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ABSTRACT

Euclid’s photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with
observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new
calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect
to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of
N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we
test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian
Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo finder
algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF,
we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both
Einstein–de Sitter and standard ΛCDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate
to be sub-percent accurate in reproducing results from 9 different variants of the ΛCDM model including massive neutrinos cosmologies. The
calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future mass–observation relations; with the
only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference.

Key words. Galaxy Clusters, Cosmology, Large-Scale Structure

? e-mail: tiago.batalha@inaf.it

1. Introduction

Structure formation in the Universe follows a hierarchical pro-
cess, with larger structures forming from the collapse of smaller
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ones. Galaxy clusters sit at the top of this hierarchy as the most
massive virialized objects in the Universe. Their cosmological
abundance and evolution make them competitive cosmological
probes of both the geometry of our Universe and the growth
of density perturbations (Allen et al. 2011; Kravtsov & Borgani
2012, for reviews).

Number-counts experiments represent the main cosmologi-
cal probe from cluster surveys (Holder et al. 2001; Rozo et al.
2010; Hasselfield et al. 2013; Planck Collaboration XX. 2014;
Bocquet et al. 2015; Mantz et al. 2015; Planck Collaboration
XXIV. 2016; Bocquet et al. 2019; Abbott et al. 2020; Costanzi
et al. 2021; Lesci et al. 2022). The idea behind number counts
is remarkable in its simplicity; assuming the halo mass function
(HMF) is precisely predicted in a given cosmological model, one
can confront the number of observed clusters in a survey with
this theoretical prediction and, from this, constrain cosmological
parameters.

Press & Schechter (1974) presented the first theoretical
model for the HMF based on mapping the peaks of a primordial,
Gaussian density field to the number of collapsed structures at
low redshift. Later, Bond et al. (1991) introduced the excursion-
set formalism that embedded the Press–Schechter derivation
in a more rigorous and rich mathematical framework. Despite
the success of these models in providing an insightful, qual-
itative description of the abundance of halos, their agreement
with increasingly accurate N-body simulations is quantitatively
poor (see, e.g. Sheth & Tormen 1999). Later, Maggiore & Riotto
(2010a,b,c) extended the excursion-set solution to more realist
collapse barriers leading to better agreement with N-body simu-
lations (see also Corasaniti & Achitouv 2011a,b).

Several works presented semi-analytical extensions of the
Press–Schechter formalism calibrated to reproduce the results
of numerical simulations (see, e.g. Sheth & Tormen 1999; Sheth
et al. 2001; Jenkins et al. 2001; Warren et al. 2006; Tinker et al.
2008; Watson et al. 2013; Despali et al. 2016). These extensions
rely on the feature of the HMF being predominantly universal,
that is, being independent of the underlying cosmological model,
if expressed as a function of the Gaussian density field statistics.

The departure of the HMF from universality depends on sev-
eral aspects, and modelling it is a daunting task. Recent works
have started using emulators to circumvent the complex ana-
lytical modelling to predict the HMF (McClintock et al. 2019;
Nishimichi et al. 2019; Bocquet et al. 2020). Although practical
and straightforward, this strategy has limitations as emulators are
not rigorously supported by a robust underlying model and are
known to perform poorly outside the regime in which they have
been built. Furthermore, building an emulator does not necessar-
ily lead to a better understanding of nature, lacking a theoretical
legacy. Still, it is essential to note that emulators have pushed the
precision and accuracy of the HMF predictions to a few percent,
outperforming fitting functions, which range in accuracy from
10 to 30 percent.

N-body simulations are central to both approaches as they
are the only theoretical tool to with which to stringently as-
sess the non-linear regime where galaxy clusters are deep-seated.
The ever-increasing requirements for larger and high-resolution
simulations pushed the development of fast and efficient grav-
ity solvers, each of them relying on different algorithms with
different approximations. Keeping the validity, accuracy, and
precision of those approximations under control is utterly nec-
essary in order to guarantee the robustness of the final HMF
model (see e.g. Angulo & Hahn 2022, for a detailed discussion
of the methodology).

The luminous matter composition of our Universe, although
subdominant, is known to impact the formation of structure in a
significant way (Cui et al. 2014; Velliscig et al. 2014; Bocquet
et al. 2016; Castro et al. 2020). The modelling of the baryonic
feedback in hydrodynamical simulations is a controversial sub-
ject in vogue. However, at the scales of galaxy clusters, it is well
established that baryonic feedback cannot disrupt structures; in-
stead, its net effect is to rearrange the halo composition, changing
its mass with respect to the same object simulated using a colli-
sionless scheme. As hydrodynamical simulations are thousands
of times more expensive than purely gravitational N-body simu-
lations, the standard approach is to characterise the HMF using
the latter and model how baryonic physics changes the mass of
halos in post-processing (see, e.g. Schneider & Teyssier 2015;
Aricò et al. 2021). This method will not be addressed in this pa-
per.

The impact of systematic effects in determining the HMF
has already been addressed. For instance, Knebe et al. (2011)
and Garcia & Rozo (2019) showed that differences in the halo
finder algorithm result in changes in the HMF that can be as
large as several percent. Salvati et al. (2020) and Artis et al.
(2021) claimed that such discrepancies on the HMF model in
future surveys could lead to severe biases in the cosmological
constraints, raising awareness of the degree of accuracy required
by the quality of next generation data.

In the present work, we aim to calibrate an HMF fitting func-
tion with a target accuracy of 1 percent for objects more massive
than a few times 1013 h−1 M�, as demanded by the large number
of galaxy clusters expected to be observed by the ESA Euclid
satellite (see Sartoris et al. 2016). In particular, the wide, Euclid
survey will cover 15 000 deg2 of the extra-galactic sky (Laureijs
et al. 2011) in optical and near-infrared (NIR) bands. By rely-
ing on suitable algorithms to identify galaxy clusters as galaxy
concentrations in photometric redshift space (Euclid Collabora-
tion: Adam et al. 2019), Euclid will provide a survey of optically
identified clusters that is unique in terms of the depth and area
covered, and that has the potential to provide tight constraints on
cosmological models (Sartoris et al. 2016).

To fully exploit the cosmological potential of the Euclid
Cluster Survey, several observational and theoretical systematic
effects must be controlled. As for the latter, we concentrate in
this paper on an accurate calibration of the HMF. To this pur-
pose, we follow the approach of Ondaro-Mallea et al. (2021) and
explicitly model the non-universality of the HMF. To guarantee
the robustness of our results, we start by presenting a detailed
study of the numerical systematic errors on N-body simulations
and how they impact the HMF. We then employ a suite of N-
body simulations and calibrate a model to predict the abundance
of halos as a function of mass, cosmology, and redshift. Lastly,
we forecast the impact of numerical and systematic uncertainties
on Euclid’s number counts analysis.

This paper is organised as follows: in Sect. 2 we present our
methodology. The study of the convergence of the simulation
setup used in this work is presented in detail in Sect. 3. In Sect. 4,
we present our modelling of the HMF. Our results are presented
in Sect. 5. Finally, concluding remarks are provided in Sect. 6.
Additionally, in Appendixes A, B, and C, we present further nu-
merical convergence tests for our adopted setup, a comparison
between the HMF calibrated in different halo finders, and the ro-
bustness of our calibration as a function of redshift, respectively.
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2. Methodology

In this section, we present a short overview of the main con-
cepts of the HMF (Sect. 2.1), a description of the sets of simu-
lations carried out for our analysis (Sect. 2.2), the halo finders
adopted (Sect. 2.3), the Bayesian framework used for the HMF
calibration (Sect. 2.4), and the pipeline to forecast the effects of
uncertainties on the HMF calibration on the cosmological con-
straints from the Euclid photometric survey of galaxy clusters
(Sect. 2.5).

2.1. The halo mass function

The comoving number density of halos with mass in the range
[M,M + dM] is given by:

dn
dM

dM =
ρm

M
ν f (ν) d ln ν . (1)

Equation (1) is known as the differential halo mass function,
where ρm is the comoving cosmic mean matter density, ν is the
peak height, and the function ν f (ν) is known as the multiplicity
function. The peak height ν is a measure of how rare a halo is
and is defined as ν = δc/σ(M, z), where δc is the critical density
for spherical halo collapse extrapolated to z = 0 (Peebles 2020)
and σ2(M, z) is the mass variance at redshift z, which can be ex-
pressed in terms of the linear matter power spectrum Pm(k, z) as:

σ2(M, z) =
1

2π2

∫ ∞

0
dk k2 Pm(k, z) W2 (k R) , (2)

where R(M) =
[
3 M / (4 π ρm)

]1/3 is the Lagrangian radius of a
sphere containing the mass M, and W(k R) is the top-hat filter in
k-space.

The multiplicity function is said to be universal if its cosmo-
logical dependence comes only through its dependence on the
peak height ν, with the functional form of this dependence be-
ing independent of cosmology. While this assumption of HMF
universality holds to first approximation, a number of indepen-
dent analyses based on N-body simulations have demonstrated
that the HMF systematically deviates from universality at late
times (Crocce et al. 2010; Courtin et al. 2011; Watson et al. 2013;
Diemer 2020; Ondaro-Mallea et al. 2021).

The non-universality of the HMF has been observed to de-
pend on both the halo definition (Watson et al. 2013; Despali
et al. 2016; Diemer 2020; Ondaro-Mallea et al. 2021) and the
residual dependence of δc on cosmology. For instance, although
several works have used the mass variance σ2(M, z) as a charac-
teristic parameter (Jenkins et al. 2001; Reed et al. 2003; Warren
et al. 2006; Tinker et al. 2008; Crocce et al. 2010; Watson et al.
2013; Bocquet et al. 2016; Castro et al. 2020), it has been shown
by Courtin et al. (2011) that correctly using the peak height
ν(M, z) = δc/σ(M, z), thus including the cosmological depen-
dence of the linear collapse barrier δc, provides more universal
results. The effect is more prominent at high masses, which is
the regime relevant for cluster cosmology and where we dedi-
cate particular attention in this paper.

In our analysis, halos are defined as spherical overdensities
with average enclosed density equal to ∆vir(z) times the back-
ground density, where ∆vir(z) is the non-linear density contrast
of virialized structures as predicted by spherical collapse (see,
e.g. Eke et al. 1996; Bryan & Norman 1998). In the following,
we parameterize the HMF for a given cosmology at a given red-
shift according to the fitting function introduced by Bhattacharya

et al. (2011),

ν f (ν) = A(p, q)

√
2aν2

π
e−aν2/2

(
1 +

1
(aν2)p

)
(ν
√

a)q−1 . (3)

The dependence of the fitting parameters {a, p, q} on cosmology
is presented in Sect. 4. As for δc, we use the fitting formula pre-
sented by Kitayama & Suto (1996).

According to the Halo Model (see e.g. Cooray & Sheth 2002,
and references therein), all matter in the Universe is contained in
halos. Thus, the integral of the HMF should be normalised to
unity. In the case where a, p, and q do not depend on ν, this
condition is satisfied by:

A(p, q) =

{
2−1/2−p+q/2

√
π

[
2p Γ

(q
2

)
+ Γ

(
−p +

q
2

)] }−1

, (4)

where Γ denotes the Gamma function. However, we note that not
all HMF models presented in the literature obey this condition.
Furthermore, this normalisation is not likely to hold in our Uni-
verse (see e.g. Angulo & White 2010). As discussed below, we
write the parameters {a, p, q} explicitly as functions of the mat-
ter power spectrum shape and background evolution; thus, our
model violates the condition of normalisation to unity even if it
formally uses Eq. (4). In this sense, Eq. (4) is used here only to
guarantee an asymptotic behaviour to the HMF when extrapo-
lated to lower masses.

