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ABSTRACT

Continental surface water extents and dynamics are key information to model Earth’s hydrological and

biochemical cycles. This study presents global and regional comparisons between two multisatellite surface

water extent datasets, the Global Inundation Extent from Multi-Satellites (GIEMS) and the Surface Water

Microwave Product Series (SWAMPS), for the 1993–2007 period, along with two widely used static in-

undation datasets, the Global Lakes and Wetlands Database (GLWD) and the Matthews and Fung wetland

estimates. Maximum surface water extents derived from these datasets are largely different: ;13 3 106 km2

fromGLWD,;5.33 106 km2 fromMatthews and Fung,;6.23 106 km2 fromGIEMS, and;10.33 106 km2

from SWAMPS. SWAMPS global maximum surface extent reduces by nearly 51% (to ;5 3 106 km2) when

applying a coastal filter, showing a strong contamination in this retrieval over the coastal regions. Anomalous

surface waters are also detected with SWAMPS over desert areas. The seasonal amplitude of the GIEMS

surface waters is much larger than the SWAMPS estimates, and GIEMS dynamics is more consistent with

other hydrological variables such as the river discharge. Over the Amazon basin, GIEMS and SWAMPS

show a very high time series correlation (95%), but with SWAMPSmaximum extent half the size of that from

GIEMS and from previous synthetic aperture radar estimates. Over theNiger basin, SWAMPS seasonal cycle

is out of phase with both GIEMS and MODIS-derived water extent estimates, as well as with river

discharge data.

1. Introduction

Continental surface waters only cover a few percent of

the land surface (Lehner and Döll 2004; Downing et al.

2006; Prigent et al. 2007), but they have a strong impact

on the environment, as well as on human life

(Vorosmarty et al. 2010). Surface freshwaters comprise

wetlands, rice paddies, rivers, lakes, reservoirs, and epi-

sodically inundated areas. Note that the definition of

wetlands varies with applications and there is not an

overall consensus on the subject (e.g., Reichhardt 1995).

Surface waters play a key role in the biogeochemical and

hydrological cycles, in biodiversity, and in climate vari-

ability. They show very diverse natures, from wetlands to

inundated urban areas or rice paddies, associated with

different dynamics from the tropics to the boreal regions.

Wetlands are considered one of the most biologically

diverse of all ecosystems since they support plant andwild

animal species during important states of their life cycles.

They are the world’s largest natural source of methane

(CH4), and they provide about one-third of the total
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global emission (;165Tgyr21; Bousquet et al. 2006;

Bridgham et al. 2013; Wania et al. 2013). Consequently,

monitoring surface freshwater extent and dynamics is a

high priority in water management and climate research

(e.g., Alsdorf et al. 2007).

Nevertheless, our understanding about the global

distribution of the surface waters and their dynamics is

still limited, with only a few datasets providing in-

formation at the global scale. Efforts have been made to

collect information on water surfaces to produce static

maps of surface waters, for example, the Global Lakes

andWetlandsDatabase (GLWD) fromLehner andDöll
(2004) or the Matthews and Fung (1987) wetland data-

set. These maps are representative of the maximum

surface water extent, and they do not provide any in-

formation on the temporal dynamics. Satellite observa-

tions in the visible, infrared, or microwave domains have

the potential to detect surface water extent and their

variations (Verpoorter et al. 2014; Yamazaki et al. 2015;

Mueller et al. 2016; Feng et al. 2016), with different

degrees of success depending on the environments.

Optical and near-infrared satellite measurements pro-

vide good spatial resolutions but are limited by their

inability to penetrate clouds and dense vegetation. Mi-

crowaves, passive or active, have the ability to penetrate

clouds and vegetation, to a certain extent. With syn-

thetic aperture radar (SAR) data, high spatial resolution

is obtained, but global products describing the surface

water dynamics are not available yet. Passive microwave

observations have long been used to detect surface wa-

ter extents, but used alone, it is difficult to disentangle

the vegetation contribution from the measured signal.

