retrieve the surface parameters using models
with four slices. Our results are summarised in Table 2.

There is no problem in using too high a spatial resolution
when performing a retrieval, but using too low a resolution leads
to a biased surface map. When retrieving with a 2-slice map, we
find that the retrieved surface maps show slightly less bias, better
accuracy, precision and Z-score than the 4-slice planet, but this is
expected from the central limit theorem: it is always easier to es-
timate averaged quantities. When retrieving an eight-slice planet
with a four-slice model, however, the surface albedo is biased high
because cloud removal is less effective. This may explain the dis-
appointing results of our cloud removal on the EPIC data: cloud
patterns on Earth are usually less than 90° across.

6 CONCLUSION

We developed a framework to map the clouds and surface of unre-
solved exoplanets using reflected light photometry. We tested our
model on synthetic 8-day light curves of a hypothetical planet with
randomly varying clouds, and on eight days of EPIC photometry of
Earth. When applied to synthetic data, our cloud removal scheme
is capable of recovering surface albedo maps with little bias, good
precision and accuracy, but slightly underestimated uncertainties.
Our retrievals on synthetic data provide acceptable estimates
of surface albedo. Indeed, when photometric uncertainties are neg-
ligible, simply interpreting the lowest measured top-of-atmosphere
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Figure 3. Left: EPIC 779.5 nm lightcurve starting on June 12 2017. Black dots with uncertainties represent the EPIC data. We adopt photometric error bars
equal to 2% of the mean apparent albedo. The red line is the MCMC fit to the data. Right: from top to bottom, the mean retrieved top-of-atmosphere albedo
map, the retrieved surface albedo, and the true surface albedo computed using the MODIS dataset. Mean top-of-atmosphere albedo and surface maps only
differ by a few percent, on the order of the standard deviation in daily retrieved top-of-atmosphere maps. Our cloud removal efforts are stymied by the modest

cloud variability of Earth on 90° length scales.

Table 2. Fidelity of fitted parameters for a retrieval with 4-slice maps. The true input maps used to generate the lightcurves had resolutions of 2, 4 or 8 slices
(the middle two rows are duplicated from Table 1). There is no problem in using too high a spatial resolution when performing a retrieval, but using too low a

resolution leads to a biased surface map.

N1, truth A Range Bias Accuracy Precision Mean Z-score  Std of Z-score
AToA — ATOA.truth 2 [-0.016: —0.016] 9.8 x10™*  52x1073  1.5x1072 0.049 0.39
Ag — Ag qruh 2 [-0,32:0.61] L1x107'  17x107! 9.8x1073 16.1 26.95
AToA — ATOA truth 4 [-0.043:0.049] 7.7x10* 13x102 20x1072 -0.054 0.72
As = Ag truth 4 [<0.022 : 0.35] 86x1072 82x1072 12x1072 7.21 7.44
AtoA — ATOA.truth 8 [-0.21:0.21] 65x107%  6.8x1072  25x1072 -0.46 3.14
As = As truth 8 [-0.16 : 0.43] 1.6x107"  12x107!  1.7x1072 11.01 9.63

albedo at each location provides a good estimate of the surface
albedo, but such quick-and-dirty inferences should be treated with
caution. Regardless of how they are made, such low-resolution sur-
face maps could help identify exoplanets with continents and oceans,
and hence prospects for long-term habitability (Abbot et al. 2012).

Tests on real lightcurves of Earth and synthetic lightcurves pro-
duced with higher resolution maps result in poor cloud removal. We
therefore conclude that exoplanets with large, changing cloud struc-
tures observed near quadrature phases would be ideal candidates for
cloud removal.

Our cloud modelling and removal scheme could in principle be
combined with multi wavelength light curves, which have previously
been show to help identify clouds in single-day light curves (e.g.,

MNRAS 000, 1-9 (2020)

Cowan et al. 2009; Jiang et al. 2018). For suitable planets and
viewing geometries, cloud removal yields more information than
the top-of-atmosphere albedo map: in addition to a surface map,
our approach provides daily cloud maps and an estimation of the
mean cloud albedo of the planet.
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APPENDIX A: DERIVATION OF THE FORWARD MODEL
AT DIFFERENT PHASES

Here, we derive the computation of the forward model for an arbi-
trary phase angle a, not necessarily full phase.
One can rewrite the convolution kernel as

K(Q,t) =
% max [sin () sin (05) cos (¢ — @) + cos (8) cos (65), 0] (A1)
X max|[sin (0) sin (6, ) cos (¢ — ¢q) + cos (8) cos (6,), 0]

We continue with the simplifying assumption of zero obliquity and
an edge-on orbit: 5 = 0, = % and ¢5 = ¢ + a. This yields, for
0el0:n]land ¢ € [po+a— 5 : dpo+ T

K(Q,t) = % max[sin (8) cos (¢ — @), 0]
x max[sin (6) cos (¢ — ¢o — @), 0] (A2)

= %(Sin2 (0) cos (¢ — ¢o) cos (¢ — ¢ — @))

Using the trigonometry identity COs p cos q =
% cos(p+gq)cos(p—gq), we derive the convolution Kkernel,
depending on the phase angle

K(Q,1) = % sin? 0) x %(cos (@) +cos (2¢ —2¢ — a')) (A3)

We can now input this phase angle-dependant convolution kernel
into Eq. 2 to get the apparent albedo, using dQ = sin(0)d0d¢ :

§ K(Q.1)AToa(Q)dQ

A (1) = 7
/O” sind 9do [P0F2 x %(cos (@) +cos (2¢ — 2¢0 — @))d¢
2

dota—
(A4)
In the denominator. /Oﬂ sin3 d6 = %, and
¢0+% 1
/ = ( cos(a@) +cos(2¢ — 20 — a))d(lz
¢o+a_% 2

1
= E(ﬂ —a)cos (a)
+ %(Sin(z% +7 =200 — ) —sin(2¢, +2a — 71— 2¢, —a/))

1 1.
= 5(7{ —a)cos(a) + 3 sin (7 — a@).
(A5)

Now, we discretize the numerator on a slice [¢; : ¢;11], taking into
account the previous computations, and integrating the numerator
over the co-latitude 6 :

/;?”1 (cos(a) +cos(2¢ — 2¢, — @))dé

(m — a) cos(a) +sin(m — @)
[¢ cos(a) + % sin(2¢ — 2¢, — a)]

(m — @) cos(a) +sin(r — )

TOA
A% (1) = A
Bis1 (A6)
?i

= ATOA

We get the apparent albedo of the planet by summing on all visible
and illuminated slices m,

min(Tg, Pi+1)

TOA Ly - -
m Ai [¢ cos(a) + 2 sin(2¢ —2¢o a)]max(Tw,d)i)

NOEDY
i=1

(m — a) cos(a) +sin(m — @)
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(A7)
In the case of quarter phase (@ = %), the apparent albedo is
A%() 1 i [ in(26 -2 n)]min(TE,esM) 48
= - sin(2¢ — - = .
2 = do 27 Imax(Tw , ¢;)

At full phase (@ = 0), we find Eq. 8.

This paper has been typeset from a TEX/IXTEX file prepared by the author.
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