2.2. Simulations

Due to its intrinsically non-linear dynamics, the formation of
virialized halos can only be studied in detail by resorting to cos-
mological simulations. The need for an accurate N-body simu-
lation to numerically solve the evolution of billions of particles
during many dynamical time scales entails the design and devel-
opment of high performance and scalable algorithms and codes.
Each gravity solver algorithm comes with different technical as-
pects characterising its validity, accuracy, and precision. A com-
prehensive comparison of the publicly available codes is beyond
the scope of this paper (see e.g. Angulo & Hahn 2022, and refer-
ences therein). Still, understanding and quantifying differences
in the HMFs predicted by different, and widely used, N-body
codes is key to establishing confidence in the convergence and
robustness of the N-body solution of the HMF.

The HMF analysis that we present in this paper is based
on three sets of simulations specifically designed for this pur-
pose and which are summarised in Table 1. The TEsting sim-
ulAtion SEt (TEASE) is used in Sects. 3 and 4 to quantify the
aforementioned impact of numerical systematic effects on the
HMF. The set consists of simulations of 500 h−1 Mpc cosmo-
logical boxes run with different setups and different codes. We
used the codes: Open-GADGET, GADGET-4,1 PKDGRAV-3,2
CONCEPT,3 and RAMSES,4 which respectively deploy the fol-
lowing gravity solver algorithms: tree-particle mesh (tree-PM;
Xu 1995; Bagla 2002; Springel 2005), fast multipole method-
particle mesh (FMM-PM; Springel et al. 2021), (FMM; Potter
et al. 2017), particle particle - particle mesh (P3M; Dakin et al.
2022), and adaptive mesh refinement (AMR; Teyssier 2002).
Initial conditions have been generated using either the Zeldovich

1 https://wwwmpa.mpa-garching.mpg.de/gadget4/
2 https://bitbucket.org/dpotter/pkdgrav3
3 https://jmd-dk.github.io/concept
4 https://www.ics.uzh.ch/~teyssier/ramses
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approximation (Zeldovich 1970) at z = 99 with MUSIC (Hahn
& Abel 2011)5 or third-order Lagrangian perturbation theory
(3LPT) at z = 24 with monofonIC (Michaux et al. 2020).6 For
this simulation set, the background expansion history and linear
matter power spectrum are both kept fixed, while resolution is
varied (see Table 1).

The scAle frEe simulaTIons fOr cLuster cOsmoloGY (AE-
TIOLOGY) set of simulations is used in Sect. 4 to model the
departure of the HMF from universality. The set consists of sim-
ulations with 10243 particles in boxes of 1000 h−1 Mpc on a side.
The simulations and the initial conditions (2LPT at z = 99) were
run with GADGET-4. This set is specifically designed to dis-
criminate between the non-universality arising from the pres-
ence of characteristic timescales in the background expansion
history, and from the presence of characteristic length scales in
the matter power spectrum. For this purpose, the set combines
simulations with either power-law or ΛCDM linear power spec-
trum on a background that is either Einstein–de Sitter – that
is (Ωm,ΩΛ) = (1, 0); EdS hereafter – or ΛCDM. The self-
similarity of scale-free simulations has been extensively used
by Leroy et al. (2021), Garrison et al. (2021a), Garrison et al.
(2021b), Joyce et al. (2021), and Maleubre et al. (2022) to carry
out controlled tests of numerical convergence for several cos-
mological algorithms. Here, instead, we focus on self-similarity
to isolate the effect of the power spectrum shape from the ef-
fect of the background evolution on the HMF universality. We
note that the idea of carrying out simulations with indepen-
dent background and power spectrum parameters was also used
by Ondaro-Mallea et al. (2021).

Lastly, the PathfInder Cluster COsmoLOgy (PICCOLO)
set is used in Sect. 5 to calibrate our HMF model. The set
comprises 26 cosmological boxes of 2000 h−1 Mpc in size and
4 × 12803 particles. These simulations were carried out with
Open-GADGET. Initial conditions were generated using mono-
fonIC according to 3LPT at z = 24. The set of cosmological pa-
rameters for this set are varied by uniformly drawing them from
the 95 percent confidence level hyper-volume of the joint SPT
and DES cluster abundance constraints presented by Costanzi
et al. (2021) (see Table 2). Two realisations were simulated for
each cosmology, with the exception of the reference C0 model,
for which ten realisations were carried out.

In this paper, we deliberately ignored the effect of massive
neutrinos in the simulations. Castorina et al. (2014) showed that
the effects of massive neutrinos on the HMF are mostly absorbed
into the computation of the mass variance once the cold-dark-
matter power spectrum is considered instead of the total matter
power (see also Costanzi et al. 2013). We will rely on this ap-
proach to extend our modelling to scenarios with massive neu-
trinos; however, as we recognise the importance of validating
this approach ensuring it provides the accuracy required for the
application to the Euclid cluster survey, in Sect. 5.2 we compare
our model to two external sets of simulations that include neutri-
nos at the particle level.

We emphasise that, in order to guarantee a fair comparison
between the different gravity solvers, we proceeded as follows.

– We carried out convergence tests for the adopted setup of
Open-GADGET and GADGET-4 (see Sect. 3).

– We used the default setup of the CONCEPT code. The de-
fault setup of CONCEPT was extensively tested and com-
pared with other codes by Dakin et al. (2022).

5 https://bitbucket.org/ohahn/music
6 https://bitbucket.org/ohahn/monofonic

– We used the conservative PKDGRAV-3 example setup (D.
Potter, 2021, priv. comm.).

– We used the recommended RAMSES setup suggested by the
MUSIC and monofonIC initial conditions generators.

2.3. Halo finders

For the purpose of testing the HMF calibration against the choice
of the halo finder, we used AHF,7 SUBFIND,8 VELOCIraptor,9
DENHF, and ROCKSTAR10 to extract halo catalogues from the
different simulation sets. While all these algorithms are based
on a spherical overdensity (SO) method to define halo bound-
aries, they differ in the method applied to identify the centre from
which spheres are grown. For each of these halo finders, we pro-
vide a very short description of their main characteristics below,
while we refer to the original papers where they have been pre-
sented. We further refer to Knebe et al. (2011) for an extensive
and detailed comparison of the different halo finders.

– AHF (Gill et al. 2004; Knollmann & Knebe 2009) deploys
an AMR algorithm to identify prospective halos centres as
density peaks on the end-leaves of the refined tree.

– DENHF (Despali et al. 2016) determines prospective halo
centres as peaks of the density field estimated using the in-
verse of the cubic distance to the n-th closest neighbours.

– SUBFIND (Springel et al. 2001, 2021) determines halo cen-
tres by first executing a parallel implementation of the 3D
friends-of-friends (FOF, see e.g. Davis et al. 1985) algorithm
and then by assigning it to the position of the particle with
the lowest potential.

– VELOCIraptor (Elahi et al. 2019) can operate very similarly
to SUBFIND if required. Additionally, the user can choose
three group finders: 3DFOF, 6DFOF (see e.g. Diemand et al.
2006), and a 6DFOF with adaptive velocity scale. Lastly,
halo centres are defined as the group’s centre of mass.

– ROCKSTAR (Behroozi et al. 2013a) starts by partitioning
the simulation volume into 3DFOF groups for straightfor-
ward parallelization. An adaptive and recursive 6DFOF al-
gorithm is then run for each group, creating a hierarchical
set of FOF subgroups. Halo centres are computed by averag-
ing the positions of the particles belonging to the innermost
subgroup in the hierarchy. We run the CONSISTENT11 al-
gorithm on top of the previously extracted ROCKSTAR cata-
logues. CONSISTENT was shown in Behroozi et al. (2013b)
to improve the consistency of the halo catalogues using a dy-
namical tracking of halo progenitors.

It is important to note that we employ the same halo mass defi-
nition; thus, the algorithms above will differ only in the centring
definition and, more importantly, in their hierarchical conditions,
that is, the requirements to discriminate between structures and
substructures. Unless stated otherwise, we only consider inclu-
sive SO masses, that is, including all particles inside the virial
radius regardless of whether they are gravitationally bound.

All halo catalogues have been logarithmically binned ac-
cording to the number of halo particles to minimise the effect
of mass discretization. This effect and the adopted binning are
further discussed in Sect. 4.1.

7 http://popia.ft.uam.es/AHF/Download.html
8 See n. 1.
9 https://github.com/pelahi/VELOCIraptor-STF

10 https://bitbucket.org/gfcstanford/rockstar
11 https://bitbucket.org/pbehroozi/consistent-trees
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Table 1. The suite of simulations. The corresponding cosmology is given in Table 2.

Set Lbox Np Background Plin(k) Initial Conditions Grav. Solver
[h−1 Mpc] Code LPT Order z

TEASE 500

2563

C0 ΛCDM

MUSIC Zel. 99

tree-PM, FMM-PM
5123 FMM, P3M, AMR†

10243

4 × 1603

4 × 3203

monofonIC 3LPT 24
tree-PM, FMM-PM

4 × 6403 FMM, P3M
4 × 12803

AETIOLOGY 1000 10243
EdS

Power-law

GADGET-4 2LPT 99 FMM-PM
ΛCDM (C0)

C0
Power-law

ΛCDM
PICCOLO 2000 4 × 12803 C0 −C8 ΛCDM monofonIC 3LPT 24 tree-PM

†Corresponding to the gravity solver algorithms deployed in Open-GADGET, GADGET-4, PKDGRAV-3, CONCEPT, and RAMSES,
respectively.

Table 2. The cosmological parameters of the simulations presented in
Table 1. The parameters have been uniformly drawn from the 95% con-
fidence hyper-volume of the cluster abundances constraints presented
in Costanzi et al. (2021).

Name Ωm h Ωb ns σ8
C0 0.3158 0.6732 0.0494 0.9661 0.8102
C1 0.1986 0.7267 0.0389 0.9775 0.8590
C2 0.1665 0.7066 0.0417 0.9461 0.8341
C3 0.3750 0.6177 0.0625 0.9778 0.7136
C4 0.3673 0.6353 0.0519 0.9998 0.7121
C5 0.1908 0.6507 0.0527 0.9908 0.8971
C6 0.2401 0.8087 0.0357 0.9475 0.8036
C7 0.3020 0.5514 0.0674 0.9545 0.8163
C8 0.4093 0.7080 0.0446 0.9791 0.7253

2.4. HMF calibration: maximum likelihood approach

In the Press–Schechter formalism, halos are assumed to form
due to the gravitational collapse of matter over-densities, filtered
over a given mass scale M, above the linear collapse thresh-
old δc. The unconditional distribution of the number of excur-
sions above a given threshold on a Gaussian field follows a
Poisson distribution. This motivates us to write the likelihood
L(Ni|θθθ, z) for the number of halos Nsim

i with masses Mhalo ∈

[Mi,Mi+1) in the snapshot at redshift z as:

lnL(Ni|θθθ, z) = Nsim
i ln

Ni(θθθ, z)
Nsim

i

 − Ni(θθθ, z) + Nsim
i , (5)

where Ni(θθθ, z) is the theoretical expectation of halos computed
by integrating Eq. (1) and multiplying it by the volume of the
simulated cosmological box. Lastly, θθθ is the vector of parameters
of Eq. (3) including their dependency on cosmology.