Prigent et al. (2016) propose a review on the use of

different satellite techniques to monitor surface water,

discussing in detail their advantages and limitations re-

garding the diverse applications.

These considerations lead to the conclusion that there

is currently not a unique satellite technique for detecting

surface water dynamics globally from tropical to boreal

regions. In the following, surface waters will include all

surface water types (wetlands, rice paddies, rivers, lakes,

reservoirs, and episodically inundated areas), as the

satellite observations cannot distinguish between the

different natures of the surface water. A multisatellite

methodology has been developed to derive surface wa-

ter extent and dynamics at the global scale, benefiting

from complementary strengths of satellite observations

in the visible, passive, and active microwaves (Prigent

et al. 2001, 2007, 2012; Papa et al. 2010): the Global

Inundation Extent from Multi-Satellites (GIEMS).

More recently, the Surface Water Microwave Product

Series (SWAMPS) has been produced, also based on

the merging of passive and active microwave satellite

observations (Schroeder et al. 2015). Long time series of

global surface water estimates are necessary today to

analyze the changes in the wetland-related methane

emission (e.g.,Melton et al. 2013;Wania et al. 2013), and

climate modelers are in strong need of wetland extent

information to understand the methane variability over

past decades (Ringeval et al. 2010; Pison et al. 2013) for a

better prediction of its evolution in the upcoming de-

cades. GIEMS has been extensively evaluated and is

limited to 1993–2007 (time extension is underway).

SWAMPS is a recent dataset that extends from 1992 to

2013. They have a similar spatial resolution (;0.258 3
0.258). As these two datasets are currently the only

global surface water datasets with monthly time series, a

thorough comparison of these estimates is needed for

the user community.

Here, global surface water datasets are systematically

and objectively compared, including the two multi-

satellite databases, GIEMS and SWAMPS, along with

two static datasets. The analysis covers the common

period of the two satellite-derived products (1993–

2007), and both the spatial and temporal variabilities of

the databases are studied. The surface water datasets are

described in section 2. Global and regional comparisons

are described and discussed in section 3. A discussion is

presented in section 4, and section 5 concludes this

study.

2. Data

a. GIEMS

GIEMS was the first global surface water dataset that

provided monthly distribution of wetland and surface

water extent (including lakes, rivers, and irrigated agri-

culture). GIEMS data cover the period 1993–2007

and are mapped on an equal-area grid of 0.258 3 0.258
spatial resolution at the equator (pixels of 773km2). In-

undated surfaces were detected and their extent was es-

timated by the method developed by Prigent et al. (2001,

2007, 2012).Globalmonthly inundationmaps are derived

from daily data of the following satellite observations:

1) passive microwave emissivity from the Special Sensor

Microwave Imager (SSM/I), 2) active microwave back-

scatter coefficients from the scatterometer on board the

European Remote-Sensing (ERS) satellite, and 3) the

normalized difference vegetation index (NDVI) derived

from visible and near-IR reflectances of the Advanced

Very High Resolution Radiometer (AVHRR). Instead

of directly using the brightness temperatures from the

passive microwave instruments, surface emissivities

are calculated to avoid modulation of the signal by

atmospheric effects and surface temperature variations

(Prigent et al. 2006). Passive microwave emissivities
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from SSM/I are primarily used to detect inundation of

the land surface while active microwave backscatter is

used to assess the vegetation contribution to the passive

microwave signal. NDVI information is necessary to

distinguish between bare surfaces and inundated sur-

faces in semiarid regions where they can produce similar

passive microwave signatures. Because of the lack of

continuity and consistency in the ERS and AVHRR

products, the current version of GIEMS uses monthly-

mean climatology of ERS andAVHRR, calculated over

1993–2000. Other solutions were carefully tested, such

as using other instruments like QuikSCAT instead of

ERS, but this was not satisfactory (Papa et al. 2010). The

snow-covered areas are filtered out using the National

Snow and Ice Data Center (NSIDC) dataset (Brodzik

and Armstrong 2013; http://nsidc.org/data/NSIDC-

0046). Inland seas (Caspian Sea and Aral Sea), big

lakes (e.g., Great Lakes in North America), and coastal

pixels (possibly contaminated by radiation from the

ocean because of the large microwave fields of view)

were also carefully suppressed from the GIEMS data.

