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Ultra-Stable Lasers
The State of the Art

In order for optical clocks to reach their ultimate performance (quantum projection limit, ~10-17 fraction 
frequency stability at 1s), they require an ultra-stabilized probe laser, giving a goal of 10-18 at 1 s.

L0 = N (λ/2)   ->   f0 = N (c/2L0)
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Traditionally, these lasers use length-stable optical cavities as a frequency 
reference.
Cavities have a fundamental limit, due to thermal noise, at ~10-16 at 1 s. 
E�orts to mitigate thermal noise include alternate cavity geometries, use 
of high-Q materials, and cryogenic cavities.
     • PTB, JILA: Cryogenic Cavities: 4×10-17 at 1 s
     • PTB: Long Cavities: 8×10-17 at 1 s
While successful, this route faces considerable 
technological challenges.

We are researching a potential paradigm shi� in 
ultra-stable lasers: stabilization to an optical 
transition of a rare earth ion, Europium (Eu3+), 
doped into an Yttrium Orthosilicate (Y2SiO5) crystal. 
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Experimental Setup

A slave laser is phase-locked to a cavity-
referenced pre-stabilized master laser at 1160 
nm.  The slave is frequency doubled and 
tuned to the absorption band of the 
Eu3+:Y2SiO5 crystal.  The desired spectrum of 
beat notes is generated on the slave by an 
AOM driven by a GNU Radio controlled Ettus 
X310 FPGA-based USRP system.             
   At high power (1 uW) the slave laser acts as 
the pump, burning a spectral hole.  Switching 
to low power (10 nW), it probes the hole, 
experiencing a phase retardation proportional 
to the frequency di�erence between the laser 
and spectral hole.

Master Laser

Slave Laser

  This phase di�erence is measured in the FPGA by comparing the transmitted beat note on PD2 with a reference beat on 
PD1, creating the error signal,                            . The FPGA generates the correction signal tuning the PLL o�set, actuating 
the slave laser towards the center of the spectral hole.

Previous Experiments
and Characterizations

Additionally, the spectral line is well known to 
have a temperature dependence, with an 
expected f ∝ T4 relation.  In our system we 
measured a 9 kHz K-1 dependence at 3.2 K, 
compatible with a previous measurement at 
NIST (10±2 kHz K-1), when extrapolated to our 
working temperature.                  
At 3.7 K, our cryostat shows �uctuations of 100 
uK at 1s equating to a 1.7×10-15 �uctuation in 
fractional frequency; compatible with our 
measured frequency stability, this implies a 
temperature-limited performance.            

The �rst setup locked the laser to a spectral hole 
burnt at 3.7 K. The system saw a factor of 3 noise 
suppression over the cavity stabilized master 
laser, achieving a stability of 1.7×10-15 at 1 s. [1]

The experimental setup provided a testbed for 
novel physical measurements of spectral holes 
in Eu3+:Y2SiO5.                                  
Above:  We measured the Stark e�ect, observing 
the e�ect on the spectral hole center frequency 
due to an electric �eld at spectroscopic sites 
S1=580.04 nm and S2=580.21 nm. [2]                 
Below: We characterized the opto-mechanical 
coupling, measuring the e�ect on the spectral 
hole resulting from an applied stress. [3][4]
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Move to Dilution
Temperatures

We are currently working toward operating at ultra-low  
temperatures, motivated by the �rst iteration of the experiment 
being limited by temperature-�uctuation induced frequency-noise.

Moving to dilution temperatures 
(~100mK) predicts an ~ 50000× 
reduction in temperature -  
induced noise.         
A custom dilution refrigerator 
has been installed and cooled the 
crystal to ~90mK.                
  
Below: At this temperature, the 
�rst spectral holes have been 
burned and the burning process 
characterized.

Current work is toward the measurement, at dilution temperatures, 
of the temperature scaling of spectral line center frequency.

Multi-mode
Heterodyne Detection

Current e�orts are toward the reduction of lag in the digital 

feedback loop for increased bandwidth.

We are simultaneously implementing a novel multi-mode 
heterodyne detection scheme to reduce sensing noise in 
our inherently low detection-power setup.

We  probe multiple narrow 
spectral holes simultaneously 
using corresponding laser probe 
modes, pi.            
Right: We average over the 
modes, reducing uncorrelated 
noise.

To reduce correlated noise we 
utilize one mode as a 'monitor 
mode', m.  Propagating on the 
same beam, the monitor mode 
passes through a broad 'square' 
spectral hole, accumulating
common path length noise.
Right: Measurement of sensing 
noise projected to frequency 
stability: subtracting path-
length noise in real-time has 
yielded high common mode 
noise rejection into the 
thousands of seconds.

Spectral Hole Burning (SHB)

Pumping all the ions out at one frequency produces a narrow 
transmissive 'spectral hole' in the absorption spectrum

The 7F0->
5D0 transition in 

Eu3+ has a narrow 
homogeneous absorption 
line of order ~100 Hz

Within the crystal, 
inhomogeneous constraints 
lead to a broadening of the 
absorption spectrum.

A narrow linewidth pump 
beam at 580nm excites the 
ions, which drop into a 
hyper�ne state.