However, numerical systematic effects, such as round-off er-
rors, can affect the distribution of halos introducing further scat-
ter between the predicted HMFs. This problem is more promi-
nent for low-mass halos as the abundance of halos quickly grows
with decreasing mass and Poisson errors under-predict the total
error budget. In this paper, we use the composite likelihood in-

stead:

lnL(Ni|θθθ, z) =


Nsim

i ln
(

Ni(θθθ,z)
Nsim

i

)
− Ni(θθθ, z) + Nsim

i Nsim
i ≤ 25

1
2 ln

(
2πσ2

)
+

(Ni(θθθ,z)−Nsim
i )2

2σ2 Nsim
i > 25 ,

(6)

whereσ =

√
Nsim

i + σ2
sys is the standard deviation resulting from

the convolution of the Gaussian approximation to the Poisson
distribution with a noise distribution assumed to be Gaussian
with zero mean and variance σ2

sys. We note that our likelihood
presents a discontinuity at Nsim

i = 25. The impact of the disconti-
nuity is two-fold. Firstly, the discontinuity amplitude depends on
the chosen value for σsys. As we discuss here below, we assume
σsys . 1 percent, thus minimising the impact on the transition
regime. Secondly, there is the transition from the purely Pois-
son error to a symmetric Gaussian approximation. The chosen
transition value for Nsim

i guarantees that the transition is again
smooth as the Poisson contribution largely dominates the to-
tal error budget while negative values for Ni(θθθ, z) are very rare
(& 5σ) fluctuations of a Gaussian distribution. We also checked
a more complex composite likelihood function with a two-sided
σ following Watson et al. (2013):

σ2 =

(√
Nsim

i + 0.25 ± 0.5
)2

+ σ2
sys . (7)

The relative difference in the log-likelihood between the two
functional forms is below 10−5 around the best-fit values and
provides statistically indistinguishable results. We stick to the
functional form presented in Eq. (6) for simplicity.

The final log-likelihood is computed by summing Eq. (6)
over all redshifts, mass bins, and simulations. This amounts to
assuming that different mass bins at fixed redshift and simula-
tion outputs at different redshifts are independent of each other.
However, we note that when using the output of the same simula-
tion at different redshifts, the results are clearly not independent,
as the binning in a given redshift will contain the progenitors or
descendants of the object in another redshift. To minimise the
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impact of the correlation, we follow Bocquet et al. (2016) and
use a time-spacing of roughly 1.7 Gyr; such spacing is larger
than the characteristic dynamical time of galaxy clusters.

2.5. Forecasting Euclid’s cluster counts observations

To understand the impact of the HMF systematic errors on cos-
mological constraints it is important to realistically forecast the
cosmological information to be extracted from the Euclid pho-
tometric cluster survey. Synthetic cluster abundance data are
generated in the following way: we consider a Euclid-like light
cone covering 15 000 deg2, with redshift range z = [0, 2] (Lau-
reijs et al. 2011). As discussed in detail by Euclid Collabora-
tion: Adam et al. (2019), clusters from the Euclid Wide Survey
(Euclid Collaboration: Scaramella et al. 2022) will be identified
as overdensities in photometric redshift space by applying two
cluster finders, which have been demonstrated to be the most
accurate in terms of completeness and purity among those con-
sidered, namely AMICO (Bellagamba et al. 2018) and PZWav
(Gonzalez 2014). Once clusters are identified an optical richness
is assigned to them.

The abundance of halos is sampled assuming our primary
calibration for the HMF presented in Sect. 5. Optical richness λ
is assigned to the halos according to the richness–mass relation
〈λ|Mvir, z〉 (see e.g. Saro et al. 2015):

〈ln λ|Mvir, z〉 = ln Aλ + Bλ ln
(

Mvir

3 × 1014h−1 M�

)
+ Cλ ln

(
E(z)

E(z = 0.6)

)
, (8)

where E(z) is the ratio of the Hubble parameter at redshift z and
0. We assume a richness range λ = [20, 2000] and a log-normal
scatter given by:

σ2
ln λ|Mvir,z = D2

λ. (9)

We use the following fiducial values for the parameters of
Eqs. (8) and (9) Aλ = 37.8, Bλ = 1.16, Cλ = 0.91, Dλ =
0.15. These parameter values were determined by converting
the richness–mass relation presented by Saro et al. (2015) for
M500c (presented in their Table 2) to the virial mass definition,
assuming that halos have a Navarro–Frenk–White (NFW) pro-
file (Navarro et al. 1997) and follow the mass–concentration re-
lation given by Diemer & Joyce (2019). The adopted values are
in agreement with the results presented by Castignani & Benoist
(2016).

Lastly, Poisson and sample variance fluctuations are added
through a multivariate Gaussian distribution with amplitude
given by the covariance model of Hu & Kravtsov (2003), which
was validated by Euclid Collaboration: Fumagalli et al. (2021).

3. Setup of N-body simulations

In this section, we define an accurate and precise numerical setup
for our primary N-body code, Open-GADGET. We present con-
vergence tests for the adopted configuration and parameter val-
ues (Sect. 3.1), and the simulation resolution (Sect. 3.2). Lastly,
we compare the convergence of our configuration setup to other
N-body solvers (Sect. 3.3).

3.1. Parameter and configuration setting

The chosen values for the internal key simulation parameters
used within Open-GADGET are presented in Table 3. Param-

Table 3. Chosen values for the Open-GADGET runs. Parameter file pa-
rameters corresponds to the variables set at run time while configuration
parameters are set at compilation time. From top to bottom they control:
the time integration accuracy, the maximum time step allowed, the tree
opening criterion, the angle threshold for tree opening, and the force ac-
curacy, the maximum distance used to compute short-range forces, and
the matching region between short-range and long-range forces.

Variable Value
Parameter File

ErrTolIntAccuracy 0.05
MaxSizeTimeStep 0.05
TypeOfOpeningCriterion 1
ErrTolTheta 0.4
ErrTolForceAcc 0.0025

Configuration File
RCUT 6.0
ASMTH 1.25

eter file variables are set at run time, controlling time integration
accuracy, the maximum time step allowed, the tree opening cri-
terion, the value of the critical angle for tree opening, and the
force accuracy. The configuration file parameters are set at com-
pilation time. These latter control the maximum distance used
to compute short-range forces (RCUT) and the matching region
between short-range and long-range forces (ASMTH). See details
of the implementation in Springel (2005) and in the official user
guide.12

We checked that our parameter set provides sub-Poisson dif-
ferences relative to higher precision sets (see Appendix A for
details), deviating by less than a fraction of a percent in the abun-
dance of halos more massive than 3×1013 h−1 M�. In this test and
the following ones, we use the cumulative HMF as a test for the
convergence instead of the differential HMF for three reasons:
firstly, the cumulative version presents less noise than the differ-
ential HMF; secondly, we do not want to assume a binning to
compute the differential HMF at this stage before discussing the
impact of binning (see Sect. 4.1 below); lastly, for cluster cos-
mology, most of the constraining power comes from measuring
the total number of objects above a given mass threshold; the cu-
mulative mass function is the limit where the mass–observable
relation tends to a Dirac delta function. We assessed the numer-
ical convergence of the results by directly comparing it to more
precise setups where each parameter was set to to half the value
presented in Table 3.

Testing the convergence of the simulation results to the con-
figuration settings of parameters presented in Table 1 is slightly
more delicate than the parameter settings as the configuration
variables control the raw structure of the gravity solver algo-
rithm. For instance, if one selects very large values for RCUT in
Open-GADGET, the tree-PM algorithm results will converge to
the tree. The tree algorithm struggles to provide accurate force
calculations if the particle distribution is close to a regular uni-
form grid, as is commonly the case for initial conditions gen-
erated with low-order LPT. In this latter case, tweaking the pa-
rameters in order to search for a stable point does not guarantee
convergence to accurate results (see e.g. Springel et al. 2021).

Instead, we test the accuracy of our configuration set through
a comparison with GADGET-4. The rationale for this ap-

12 https://wwwmpa.mpa-garching.mpg.de/gadget/
users-guide.pdf
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proach is that the fifth order FMM-PM algorithm deployed in
GADGET-4 delivers more accurate force calculations than the
tree-PM algorithm deployed in Open-GADGET at fixed accu-
racy parameters and has smaller error correlations due to the
possibility of randomising the box centre at every domain de-
composition step. We assessed the convergence of the results for
three different initial conditions: 5123 particles displaced from
a uniform regular grid according to 3LPT at z = 24, the same
number of particles using Zeldovich at z = 99, and 4 × 3203

particles displaced from a face centred cubic (FCC) grid accord-
ing to 3LPT at z = 24. In all configurations, we verified that the
agreement between Open-GADGET and GADGET-4 is better
than a fraction of a percent for all masses of interest. However,
due to the higher degree of symmetry, the FCC configuration
shows even better agreement between the two codes. In this con-
figuration, the standard tree algorithm delivers accurate forces
from the simulation start, suppressing the spatial correlations of
the force calculation errors.

3.2. Resolution convergence

Previous works (see e.g. Joyce et al. 2005; Marcos 2008; Garri-
son et al. 2016) showed that the mass element discretization and
their departure from the fluid limit at initial conditions introduces
transient systematic effects on N-body simulations. Michaux
et al. (2020) showed that the impact of these transient effects
is significantly suppressed if simulations start from initial condi-
tions generated with higher order Lagrangian perturbation the-
ory using a grid of elements with more planes of symmetry at
the closest redshift prior to shell-crossing.

In Fig. 1, we present the convergence test for the cumulative
mass function concerning both transients and modes sampled in
the initial conditions. We consider five resolutions, correspond-
ing to particle masses: {6.50×1011, 8.13×1010, 1.02×1010, 5.08×
109, 1.27× 109} h−1 M�; these values for the particle masses cor-
respond to {4× 1603, 4× 3203, 4× 6403, 12803, 4× 12803} parti-
cles in a box of 500 h−1 Mpc, respectively. The rationale behind
such choices for the number of particles is that 4 × 1603 dif-
fers by ∼ 2 percent from 2563, thus one can directly compare
with other commonly used particle numbers at similar compu-
tational cost. The gravitational softening is set to one-fortieth of
the mean inter-particle distance in all simulations. Initial con-
ditions are created by monofonIC using 3LPT at z = 24 and
FCC grid for all simulations but the simulation with 12803 par-
ticles, which uses a standard equally spaced grid. The reference
in all redshift panels is the simulation run at the highest reso-
lution. For easier inspection, we add the moving average over
five bins for each case. We note that the lower resolution simu-
lation tends to suppress the formation of halos at all masses at
z = 0, with a more severe effect at low masses. At z = 0.14, we
observe good agreement with higher resolution simulations for
objects more massive than 5 × 1013 h−1 M�. For the other red-
shifts, the lower resolution simulation presents either deviations
or fluctuations comparable to the Poisson noise (shown in red).
However, we note that the Poisson noise was computed assum-
ing no correlation between the simulations, which is not true as
the simulations share the same initial conditions. However, as
assessing the correlation between the simulations would require
many more realisations, we still decided to present the Poisson
estimates, considering that they represent a very conservative es-
timation of the true scatter.

From the next simulation in resolution order, we see a sub-
percent agreement in the number of objects more massive than
5 × 1013 h−1 M�. At the same computational cost, the simulation

with 4 × 3203 (Fig. 1) particles presents a slightly better conver-
gence than 5123 (Fig. A.3) at z = 0. Lastly, comparing the two
most costly simulations at z = 1.98, we observe that the sim-
ulation 4 × 6403 has a more stable agreement with the higher
resolution simulation than the simulation with 12803 particles,
despite the factor of two increase in the total number of parti-
cles; this illustrates one of the advantages of using FCC grids
instead of the standard ones for creating initial conditions.