GIEMS has been thoroughly evaluated by comparison

with static surface water databases, and its consistency

with other hydrological information (e.g., precipitation

and river height) has been assessed (Papa et al. 2006,

2007, 2008a, 2010). Recent works have been performed

to downscale GIEMS using ancillary high-resolution

data. GIEMS-D15 has a 15-arc-s resolution (nearly

500m at the equator) for three different temporal states

of the inundation extent (Fluet-Chouinard et al. 2015).

First, the original 12-yr time series of GIEMS (1993–

2004) were aggregated to get mean annual minimum,

mean annual maximum, and long-term maximum at the

pixel level. Second, GLWDdata (Lehner andDöll 2004)
were added to supplement missing data or to correct

GIEMS underestimation for low water fraction.

Finally, a global inundation probability map derived

from the HydroSHEDS dataset (Lehner et al. 2008) was

used to downscale GIEMS from the original resolution

to 15 arc s (Fluet-Chouinard et al. 2015). In this project,

we averaged GIEMS-D15 to the GIEMS grid (0.258 at
the equator) for comparison with the other datasets.

More recently, a new version (GIEMS-D3) at 3-arc-s

resolution (Aires et al. 2017) has been produced with an

improved downscaling scheme.

b. SWAMPS

SWAMPS is a daily global surface water dataset,

mapping open water areas and water under low-density

vegetation, for the period 1992–2013 (Schroeder et al.

2015), on an equal-area grid of 25 km resolution at the

equator (similar to GIEMS). It is derived from com-

bined passive and activemicrowave observations: SSM/I

and the Special Sensor Microwave Imager/Sounder

(SSMI/S) for the passive microwave and the backscatter

coefficients from ERS, QuikSCAT, and the Advanced

Scatterometer (ASCAT). The microwave polarization

difference index (MPDI), the ratio of the difference

between the brightness temperatures in the two or-

thogonal polarizations over their sum, is the main in-

dicator to detect the water bodies in this methodology.

Backscatter coefficients from the ERS (5GHz),

QuikSCAT (10GHz), and ASCAT (5GHz) satellites

are used to reduce the vegetation effect on the MPDI.

The three instruments do not observe with the same

angles and frequencies, and ad hoc corrections are per-

formed to limit the effects of the changes on the time

series (Schroeder et al. 2015). Snow cover and frozen

ground are filtered using the method of Grody and

Basist (1996) and Chang et al. (1987). Daily global

SWAMPS data were averaged to obtain monthly global

SWAMPS estimates at 0.258 3 0.258 for comparison

with the other datasets.

c. GLWD

GLWD is a global open water and wetland dataset

developed by Lehner and Döll (2004). The dataset is

derived from the combination of a variety of existing

maps and information. Among these, the Digital Chart

of the World (DCW) of the Environmental System

Research Institute (ESRI) was the main source map to

identify lakes and reservoirs. GLWD is not a satellite

product, but a staticmapwith three data levels: GLWD-1,

GLWD-2, and GLWD-3. The GLWD-3 data used here

include three main types of open water (rivers, lakes,

and reservoirs) and nine different natural wetland clas-

ses in the form of a global raster map at 30-s resolution.

For each wetland category (50%–100%, 25%–50%, and

0%–25%) the average value (i.e., 75%, 37.5%,

and 12.5%) is used. GLWD is designed to represent the

maximum level of surface water extent regionally and

globally. GLWD has been used extensively and com-

pared favorably with different satellite-based land-cover

datasets (Nakaegawa 2012). For comparison with the

other datasets, GLWD is aggregated to theGIEMS grid.

d. Other ancillary datasets

Matthews and Fung (1987) wetland fractions come

from aeronautical charts, the information for which is

more likely acquired during warm seasons of maximum

flooding (Matthews and Fung 1987). It is a static dataset

on a 18 regular grid. It has been extensively used in the

past by climate groups to estimate the methane emission

from wetlands.

Satellite products such as GIEMS and SWAMPS

detect all surface water, including inundated areas
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associated with cultivation (such as the rice paddies in

Asia) that are not accounted for in GLWD or in the

Matthews and Fung (1987) wetland dataset. The global

monthly irrigated and rain-fed crop areas (MIRCA)

around the year 2000 (Portmann et al. 2010) provide

information about irrigated and rain-fed agriculture

globally. Irrigated rice is inundated during most of its

growing season, and the MIRCA dataset provides an

estimate of these inundated surfaces that are especially

important in Asia (Adam et al. 2010). MIRCA is av-

eraged from the 5-arc-min resolution to the common

0.258-resolution grid.

River discharge data in some important basins of

the world (e.g., Amazon, Orinoco, Niger, Mississippi,

Congo, and Ob) were collected as an ancillary source of

information to compare with time series of the surface

water datasets. In the present study, we show the com-

parisons with river discharge for three basins we focused

on (Amazon, Niger, and Ob Rivers). For the Amazon

River, we use the in situ monthly discharges observed at

Obidos, Brazil, which is the closest gauge to the mouth

of the river (;800 km from the ocean), and for which

data are available for 1993–2007 at the Observation

Service for the Geodynamical, Hydrological and Bio-

geochemical Control of Erosion/Alteration and Mate-

rial Transport in the Amazon, Orinoco, and Congo

basins (SO HYBAM) website (http://www.ore-hybam.

org/). Daily river discharge at the Lokoja gauge (1998–

2005) is used to get the monthly river discharge data for

the Niger basin. The data are collected from the Global

Runoff Data Centre (GRDC; http://www.bafg.de/

GRDC/EN/Home/homepage_node.html). Over the Ob

River, we use the in situ records from the Russian Hy-

drometeorological Service that are available on

a monthly basis until 2004 in the archives of the

R-Arctic project (http://www.r-arcticnet.sr.unh.edu/

v4.0/index.html).

3. Comparisons of the surface water datasets

The satellite-derived surface water datasets are com-

pared over their common period 1993–2007, first globally

and then at a basin scale. The 23 largest river basins in the

world have been analyzed. However, the results are pre-

sented only for three basins located in contrasted types of

environments: the Amazon basin in the tropics, the Niger

basin in a semiarid area, and the Ob basin in the boreal

region. The comparison is also systematically performed

with the two static datasets previously described: GLWD

and the Matthews and Fung (1987) dataset.

a. Global comparisons

Figure 1a shows the GIEMS long-termmonthly-mean

maximum inundation for each pixel over 1993–2007,

along with the SWAMPS equivalent information

(Fig. 1b), for comparison with GLWD (Fig. 1c). Even at

this scale, large differences are evident between the

three datasets. GIEMS and GLWD show much larger

inland water fractions than SWAMPS. GLWD has

particularly large inundation extent in Canada, where

many small lakes are located. The major large river

floodings (e.g., Amazon, Orinoco, and Ganges–

Brahmaputra) appear clearly on both GIEMS and

GLWD maps. The large water fraction in SWAMPS is

concentrated on the coastal region (see, e.g., Indonesia).

That is very likely related to the contamination of the

retrieval by the ocean. Close to the coast, part of the

energy observed by the microwave instruments can

FIG. 1. Global maps of fractional surface water for different datasets on the equal-area grid at 0.258 3 0.258 at the
equator (773 km2 pixels). (a) GIEMS long-term monthly-mean max over 1993–2007, (b) original SWAMPS long-

termmonthly-mean max over 1993–2007, (c) GLWD, and (d) SWAMPS long-termmonthly-mean max over 1993–