3.3. Comparison of different N-body solvers

To gain insight into the impact of the different gravity solvers on
the halo statistics, in Fig. 2 we present the matter density contrast
of the 2D projection of a zoomed-in volume of (15.37 h−1 Mpc)3

around the position of the most massive halo found by AHF. The
box size of this volume corresponds to six times the virial ra-
dius of the central halo. The corresponding mass of the central
halo in each simulation is {2.007, 1.904, 2.029, 1.887, 1.975} ×
1015 h−1 M� for Open-GADGET, GADGET-4, PKDGRAV-3,
CONCEPT, and RAMSES. Silver and cyan circles denote the
virial radius of halos and subhalos identified in this region, re-
spectively. For the sake of clarity, a mass threshold of (1012)
1013 h−1 M� was imposed to select the (sub)halos presented in
Fig. 2. We observe that all N-body codes produce similar distri-
butions of the most massive objects, however, due to slight dif-
ferences in the evolution, the relation between a large halo and
its surrounding depends on the N-body code as some structures
are detected as an isolated halo in a simulation but as a subhalo
in others.

Figure 2 also shows a stronger code signature on the dis-
tribution of substructures identified by AHF. While in this pa-
per we are not interested in any detailed analysis of substruc-
tures, we trace them here for the sole purpose of comparing dif-
ferent N-body solvers in detail. Open-GADGET, GADGET-4,
PKDGRAV-3, and CONCEPT produce similar numbers of sub-
structures in large objects, but a very heterogeneous spatial dis-
tribution of them. On the other hand, we observe that RAMSES
produces a smoother mass distribution than the other codes, sig-
nificantly reducing the number of detected substructures. Simi-
lar results were previously reported by Elahi et al. (2016). The
tendency of RAMSES to give a smoother mass distribution is
also confirmed by measuring the NFW concentration parameter
c of the central object: c = {5.587, 5.283, 6.170, 5.007, 4.610} for
Open-GADGET, GADGET-4, PKDGRAV-3, CONCEPT, and
RAMSES.

The impact of different N-body solvers on the final results is
expected to depend on the simulation resolution as critical pa-
rameters are usually set as a function of the number of parti-
cles; for example the softening length, the maximum refinement
level, and the refinement strategy. Figure 3 presents the ratio of
the cumulative mass function at z = 0 to that observed in Open-
GADGET. The three panels correspond to three different mass
resolutions of {6.35 × 1011, 7.94 × 1010, 9.92 × 109} h−1 M�; re-
spectively {2563, 5123, 10243} particles in a box of 500 h−1 Mpc.
For reference, we present the 68 percent confidence level for the
CONCEPT case assuming that the number of halos observed in
the two simulations is described by a Poisson realization of the
mass function.

While the differences of the other codes with respect to
Open-GADGET are stable and at the few-percent level for all
resolutions for halos more massive than 3×1013 h−1 M�, the dif-
ference between RAMSES and Open-GADGET is quite sensi-
tive to resolution. At the lowest resolution considered in Fig. 3,
RAMSES agrees with the other codes for halos more massive
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Fig. 1. Convergence test for the cumulative mass function with respect to the effects of both transients and modes sampled in the initial conditions,
at fixed box size. In each panel, we report results for five particle masses: {6.50 × 1011, 8.13 × 1010, 1.02 × 1010, 5.08 × 109, 1.27 × 109} h−1 M�;
respectively {4 × 1603, 4 × 3203, 4 × 6403, 12803, 4 × 12803} particles in a box of 500 h−1 Mpc. The rationale for the chosen number of particles
is that 4 × 1603 differs by ∼ 2 percent from 2563, and therefore one can directly compare the results presented here with Fig. A.3 at similar
computational cost. The filled region in grey represents the 1 percent region around unity and the filled region in red marks the 68 percent
confidence level assuming Poisson distribution for the abundance of halos in both simulations. Each panel shows the comparison for a different
redshift, as labelled.

than ≈ 3 × 1014 h−1 M� while producing a significantly smaller
number of less massive objects. At the highest resolution con-
sidered, this difference is partially reduced and RAMSES agrees
to better than 1 percent with the other codes for halos more mas-
sive than ≈ 4 × 1013 h−1 M�. The suppression in the halo abun-
dance and the production of smoother density fields are known
signatures of the RAMSES AMR gravity solver. As the adaptive
refinement cannot be repeated indefinitely as it is bound to stop
before producing empty voxels, the total number of particles in
the simulation also sets the maximum force resolution achiev-
able in RAMSES. Lastly, from Figs. 1 and 3, we conclude that
the HMF convergence with respect to particle mass is achieved
first for the other codes before RAMSES.

4. Modelling

In this section, we present our modelling for the HMF and
the numerical and theoretical systematic effects that influ-
ence its assessment, including their dependence on initial
conditions (Sect. 4.1) and the impact of the simulated vol-
ume (Sect. 4.2). We revisit the implications of assuming different
halo definitions (Sect. 4.3); globally, comparing different halo
finders (Sect. 4.3.1) and internally to a single halo finder (AHF),
using different centring (Sect. 4.3.2) and different halo mass as-
signment (Sect. 4.3.3). Lastly, we present our modelling for the
non-universality of the HMF (Sect. 4.4), modelling it as a func-

tion of the shape of the power spectrum (Sect. 4.4.1) and the
background evolution Sect. 4.4.2).

4.1. Sensitivity of the HMF to initial conditions

In Fig. 4, we present the ratio of the cumulative mass func-
tion computed from simulations started with the same seed, but
different LPT orders and redshifts. We consider the 3LPT and
Zeldovich approximation and the following starting redshifts:
z = 24, z = 49, and z = 99. The rationale for the chosen start-
ing redshifts is two-fold: z = 99 and z = 49 have been exten-
sively used in the literature to start simulations using Zeldovich
and high-order LPT, respectively. Furthermore, Michaux et al.
(2020) showed that starting the simulation at z = 24 using 3LPT
is a good compromise between the convergence of the LPT (see,
for instance, their Fig. 4) and the effect of particle discreteness on
several summary statistics. While third-order LPT gives percent-
level accuracy on the cumulative mass function for objects more
massive than 5 × 1013 h−1 M� independent of the starting red-
shift considered, setting initial conditions at z = 99 using the
Zeldovich approximation suppresses the formation of structures
by & 1 percent with respect to 3LPT. Our results are in agree-
ment with previous studies (Crocce et al. 2006; Reed et al. 2013;
Michaux et al. 2020). We also note that, for objects less massive
than 5 × 1013 h−1 M�, the 3LPT initial conditions set at z = 24
slightly boosts the formation of structures. The reason for this is
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Open-GADGET

15.37 h 1 Mpc

GADGET-4

CONCEPT PKDGRAV-3

RAMSES

10 2 10 1 100 101

m + 1

mpart = 7.94 × 1010 h 1 M
AHF halos (M 1013 h 1 M )
AHF sub-halos (M 1012 h 1 M )

Fig. 2. Matter density contrast in a 2D projection of a zoomed-in volume of (15.37h−1 Mpc)3 around the position of the most massive halo found
by AHF in the corresponding Open-GADGET simulation. The box size of this volume corresponds to six times the virial radius of the Open-
GADGET central halo. Silver and cyan circles denote the virial radius of halos and subhalos identified in this region, respectively. For the sake of
clarity, a mass threshold of (1012) 1013h−1 M� was imposed to select the (sub)halos presented.
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Fig. 3. Ratio of the cumulative mass function at z = 0 to that mea-
sured from the Open-GADGET simulation. From top to bottom, the
panels correspond to a particle mass resolution of {6.35 × 1011, 7.94 ×
1010, 9.92 × 109} h−1 M�; respectively, {2563, 5123, 10243} particles in a
box of 500 h−1 Mpc. The red filled area represents the 68 percent confi-
dence level for the CONCEPT case assuming that the number of halos
observed in the two simulations follows an uncorrelated Poisson distri-
bution.

two-fold: firstly, as discussed in Sect. 3, there is a difference in
the tree force accuracy calculations when the particle distribu-
tion is close to the initial grid. Secondly, shell crossing is known
to artificially boost the formation of smaller objects (Power et al.
2016). In summary, although we have not run tests for 2LPT,
from Fig. 4 we infer that the configuration used for the AETI-
OLOGY set, that is, 2LPT at z = 99, provides results that agree
to better than . 2% with 3LPT at z = 24 as it should range
between the green and red lines.

Besides the sensitivity to the LPT order used to generate
initial conditions, structure formation is also sensitive to small
perturbations in the initial positions of particles, such as those
caused by round-off errors. This is due to the intrinsically chaotic
dynamics obeyed by the several thousands of particles whose
orbits are integrated by an N-body solver during many dynam-

1014 1015

M [h 1 M ]

0.98

1.00

1.02

1.04

1.06

1.08

N
X
/N

Y
(M

vi
r

M
)

X = 3LPT at z = 24
Y = 3LPT at z = 99
X = 3LPT at z = 49
Y = 3LPT at z = 99
X = 3LPT at z = 24
Y = Zel. at z = 99

Fig. 4. Ratio of the cumulative mass function measured from simula-
tions started with same seed, but different LPT order (3LPT vs. Zel-
dovich approximation) and starting redshifts (z = 24, z = 49, and
z = 99), as indicated by the different coloured lines in the legend.

ical times as they follow the collapse of a halo. The variation
of a simulation result on small perturbations in the initial con-
ditions is dubbed the butterfly effect. Genel et al. (2019) thor-
oughly discuss this effect and how it is amplified in hydrody-
namic simulations by thermal processes. Correspondingly, to as-
sess the dependence of the HMF on small perturbations to the
initial conditions in purely collisionless simulations, we ran ten
simulations for which the initial positions of the particles were
randomly displaced by a single unit in the last significant single-
precision digit. For the box size of 500 h−1 Mpc, this perturba-
tion corresponds to a random displacement of . 1 pc. We note
that, for isolating the effect of perturbing initial conditions from
round-off errors due to the use of single precision, those sim-
ulations were run using GADGET-4 with long integer (i.e., 64
bit) positions. The fluctuations in the HMF caused by the pertur-
bation in initial positions are due to the increasing sensitivity of
the non-linear structure formation to initial conditions. However,
such small fluctuations cannot disrupt large groups. Instead, they
can cause differences in the history of these objects that grow
in time resulting in particles accreted by a given group in one
simulation ending in a different group in another. In Fig. 5, we
present the distribution of the mass of halos with similar mass
matched by their position between different simulations at z = 0.
In the top panel, we present the distribution of the relative mass
difference for halos with masses residing in six intervals, each
of 0.3 dex width, between 1013 and 1015 h−1 M�. We observe
that the impact on halo masses depends strongly on the object
mass; whereas halos with masses of a few times 1013 h−1 M�
can have their masses affected by several percent, the impact re-
duces to ≈ 1 percent for the most massive objects. In the bottom
panel, we repeat the former exercise scaling the distribution by
the number of particles Np, corresponding to the object mass:
Np = Mvir/mp, where mp is the particle mass. We note that the
effect is rather universal if presented in these terms, and agrees
with a Gaussian distribution of zero mean and standard deviation
σ ' 0.4

√
mp Mvir ≡ 0.4 mp

√
Np. Thus, the limited precision in

the initial conditions propagates to a sub-Poisson fluctuation in
the number of particles belonging to a given halo at low red-
shift. In relative terms, the effect is larger for objects with fewer
particles and represents only a subpercent effect for objects with
more than 1500 particles.

Figure 6 presents the results of the same analysis, when dou-
ble precision (i.e., 64 bit floating-point) is used. For double pre-
cision the effect is not only strongly suppressed, but is also no
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Fig. 5. Distribution of the relative difference between masses of halos at
z = 0 matched between different simulations with initial conditions per-
turbed by . 1 pc. Top: Distribution of the relative mass difference. Bot-
tom: Same distribution scaled by the number of particles corresponding
to the object mass.

longer universal when scaled by the number of particles. The sig-
nificant suppression in the scatter of the mass of the objects in-
dicates that double precision should be used to setup initial con-
ditions of cosmological simulations and internally by the gravity
solver, assuming one can afford the factor two increase in the
memory and storage. As storing double-precision outputs is not
the default option for several codes, the propagation of double-
precision round-off errors will not be further discussed in this
work.

The mass fluctuations presented in Fig. 5 can be strongly am-
plified in binned statistics depending on the bin width. In Fig. 7,
we show the r.m.s. variation in the HMF induced by the noise in
the initial conditions, normalised to the expected Poisson noise,
as a function of halo mass. Different curves correspond to dif-
ferent binnings of halo masses. As is commonly done for the
calibration of the HMF, we considered logarithmically spaced
mass bins. The results shown in Fig. 7 were obtained by creating
a synthetic halo catalogue with masses distributed according to
the HMF presented by Tinker et al. (2008). After that, several
halo catalogues were created by perturbing the halo masses ac-
cording to the distribution presented in Fig. 5. Lastly, the HMF
was extracted from these catalogues binning the halos in mass
and dividing by the volume times the mass bin width. Although
we have to tacitly assume a volume in the previous exercise,
we have observed negligible impact of the nominal volume as-
sumed by considering two different volumes: (2000 h−1 Mpc)3

and (500 h−1 Mpc)3.
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Fig. 6. Same as Fig. 5 but with double precision.
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Fig. 7. The r.m.s. variation in the HMF induced by the noise in the ini-
tial conditions, normalised to the expected Poisson noise, as a function
of halo mass. Curves with different colours correspond to different bin-
nings of halo masses, as indicated in the legend.

From Fig. 7 it is clear that the binning has to be carefully cho-
sen to reduce the butterfly impact. Ideally, the bin width should
be much larger than the scatter caused by the round-off errors.
This leads to the condition:

δ ln M � 1/
√

Nmin , (10)

where Nmin is the number of particles of the smallest object of
interest.

4.2. Impact of the simulated volume

The effect of the simulation volume on the HMF is two-fold:
firstly, the computation of the mass variance σ2(M) presented in
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Eq. (2) has to be truncated to the fundamental mode of the cos-
mological box; secondly, by construction, only a few indepen-
dent modes are contained in the simulated volume for the first
multiples of the fundamental mode, thus introducing an effect
of sample variance into the computation of the mass variance at
large halo masses.

Quantifying the effect of the simulated volume in the HMF
directly with simulations would require a much more extensive
set of simulations than the ones used in this paper. Instead, we
assess the impact of the simulated volume through its impact
on the mass variance calculation and propagate this effect to the
HMF, assuming the analytical prescription.

In Fig. 8, we present the impact of the simulation
box size L on the HMF for three different cases L =
{500, 1000, 2000} h−1 Mpc shown in red, blue, and green, respec-
tively. Solid lines represent the mean effect due to the truncation
of the mass variance integration to the fundamental mode. The
corresponding shaded regions correspond to the 68 percent inter-
val due to the sample variance. In the top panel, we present the
effect on the calculation of the mass variance itself, while in the
bottom we propagate the impact on the mass variance to the dif-
ferential HMF. The 68 percent regions were determined creating
1000 synthetic realisations of a matter power spectrum assuming
the C0 cosmology for each box. The matter power spectrum was
sampled between the fundamental and the 4096th modes. Sam-
ple variance was added to the power spectrum perturbing it with
a Gaussian fluctuation of amplitude σP(k) given by:

σP(k) =

√
1

N(k)
Pm(k) , (11)

where N(k) = 2π (δk/k)2 is the number of independent modes
inside the bin with width δk in k-space. Finally, the differential
HMF in the bottom panel of Fig. 8 has been calculated using the
model of Tinker et al. (2008).

In Fig. 8, we observe that the exponential dependence of
the HMF on the mass variance at high-masses significantly am-
plify the impact of both the truncation and sample-variance im-
pact on the mass variance. The absence of modes larger than
500 h−1 Mpc causes the suppression of the formation of objects
more massive than 8×1014 h−1 M�. No significant suppression on
the formation of objects is observed for the two larger box sizes.
On the other hand, the impact of sample variance on the HMF
is below one percent for all boxes considered for halos lighter
than 3 × 1014 h−1 M�. For the 1000 h−1 Mpc and 2000 h−1 Mpc
box sizes, the 1 percent threshold is exceeded for halos more
massive than 8× 1014 h−1 M� and 2× 1015 h−1 M�, respectively.

One way of taking into account the effect of the box size
on the calibration of the HMF is to calculate the mass variance,
using the matter power spectrum computed from the initial con-
ditions (see e.g. Despali et al. 2016). This approach presents a
few challenges: for instance, the computation of the power spec-
trum at initial conditions might be affected by the mesh used to
create the initial displacement field – assuming one has not used
a ‘glass’13 unstructured mesh from which to displace particles.
Also, one has to choose the k-binning for the computation of
the matter power spectrum wisely, as an overly thin shell would
produce a noisy measurement, while an excessively broad shell
would affect the mass variance integral accuracy. We instead ad-
vocate that to keep the impact of sample variance to a minimum,

13 Glass pre-initial conditions are random samples that are dynamically
evolved assuming a gravitational interaction with reversed sign until
they settle in a quasi-equilibrium state.
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Fig. 8. Impact of the simulation box size L on the mass variance (top
panel) and the differential HMF (bottom panel) for three different cases
L = {500, 1000, 2000} h−1 Mpc depicted in red, blue, and green, respec-
tively. Solid lines represent the mean effect due to the truncation of the
mass variance integration to the fundamental mode. The corresponding
shaded regions correspond to the 68 percent interval due to the sample
variance.

one should use boxes larger than 1000 h−1 Mpc and produce ini-
tial conditions with fixed amplitudes of the initial conditions ran-
dom field to the desired theoretical power spectrum, as presented
in Angulo & Pontzen (2016). Following this approach one cir-
cumvents the above-mentioned challenges as the realised and
theoretical power spectrum match exactly.

4.3. Impact of the halo definition

4.3.1. Sensitivity to different halo finders

For a visual inspection of the effect of different halo finders on
the HMF, Fig. 9 shows a comparison between AHF and SUB-
FIND halos identified within a (26.65 h−1 Mpc)3 volume ex-
tracted from a 500 h−1 Mpc box with 5123 particles started at
z = 99 using the Zeldovich approximation. The mass of the
largest halo located at the centre is 2 × 1015 h−1 M� while the
smallest halo marked in each panel is 1013 h−1 M�. Whereas
AHF and SUBFIND both find the same large groups, for smaller
groups, we notice a non-negligible suppression on the number
of objects, with SUBFIND tending to group together smaller
objects into a larger one. The effect is more evident along the
stream on the centre left of the larger object presented in Fig. 9.
The tendency of pure FOF-based methods to merger smaller, dy-
namically distinct objects along tidal streams, building ‘particle
bridges’ between structures, is well known (see e.g. Knebe et al.
2011, and references therein).
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Fig. 9. Comparison between AHF and SUBFIND halos extracted from the same (26.65 h−1 Mpc)3 volume. The largest and smallest halo masses
depicted are 2 × 1015 h−1 M� and 1013 h−1 M�, respectively. The cyan circles denote the virial radius of halos identified in this region.
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tively, assuming that the number of objects in each catalogue follows a
Poisson distribution.

Figure 10 presents the ratio of the cumulative mass functions
extracted from AHF, SUBFIND, VELOCIraptor, and DENHF
to that extracted from ROCKSTAR. The filled regions in red and
purple represent the 68 percent confidence level region, for AHF
and VELOCIraptor (6DFOF Adaptive), respectively, assuming
that the number of objects in each catalogue follows a Poisson
distribution. Figure 10 clearly shows a separation of the algo-
rithms considered here into two groups, with the 3DFOF and
non-adaptive 6DFOF suppressing the number of halos less mas-
sive than 1014 h−1 M�.

We caution that it is not our goal here to model the specifics
of each halo finder. The reason is two-fold; firstly, this is a com-
plex task, as many parameters control the different algorithms.
Secondly, investigating how the results from different finders
compare to each other when changing the respective parameters,
even in great detail, would not address the fundamental ques-
tion of how does the definition of a halo adopted in simulations

compares with the observed clusters. The analysis presented is
simply designed to deliver a flexible model for the HMF that
can accommodate different halo definitions. With such a model
calibrated against different halo catalogues, we will assess the
impact of different definitions of halos in the HMF calibration
on Euclid’s cluster counts analysis.

4.3.2. Impact of the halo centre

We assessed the impact of the choice for the halo centre on the
cumulative mass function using AHF on one of the TEASE sim-
ulations. AHF allows the user to choose the prospective halo
centre alternatively as the geometrical centre of the refinement
patch, the cell with the lowest potential, the cell with the highest
density, or the centre of mass of the particles inside the refine-
ment patch. The latter is our default choice, following the official
AHF documentation.

We verified that the AHF cumulative mass function has a
percent-level robustness to the choice of the halo centre. We re-
mind that VELOCIraptor (based on a 3DFOF) and SUBFIND
differ only for the choice of the halo centre. Nevertheless, they
differ from each other (see Fig. 10) by an amount that is larger
than the differences between different halo centres in the AHF.
This is, again, due to particle bridges that connect two dynami-
cally distinct objects, which causes a stronger impact on the halo
centre choice.

4.3.3. Total halo mass versus bound mass

All halo finders considered in this paper include all particles
within a given radius, when computing the spherical overdensity
masses, regardless of whether the particles are bound to a halo or
not. In order to test the effect of this assumption, in Fig. 11, we
present the difference in the cumulative HMF between including
all particles inside the spherical overdensity and only the contri-
bution from bound particles. AHF determines as bound the par-
ticles with velocities smaller than the local escape velocity mul-
tiplied by a constant parameter VescTune which we set to unity.
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Fig. 11. Difference in the cumulative mass function when all particles
inside the spherical overdensity are considered versus just the bound
particles.

The simulation used for this test is the same as the one used
in Sect. 4.3.2. Not surprisingly, assigning to halos only bound
particles reduces the cumulative mass function by about 5 per-
cent. That is due to the fact that the gravitationally bound mass
within a fixed halo radius is by construction smaller than the to-
tal mass within the same radius. It is important to note that both
are valid definitions to weigh a halo. The most adequate choice
will depend on the method used to measure cluster masses from
observations. Arguably, if one works with, for instance, masses
obtained from the gravitational lensing, the total mass definition
should be adopted, as this is the one that contributes to the lens-
ing signal. In the remainder of this paper, we refer only to the
total mass definition.

4.4. Non-universality of the virial mass function

Despali et al. (2016); Diemer (2020); Ondaro-Mallea et al.
(2021) showed that the HMF preserves most of its universality
when described as a function of the virial mass, as predicted by
the spherical collapse model (Eke et al. 1996; Bryan & Norman
1998). Still, departure from universality can reach up to 20 per-
cent for the high-end tail of the mass function (see e.g. Diemer
2020).

In the following sections, and for the specific purpose of trac-
ing the origin of any departure from universality, we use the AE-
TIOLOGY set of simulations to model the dependence of the
virial HMF both as a function of the shape of the matter power
spectrum and of the background evolution. Unless stated oth-
erwise, the simulations used here were run using GADGET-4
with initial conditions generated at z = 99 according to 2LPT.
Halo catalogues were extracted on the fly with the GADGET-
4SUBFIND implementation. Halos were binned according to
their mass using 50 log-spaced intervals in the number of par-
ticles.

For the calibration of the HMF, we impose a mass cut that
corresponds to a minimum number of 300 particles so as to
minimise the noise in the identification of low-mass halos (see
e.g. Leroy et al. 2021). We assume the likelihood presented in
Sect. 2.4 with σsys = 0.01 Nsim

i . This choice for the systematic
error means that the relative error has a floor of 1 percent in the
total error budget, thus avoiding over-weighting mass bins with
many halos, for which the purely Poisson error under-predicts
the true data variance, as discussed in Sects. 4.1 and 4.2. Its
value was chosen so that the best-fit neither over- nor under-
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Fig. 12. The 68% and 95% confidence level contours of the calibration
carried out independently in several simulations assuming a power-law
linear power spectrum in an EdS background, i.e., Pm(k) ≈ kns and
Ωm = 1.

fits the simulations over the entire redshift range considered,
that is, keeping the fit-quality constant. We use the snapshots
at z = {2.00, 1.25, 0.90, 0.52, 0.29, 0.14, 0.0}.

4.4.1. Dependence on the power spectrum slope

In order to understand the dependence of the HMF parameters
on the power spectrum shape, in Fig. 12, we present the 68 and
95 percent confidence level contours of the calibration carried
out independently in several simulations assuming a power-law
linear power spectrum in an EdS background, that is, Pm(k) ∝ kns

and (Ωm,ΩΛ) = (1, 0).
The first interesting result is that, even for self-similar cos-

mologies, the HMF is not universal against changing the spectral
index. While the parameters {p, q} of Eq. (3) seem to have a lin-
ear dependence on ns, the parameter a exhibits a non-monotonic
dependence with a local minimum around ns = −1.75. The over-
all simple and well-behaved dependence of the parameters of the
HMF on the spectral index over a range of values covering all the
relevant regimes for structure formation motivates our approach
to select a flexible fitting function that precisely accommodates
the HMF shape on a self-similar cosmology. At the same time,
the non-universality is modelled through the explicit dependence
of the HMF parameters on cosmology.

4.4.2. Dependence on the background evolution

In order to understand the dependence of the HMF parameters on
the background evolution we follow an approach similar to that
presented in Ondaro-Mallea et al. (2021). In Fig. 13, we present
the 68 and 95 percent confidence level contours of the calibration
carried out independently in simulations with ns = {−2.0,−2.5}
and background evolution given by either a cosmology in agree-
ment with the Planck 2018 (P18) results for the cosmological
parameters (Planck Collaboration VI. 2020) or EdS. For the spe-
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Fig. 13. The 68% and 95% confidence level contours of the calibration
carried out independently in simulations with ns = {−2.0,−2.5} and
background evolution given by either a cosmology in agreement with
Planck Collaboration VI. (2020) or EdS.

cific purpose of this exercise, the chosen values for the spectral
index are not important, and other combinations produce similar
trends; still, we choose ns = {−2.0,−2.5} as this range corre-
sponds roughly to the slope of the ΛCDM matter power spec-
trum on cluster scales.

At fixed ns, we note that p is consistent with being indepen-
dent of the background evolution. On the other hand, the param-
eters {a, q} consistently show a dependence on the chosen back-
ground, with departures from the EdS scenario providing smaller
values of such parameters.

4.4.3. The HMF model

From the above results, we define the following model to cap-
ture the dependence of the multiplicity function on redshift and
power spectrum shape as:

a = aR Ω
az
m (z) (12)

p = p1 + p2

(
d lnσ
d ln R

+ 0.5
)

(13)

q = qR Ω
qz
m (z) . (14)

where:

aR = a1 + a2

(
d lnσ
d ln R

+ 0.6125
)2

(15)

qR = q1 + q2

(
d lnσ
d ln R

+ 0.5
)
. (16)

The growth rate, that is, d ln G/d ln(1+z)−1 where G(z) is the lin-
ear growth of density perturbations, was used by Ondaro-Mallea
et al. (2021) to characterise the non-universality of the HMF in-
stead of Ωm(z). For the cosmological models considered here this

is well approximated by (see e.g. Amendola & Tsujikawa 2010):

d ln G
d ln(1 + z)−1 = Ω

γ
m(z) , (17)

with γ = 0.55. Therefore, Eqs. (12) to (16) produce exactly the
same results for the cosmological models studied here once one
substitutes:

Ωm(z)→
(

d ln G
d ln(1 + z)−1

)1/γ

. (18)

Whether such a substitution leads to universal extensions of the
model to cosmologies with growth histories given by modified
gravity theories is left for further investigation. We concentrate
here on the description as a function of Ωm, as it is more straight-
forward to compute and produces the same results.

Regarding the characterisation of the dependence of the mul-
tiplicity function on the shape of the power spectrum, the first
obvious choice is to use its logarithmic slope d ln Pm(k)/d ln k
which reduces to the spectral index ns for power-law cos-
mologies. However, in more realistic cosmologies, the logarith-
mic slope of the power spectrum contains fluctuations due to
the baryonic acoustic oscillations (BAOs) for the characteristic
length of the most massive halos. One can circumvent this prob-
lem by smoothing the BAO before the computation of the slope,
as was done in Diemer & Kravtsov (2015). Conversely, we pro-
pose the logarithmic slope of the mass variance d lnσ(R)/d ln R.
For the power-law cosmologies this reduces to:

d lnσ
d ln R

= −
(ns + 3)

2
. (19)

5. Results

In this section, we present the calibration of the HMF model
(Sect. 5.1), compare it with previous works (Sect. 5.3), and fore-
cast the impact of numerical and statistical uncertainties related
to our calibration on Euclid’s cluster counts analysis (Sect. 5.4).

5.1. Calibration of the HMF

First, we provide a short recap of the rationale behind the setup
of the PICCOLO simulations. Before presenting the calibration
of the HMF model validated in the AETIOLOGY suite, we
present a summary of the numerical and theoretical systematic
effects on the HMF and how the PICCOLO suite was designed to
address them. The PICCOLO simulations were run with Open-
GADGET set according to the parameters presented in Table 1.
This choice of the parameters is shown in Sect. 3.1 and 3.2 to
produce results of subpercent accuracy and the robustness of the
results is assessed by code-comparison in Sect. 3.3. This suite of
simulations uses FCC grids as pre-initial conditions to mitigate
the impact of transients due to fluid discretization (see Michaux
et al. 2020). The FCC pre-initial conditions and initial displace-
ments computed with 3LPT at z = 24 also reduce the impact
of correlated errors on the force computations at early redshifts.
We refer to Fig. A.2, where we compare Open-GADGET and
GADGET-4, and to the discussion of force accuracy presented
by Springel et al. (2021). To mitigate the effect of round-off er-
rors on the HMF, we use the binning condition presented at the
end of Sect. 4.1. To minimise the impact of sample-variance, box
sizes are 2000 h−1 Mpc and initial conditions have been created
with fixed amplitudes of initial density perturbations (Angulo &
Pontzen 2016) as discussed in Sect. 4.2.
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Table 4. Parameters of the multiplicity function f (ν, z) presented in
Eq. 3 for the PICCOLO set of simulations.

a1 a2 az p1 p2 q1 q2 qz

ROCKSTAR
0.7962 0.1449 −0.0658 −0.5612 −0.4743 0.3688 −0.2804 0.0251

AHF
0.7937 0.1119 −0.0693 −0.5689 −0.4522 0.3652 −0.2628 0.0376

SUBFIND
0.7953 0.1667 −0.0642 −0.6265 −0.4907 0.3215 −0.2993 0.0330

VELOCIraptor (adaptive 6DFOF)
0.7987 0.1227 −0.0523 −0.5912 −0.4088 0.3634 −0.2732 0.0715

In order to calibrate the parameters in Eqs. (12) to (16), we
use the PICCOLO set of simulations presented in Table 1. The
halo catalogues were binned in 50 logarithmically spaced bins
in number of particles, corresponding to roughly δ ln M ≈ 0.15.
We assumed the likelihood presented in Sect. 2.4 with σsys =

0.005 Nsim
i . As for the AETIOLOGY fit, its value was chosen

such that the best-fit neither over- nor under-fits the simulations
and this value is in agreement with the expected non-Poisson
scatter caused by round-off errors discussed in Sect. 4.1 for the
most populated bin considered in the calibration. Its impact is
rapidly diluted as the Poisson contribution grows quickly with
mass and redshift. Lastly, we imposed a mass cut below which a
halo is not considered as resolved, which corresponds to a mini-
mum of 300 particles. Finally, we analyzed the outputs of simu-
lations at redshifts z = {2.00, 1.25, 0.90, 0.52, 0.29, 0.14, 0.0}.

In Table 4, we present the best fitting parameters of our cal-
ibration for our primary halo finder (ROCKSTAR) and three
other auxiliary halo finders (AHF, SUBFIND, and VELOCIrap-
tor). Details of the difference between the calibrations for differ-
ent halo finders are further discussed in Appendix B. The AHF,
SUBFIND, and VELOCIraptor fits were performed using one
simulation for each cosmology presented in Table 2. For the
ROCKSTAR fit, we used two simulations for each cosmology
including C0 with which we carried out ten realisations. We de-
cided not use the remaining eight C0 simulations for calibration
in order to avoid over-weighting this cosmology in our derivation
of the HMF fit; we only use them to reduce the Poisson fluctua-
tions of rare halos, which allows us to assess our uncertainty in
the calibration at this regime.

In Fig. 14, we present the HMF for ROCKSTAR halos and
the prediction of the respective best fit from the PICCOLO sim-
ulations at z = 0. The vertical dotted line represents the cut
in mass corresponding to the cut in the minimum number of
300 particles for the C0 runs. Figure 15 presents the ratio of
ROCKSTARbest-fit to the mean abundance of halos extracted
from the simulations at z = {0.0, 0.5, 1.0, 2.0}. As in Fig. 14, the
vertical dotted line represents the cut in mass corresponding to
the cut in the minimum number of 300 particles for the C0 runs.
The regions in grey represent the relative 1 percent and 2.5 per-
cent regions. For the sake of illustration, we present the Poisson
error bars corresponding to the C0 and C3 (our cosmology with
fewer halos) – the former counts with ten realisations while the
latter counts with two.

Quite remarkably, our model shows a percent-level agree-
ment with the simulations over the entire mass and redshift
ranges considered in the calibration despite the much larger dif-
ference between the cosmological models presented in Fig. 14.
This result demonstrates that our model HMF is capable of ac-
curately describing the cosmology dependence of the deviations
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Fig. 14. HMF at z = 0 for the PICCOLO cosmologies and the
ROCKSTARbest-fit prediction. The vertical dotted line represents the
cut in mass corresponding to the minimum number of 300 particles for
the C0 runs. Error bars are shown assuming a Poisson distribution of
the expected number of objects.

from universality, for a given set of simulations and for a given
choice of the halo finder. In Appendix C, we present further tests
of the robustness of our calibration as a function of redshift.

5.2. Cosmologies with massive neutrinos

The response of the HMF to neutrinos R is defined as

R(x) ≡
dn/dm∑

Mν=x

dn/dm∑
Mν=0

, (20)

where
∑

Mν is the sum of the masses of the three neutrino
species.

In Figs. 16 and 17, we present the response of the HMF
to massive neutrinos and the accuracy of the model presented
in Castorina et al. (2014) in order to take this latter into account.
Briefly, the model assumes that neutrinos impact the HMF pas-
sively, that is, through its effect on the background evolution.
Operationally, implementation of the model only requires that
we replace the total matter power spectrum Pm in the computa-
tion of the mass variance (Eq. 2) with the cold dark matter plus
baryons power spectrum and that we ignore the contribution of
neutrinos to the mass of the Lagrangian patch corresponding to a
given halo. To assess the accuracy of the model, we compare the
response R predicted by the model and from simulations. The
rationale for using R to assess the accuracy of the model is to
mitigate the impact of systematic effects due to differences in
the setup between the external simulations and the ones used for
the calibration of the HMF in this work.

We used two independent external simulations: the DEM-
NUni (see Carbone et al. 2016, for details of the simulation)14

and the Open-GADGET subset of the Euclid’s neutrino code
comparison simulations (Euclid Collaboration: Adamek et al.
2022). Halos were extracted in both sets using SUBFIND. Thus,
the results presented in this subsection rely on our SUBFIND
calibration presented in Table 4.

The DEMNUni set consists of three simulations of 2000
h−1 Mpc boxes assuming a cosmology in agreement with Planck
2013 results for the cosmological parameters (Planck Collabora-
tion XVI. 2014).15 The reference simulation considers massless
14 https://www.researchgate.net/project/
DEMN-Universe-DEMNUni
15 https://github.com/jmd-dk/nucodecomp-data
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Fig. 15. Ratio of ROCKSTARbest-fit to the mean abundance of halos
extracted from the simulations at z = {0, 0.5, 1.0, 2.0}. The vertical dot-
ted line represents the cut in mass corresponding to the minimum num-
ber of 300 particles for the C0 runs. The regions in grey represent the
relative 1% and 2.5% regions. The Poisson error bars correspond to the
C0 and C3 (our cosmology with fewer halos), which count with ten and
two realisations, respectively. We only show mass bins with more than
50 halos for improved readability.

neutrinos, while the other two simulations use the particle-based
implementation of neutrinos, assuming a total neutrino masses
of 0.16 and 0.32 eV, respectively. The reference simulations in-
clude 20483 dark matter particles, while the latter includes the
same number of dark matter particles and as many 20483 neu-
trino particles.

The Open-GADGET subset of the Euclid’s neutrino code
comparison shares the same implementation, a similar mass res-
olution, and a similar cosmological parameters as the DEMNUni
but in 1000 h−1 Mpc boxes. Instead, the total neutrino masses
simulated are 0.0, 0.15, 0.30, and 0.60 eV. These simulations
have been extensively compared with different neutrino imple-
mentations. The agreement for the power spectrum, bispectrum,
and HMF was observed to be better than 1 percent for the range
of interest.

In Fig. 16, we observe the well-established suppression in
the cluster abundance caused by massive neutrinos and its de-
pendence on the total neutrino mass. In Fig. 17, we observe that,
for total neutrino masses smaller than 0.32 eV and for both sim-
ulations, the model of Castorina et al. (2014) agrees with simu-
lations to better than 1 percent (dark shaded area) over the entire
mass range of validity of our calibration; as in Fig. 15, the dotted
line represents the 300-particle mass cut used for the calibration.
We only note that at lower masses, below ∼ 3 × 1013h−1 M� the
model HMF tends to underestimate the effect of massive neu-
trinos, an effect that increases with neutrino masses. While we
are not interested in the HMF calibration in this mass range, we
ascribe this difference to the effect of neutrino free-streaming
on the growth of CDM perturbations, which cannot be captured
by simply ignoring the neutrino component in the linear matter
power spectrum.

For the most massive neutrinos considered, we only rely on
the simulations carried out for the code comparison. Due to its
smaller volume, larger fluctuations are observed with respect to
the DEMNUni, but at the mass threshold of validity of our cali-
bration, we nevertheless observe that the model agrees with the
simulation within a few percent, and for lower masses the model
starts to over-predict the impact of neutrinos. The agreement for
masses larger than 4 × 1013 h−1 M� is again consistent with 1
percent scatter.

5.3. Comparison to other works

In Fig. 18, we compare our HMF model to the works of Tin-
ker et al. (2008), Despali et al. (2016), and Ondaro-Mallea
et al. (2021). We use our ROCKSTAR calibration as a refer-
ence and present our SUBFIND calibration as our SUBFIND
setup matches those used by Ondaro-Mallea et al. (2021), mak-
ing the comparison easier. WE note that, in Fig. 10, we present
a comparison of the cumulative mass function produced with
ROCKSTAR with that produced by DENHF. The latter, used
by Despali et al. (2016), differs from the former by roughly 1
percent. Lastly, Behroozi et al. (2013a) compared ROCKSTAR
catalogues with the prediction of Tinker et al. (2008) and pre-
sented an agreement within 5 percent at z = 0. We also present
the mean of the multiplicity function ν f (ν) measured from the
ten PICCOLO C0 runs. The grey areas depict the 1 and 5 per-
cent regions. To embed the significant differences with respect to
the other works, we adopted a symmetric log scale on the y-axis,
where the region between the dotted lines is presented in a linear
scale.

As already shown in Fig. 15, our model accurately repro-
duces results from simulations over fairly large ranges of masses
and redshifts. Globally, the differences are larger at both large
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Fig. 16. Impact of massive neutrinos on the HMF. We present the ra-
tio of the HMF with massive neutrinos to the corresponding massless
neutrinos counterpart as observed in two independent external simula-
tions DEMNUni (top) and the Open-GADGET subset of Euclid’s neu-
trino code comparison simulations (bottom). See the definition of R in
Eq. (20).

masses and high redshifts, where the statistics are poorer. At
z = 0, the model of Tinker et al. (2008) differs from ours by a
maximum of 3 percent for halos less massive than 1015 h−1 M�;
it crosses the 5 percent threshold at 2× 1015 h−1 M�, and beyond
that it deviates from our model, predicting significantly fewer
halos. The model of Despali et al. (2016) crosses the 5 percent
threshold over a narrower mass range; it deviates from our model
by more than 5 percent beyond 4×1014 h−1 M�, and over-predicts
the number of halos more massive than 1015 h−1 M� by more
than 20 percent. Comparing the model by Ondaro-Mallea et al.
(2021) to our HMF calibration based on SUBFIND we note that
they start differing by more than 5 percent for halos more mas-
sive than 7 × 1014 h−1 M�, above which the model of these latter
starts to follow the same trend as the model of Despali et al.
(2016). The picture at z = 1 and z = 2 are similar; at smaller
masses, all models tend to predict fewer halos than observed in
our simulations and predicted by our model. For Despali et al.
(2016) and Ondaro-Mallea et al. (2021), the trend flips at inter-
mediate masses and starts to over-predict the abundance of the
most massive halos. Similar results were obtained by compar-
ing our calibration directly with the simulations used and made
available by Ondaro-Mallea et al. (2021), which reassures us of
the robustness of our calibration.
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Fig. 17. Accuracy of the model presented in Castorina et al. (2014) in
accounting for the impact of massive neutrinos on the HMF. We com-
pare the ratio of the HMF with massive neutrinos to the corresponding
massless neutrinos counterpart, assuming the model of Castorina et al.
(2014) divided by the same quantity as observed in two independent ex-
ternal simulations: DEMNUni (top) and the Open-GADGET subset of
Euclid’s neutrino code comparison simulations (bottom). See the defi-
nition of R in Eq. (20).

5.4. Impact on cluster counts analysis

In this subsection, we forecast the impact of the uncertainties
on the HMF calibration on the cosmological constraints to be
derived from the Euclid cluster counts.

5.4.1. Impact of the halo finder

In Table 5, we summarise the impact of the different halo find-
ers on the inference of the marginalised cosmological parameters
Ωm and σ8. To do so, we compare the results obtained when one
assumes VELOCIraptor, SUBFIND or AHF calibrations to cre-
ate the synthetic catalogue while the fiducial ROCKSTAR cali-
bration is used for the analysis. We perform this forecast follow-
ing the methodology described in Sect. 2.5. For the likelihood
analysis, we assume flat priors on the cosmological parameters
and Gaussian priors with amplitudes on the mass–observable pa-
rameters of 1, 3, and 5 percent. The likelihood sampling is per-
formed with ZEUS (see Karamanis & Beutler 2021; Karamanis
et al. 2021). The impact of the different halo finders’ calibrations
is quantified using the index of inconsistency (IOI; Lin & Ishak
2017), which is calculated as

IOI =
δt Σ−1 δ

2
, (21)
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Fig. 18. Comparison of our HMF model to the works of Tinker et al. (2008), Despali et al. (2016), and Ondaro-Mallea et al. (2021). We use our
ROCKSTAR calibration as the reference and present our SUBFIND calibration for easy comparison with Ondaro-Mallea et al. (2021). We also
present the mean of the multiplicity function ν f (ν) measured from the ten PICCOLO C0 runs. The grey regions depict the 1 and 5 percent regions.
We adopted a symmetric-log scale on the y-axis, where the region between the dashed lines is presented in a linear scale.

where δ is the two-dimensional difference vector between the
best-fit and the assumed cosmological parameters {Ωm, σ8} =
{0.30711, 0.8288}. Additionally, Σ is the covariance matrix be-
tween these parameters, which we assume to be Gaussian dis-
tributed. In all cases, the tension in the (Ωm, σ8) plane increases
monotonically as the priors on the richness–mass relation tight-
ens. For both VELOCIraptor and SUBFIND the tension goes
from . 1σ for 5 and 3 percent priors to . 2σ when the prior
tightens to 1 percent. The tension for the AHF case is . 1σ for
all priors considered, which is a result of the similarity observed
in Figs. 10 and B.1 between AHF and ROCKSTAR calibrations.

Therefore, we conclude that differences in the HMF calibra-
tion associated with different choices of the halo finder propagate
into systematic effects in the measurements of cosmological pa-
rameters that are comparable to the formal uncertainties on such
parameters. For instance, if the cluster richness–mass relation
from Euclid data could be calibrated at < 3 percent precision,
then a crucial factor in deriving cosmological constraints from
cluster number counts would become the way in which a halo is
defined and identified in simulations in the process of the HMF
calibration. Lastly, if one increases the error budget for the HMF
calibration until it comprises the different halo-finder prescrip-
tions studied here, the IOI presented in Table 5 also provides the
expected reduction factor in the FOM of the cosmological con-
straining power of the Euclid cluster counts .

5.4.2. Impact of the calibration error

In Table 5, we also summarise the impact of the systematic
and statistical errors of our main (ROCKSTAR) calibration
and one of the auxiliary calibrations (VELOCIraptor) on the
marginalised uncertainties in the cosmological parameters Ωm
and σ8. We only consider one calibration of each group of halo
finders, as this test is dominated by the number of simulations
used in the HMF calibration. As VELOCIraptor, SUBFIND, and
AHF all use the same number of simulations — equal to half of
the set used for the ROCKSTAR calibration — they present very
similar results. We compare the FOM change in the (Ωm, σ8)
plane obtained by fixing the halo mass function parameters to
the calibrated values with the ones obtained by marginalizing
over such parameters using a multi-variate Gaussian with co-
variance given by the fit uncertainties. We consider again 1, 3,

and 5 percent priors on the richness–mass scaling relations. For
ROCKSTAR the statistical uncertainty only marginally affects
the cosmological inference. For VELOCIraptor, we observe that
the only significant impact is seen for the 1 percent prior, where
the FOM is over-estimated by ∼ 10 percent when the HMF pa-
rameters are left fixed. Therefore, from this test, we conclude
that the residual uncertainties in the HMF parameters have a neg-
ligible impact on the corresponding cosmological constraints.

6. Conclusions

In this paper, we carried out a detailed analysis to assess the nu-
merical robustness of the halo mass function (HMF) predicted
by N-body simulations, and to quantify and model its deviation
from universality. The variety of tests that we carried out include
changing the prescription for generating initial conditions, the
effect of resolution and of round-off errors in particle positions
in the initial conditions, the N-body integrator, the definition of
a halo, and the halo finder. While our reference analysis were
carried out assuming a vanilla ΛCDM cosmology, we also sim-
ulated the effect on the HMF of including massive neutrinos.
Furthermore, in order to trace the origin of departures from uni-
versality, we also ran simulations with a purely scale-free power
spectrum, both assuming Einstein–de Sitter and ΛCDM expan-
sion histories. Finally, with the resulting high-resolution calibra-
tion of the HMF, we assess the impact of systematic effects in
the cosmological parameters inference from an idealized Euclid
cluster number counts experiment. Our main conclusions can be
summarised as follows.

– The different gravity solvers considered in this paper agree
better than 1 percent on the HMF of cluster-sized halos
for particle masses smaller than 1010 h−1 M�. Interestingly,
the N-body integrator of RAMSES, the only code based
on adaptive mesh refinement among those considered here,
seems to systematically predict a lower number of halos with
M . 1014 h−1 M� an effect that is more apparent at lower
mass resolutions;

– Our adopted setup for the PICCOLO set, which includes
simulations for nine different cosmological models, provides
a percent-level convergence on the HMF model when com-
pared to higher resolution simulations.
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Table 5. Summary statistics for the forecast of the impact of different halo finders and calibration errors on Euclid cluster counts cosmological
constraints on Ωm and σ8. The IOI quantifies the tension in the posteriors if one uses the ROCKSTAR calibration to create the synthetic data while
either the VELOCIraptor, SUBFIND, or AHF calibration is used for the analysis. The relative difference of the FOM assesses the attenuation of
the constraining power of cluster counts if one marginalizes over the HMF parameters assuming the calibration chain as a prior. The latter statistics
are presented only for the ROCKSTAR and VELOCIraptor calibrations as VELOCIraptor, SUBFIND, and AHF use half the simulations used for
the ROCKSTAR calibration and present very similar results. Errors for both statistics were estimated using bootstrap resampling.

Summary statistics richness–mass relation priors Analysis Synthetic catalogue Value

IOI

1 % 1.66 ± 0.01
3 % VELOCIraptor ROCKSTAR 0.77 ± 0.01
5 % (Fixed) 0.65 ± 0.01
1 % 1.70 ± 0.02
3 % SUBFIND ROCKSTAR 0.84 ± 0.01
5 % (Fixed) 0.61 ± 0.01
1 % 0.90 ± 0.02
3 % AHF ROCKSTAR 0.61 ± 0.01
5 % (Fixed) 0.47 ± 0.00

∆FOM
FOM

1 % 0.04 ± 0.05
3 % ROCKSTAR ROCKSTAR 0.06 ± 0.04
5 % (marginalised) −0.01 ± 0.02
1 % −0.09 ± 0.05
3 % VELOCIraptor VELOCIraptor 0.00 ± 0.03
5 % (marginalised) −0.02 ± 0.03

– Numerical artifacts, such as round-off errors, add non-
Poisson fluctuations to the mass-binned distribution of halos.
Choosing the mass binning accordingly mitigates the prob-
lem.

– The differences in the abundance of halos coming from dif-
ferent halo finders largely dominate all the other numeri-
cal systematic errors considered here. The final impact on
cosmological constraints depends on how well the mass–
observable relation is kept under control, which highlights
the need of a better understanding of how halos identified
in simulations are related to clusters identified in an opti-
cal/NIR photometric survey, such as those provided by Eu-
clid.

– The HMF non-universality of virial halos depends on both
the background evolution and the power spectrum shape,
confirming the results of Ondaro-Mallea et al. (2021).

– Our HMF model was calibrated against nine ΛCDM cos-
mologies evenly covering the 95 percent confidence level
constraints on cosmological parameters from DES+SPT
cluster counts (Costanzi et al. 2021) and four different
halo finders (ROCKSTAR, AHF, SUBFIND, VELOCIrap-
tor). Our HMF calibration reproduces the abundance of virial
halos more massive than 3× 1013 h−1 M� with a precision of
better than 1 percent for the range of cosmological param-
eters studied here. However, our calibration is expected to
retain its accuracy beyond this range, as the HMF modelling
was validated on a more extreme set of simulations (AETI-
OLOGY).

– Using two external sets of simulations that include massive
neutrinos, we validated the model presented in Castorina
et al. (2014). Jointly with our calibration, the model by Cas-
torina et al. (2014) reproduces the abundance of virial halos
more massive than 4 × 1013 h−1 M� for a total neutrino mass
in the range [0.0 − 0.6] eV with a precision of better than 1
percent.

– The statistical uncertainties on the HMF calibration pre-
sented in our analysis are significantly smaller than the ex-
pected accuracy for the mass–observational relation of Eu-
clid. However, the difference between the HMF of the halo
finders studied here is comparable to the expected accuracy

for the mass–observational relation of Euclid and, as such,
could lead to a biased inference of cosmological parameters.

One of the results of our analysis is that the main source of
uncertainty in the calibration of the HMF from N-body simula-
tions is related to the definition of halos and to the finder used to
identify them. Reassuringly, the differences we found by apply-
ing four different halo finders do not compromise the accuracy
of the HMF required by the Euclid cluster survey. Still, our anal-
ysis does not provide information as to the the correspondence
between a halo identified in an N-body simulation and a cluster
identified in a photometric survey, and how uncertain knowledge
of this correspondence will impact on the derivation of cosmo-
logical posteriors remains an open question. Indeed, uncertain-
ties in the relation between richness and mass enclosed within
a suitably defined (and cosmology-dependent) radius, projection
effects in the selection function of the cluster sample, and mis-
centring, are all effects that need to be controlled and convolved
with the predicted HMF. While all such issues need to be ad-
dressed one by one, the analysis presented here demonstrates
that the precision in the definition of a fitting function for the
HMF predicted by N-body simulations of Λ(ν)CDM cosmolo-
gies is not a limiting factor for cluster cosmology with Euclid.
In forthcoming analyses we will verify whether a similar pre-
cision can be maintained when including uncertainties related
to the astrophysics of baryons and departures from the standard
Λ(ν)CDM framework.
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Fig. A.1. Sensitivity of the cumulative mass function to the accuracy
parameters of Open-GADGET. Each line corresponds to the ratio of the
cumulative mass function obtained setting one of the accuracy param-
eters to half the value presented in Table 3 with respect to the fiducial
set. For comparison, we add the 68% confidence level in red for the
ErrTolForceAcc assuming that halos in the simulations are distributed
according to a Poisson distribution.

Appendix A: Convergence tests

In Fig. A.1, we test the sensitivity and convergence of the cumu-
lative HMF extracted from AHF catalogues to the accuracy pa-
rameters of Open-GADGET for one of the TEASE simulations
of 5123 particles displaced from an equally spaced grid accord-
ing to the Zeldovich approximation at z = 99. Each line corre-
sponds to the ratio of the cumulative HMF obtained setting one
of the accuracy parameters to half the value presented in Table 3.
For comparison, we also add the 68 percent confidence level in
red for the ErrTolForceAcc assuming that the number of halos
in the simulations are distributed according to a Poisson distribu-
tion. Fig. A.1 shows that our parameter set provide sub-Poisson
differences to higher precision sets, deviating by less than a frac-
tion of a percent in the abundance of halos more massive than
3 × 1013 h−1 M�.

In Fig. A.2, we present the comparison between the cumula-
tive mass function extracted with AHF from cosmological sim-
ulations run with Open-GADGET and GADGET-4. We tested
the convergence of the results for three different initial condi-
tions: 5123 particles displaced from an equally spaced grid ac-
cording to 3LPT at z = 24, the same number of particles using
Zeldovich at z = 99, and 4 × 3203 particles displaced from a
face centred cubic (FCC) grid according to 3LPT at z = 24. The
box size is 500 h−1 Mpc. In all configurations, the agreement be-
tween Open-GADGET and GADGET-4 is better than a fraction
of percent for all masses considered. Due to the higher degree
of planes of symmetry, the FCC configuration shows an even
better agreement between the two codes, as in this configuration
the usual tree algorithm delivers more accurate forces from the
simulation start.

In Fig. A.3, we present a convergence test for the cumu-
lative mass function computed from AHF halo catalogue for
different particle masses and spatial resolutions. We consider
three mass resolutions, corresponding to the following particle
masses: {6.35 × 1011, 7.94 × 1010, 9.92 × 109} h−1 M�; respec-
tively {2563, 5123, 10243} particles in a box of 500 h−1 Mpc. For
the gravitational softening we consider: ε = {l/20, l/40, l/80},
where l is the mean interparticle distance. For reference, the 1
percent region is shown with the grey-shaded area, while the
68 percent confidence level assuming Poisson distribution for
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Fig. A.2. Comparison between the cumulative mass function extracted
from Open-GADGET and GADGET-4 for three different initial condi-
tions: 5123 displaced from a equally spaced grid according to 3LPT at
z = 24, the same number of particles using Zeldovich at z = 99, and
4 × 3203 particles displaced from a FCC grid at z = 24.
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Fig. A.3. Convergence test for the cumulative mass function for differ-
ent particle mass ({6.35 × 1011, 7.94 × 1010, 9.92 × 109} h−1 M�, respec-
tively, {2563, 5123, 10243} particles in a box of 500 h−1 Mpc) and spa-
tial resolution set by the gravitational softening (ε = {l/20, l/40, l/80},
where l is the mean interparticle distance). The filled region in grey rep-
resents the 1 percent region around unity and the filled region in red
represent the 68 percent confidence level assuming Poisson distribution
for the abundance of halos in both simulations.

the halo distribution of the simulations with 10243 particles with
ε = l/40 and ε = l/80 is depicted in red. We note that a particle
mass of few times 1010 h−1 M� is enough to have a cumulative
mass function that agrees to within 1 percent with the higher
resolution simulation for halos more massive than 1014 h−1 M�.
Lighter objects are more strongly affected by both the mass and
spatial resolutions. For the simulation with 2563 particles, even
the formation of very massive objects is suppressed by ≈ 4 per-
cent.

Appendix B: Comparison between the different
halo finder calibrations

The ratio of the multiplicity function as a function of the halo
virial mass for the different calibrations with respect to ROCK-
STAR is shown in Fig. B.1 colour coded by the redshift. Fig. B.1
confirms the trends at low redshift presented in Fig. 10, but also
shows their dependence with redshift. Despite the very different
algorithm, AHF and ROCKSTAR provide a multiplicity func-
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Fig. B.1. Ratio of the multiplicity function as a function of the halo
virial mass for the different calibrations to ROCKSTAR colour coded
according to redshift. From top to bottom, we present the results for
VELOCIraptor, SUBFIND, and AHF.

tion that agrees within 10 percent up to Mvir ∼ 1015h−1 M� for
the redshift range considered.

ROCKSTAR’s agreement with VELOCIraptor is worse than
the agreement with AHF, depending more strongly on both mass
and redshifts. At low redshift, VELOCIraptor tends to suppress
the number of halos with mass Mvir . 1014h−1 M� by few per-
cents.

ROCKSTAR’s worst agreement is with respect to SUB-
FIND, with SUBFIND suppressing the number of objects with
mass Mvir . 1015h−1 M� at all redshifts.
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Fig. C.1. Dependence of ROCKSTAR fit quality as a function of red-
shift. The fit quality (p-value) was estimated from sampling from the
likelihood used for the calibration assuming the best-fit parameters. The
p-value is the fraction of random catalogues that had a residual higher
than the original catalogue. On the right panel, we present the histogram
projection of the left panel.

Appendix C: Assessment of the fit-quality
dependence on redshift

In Fig. C.1, we present the ROCKSTAR fit quality dependence
with redshift. The fit-quality (p-value) in Fig. C.1 was estimated
from sampling 1000 points from the likelihood used for the cal-
ibration assuming the best-fit parameters. On the right panel, we
present the histogram projection of the left panel. The p-value
is the fraction of random catalogues that had a residual higher
than the original catalogue fit. While all the PICCOLO snapshots
were used to produce the left panel of the Fig. C.1, only the spe-
cific snapshots used for the calibration were used to present the
histogram on the right panel so as to avoid using strongly corre-
lated snapshots. Figure C.1 shows that our model provides robust
results for the redshift range [0, 2] and confirms that our choice
of σsys is reasonable.
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