2007 after coastal filtering.
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come from the ocean, and the signal can be mis-

interpreted as coming from terrestrial inundated sur-

faces, if a careful filtering is not applied. Here we

propose to filter the SWAMPS data to eliminate the

ocean contamination close to the coast. Figure 1d rep-

resents the SWAMPS data where the contaminated

coastal pixels are masked. SWAMPS also detects water

almost everywhere on the globe, even in the North

African desert. Histograms of the maximum frac-

tional water surface are presented in Fig. 2 for the

four datasets in Fig. 1. GLWD shows a large number

of highly inundated pixels (.90%), mostly located in

Canada (see Fig. 1c). SWAMPS has a very large

number of fractional water surfaces below 0.2, much

more than the two other datasets. However, it has

much less large water fractions, especially after fil-

tering of the coasts.

For each pixel and each satellite-derived dataset, the

mean fractional inundation at annual maximum and

minimum has been calculated, along with the mean

yearly amplitude of the fractional inundation (Fig. 3;

note that for SWAMPS the coastal filtering is applied).

Maps of the differences of these values betweenGIEMS

and SWAMPS data are also presented. Compared to

GIEMS, SWAMPS shows very limited amplitude in the

annual cycle of the inundation, even in regions where

large seasonal variations are expected.

Time series of the surface water from GIEMS and

SWAMPS are compared globally and for three latitude

bands [tropical (308S–308N), midlatitude (308–558N),

and boreal (558–708N)] in Fig. 4, along with the corre-

sponding values from GLWD, from the Matthews and

Fung (1987) wetland dataset, and from the irrigated

fields from MIRCA. GLWD (black) shows the maxi-

mum level of surfacewater both globally (;133 106km2)

and regionally. This is expected as it is representative of

the maximum inundation and it has a better spatial

resolution than the Matthews and Fung (1987) dataset

(that is also expected to present the maximum in-

undation, but with a much lower spatial resolution and

thus likely to miss the small water surfaces). The

Matthews and Fung (1987) dataset (cyan) has much less

water extent in the boreal and the midlatitude regions,

as it is representative of the wetlands only and does not

include the lakes and rivers (;5.3 3 106 km2). The

maximum global surface water extent derived from

FIG. 2. Histograms of long-term max fractional water surfaces for

the four datasets in Fig. 1.

FIG. 3. Global-mean annual (top) min and (middle) max of the fractional inundation and (bottom) amplitude for (left) GIEMS, (center)

SWAMPS, and (right) their differences. The information is presented on the 773 km2 equal-area grid.
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GIEMS is ;6.2 3 106 km2, smaller than that derived

from GLWD. From comparison with high-resolution

SAR estimates over the Amazon basin, the accuracy of

the GIEMS product has been estimated at 10% of the

773 km2 equal-area grid: because of the low-spatial-

resolution satellite sensors, GIEMS tends to miss the

small water fraction below 10% of the pixels or to

overestimate the large inundation fraction above 90%

(Prigent et al. 2007). However, this problem is partly

corrected in GIEMS-D15 (Fluet-Chouinard et al. 2015),

which merges GIEMS low-inundated pixels with

GLWD. The maximum of the original SWAMPS in-

undation extent at global scale (;10.3 3 106 km2) is

close to the GLWD extent, as mentioned in Schroeder

et al. (2015). Over the tropical region, the maximum

surface water derived from the original SWAMPS

(dashed blue) is very close to that of GWLD (black),

;4.93 106 and ;4.43 106 km2, respectively. However,

it is surprising to observe that the global maximum value

is reduced to ;5 3 106 km2 (i.e., a reduction of nearly

51%) when the coasts are filtered out. Over the tropical

region, SWAMPS decreases by nearly 53% after coastal

masking to reach ;2.3 3 106 km2. The original

SWAMPS dataset detects more water surfaces than

GIEMS for all three latitude bands. After coastal fil-

tering, the yearly-mean temporal SWAMPS water sur-

face extent is similar to theGIEMSone, but the seasonal

amplitude of SWAMPS is much lower than the GIEMS

one. Table 1 shows monthly long-term minimum, long-

termmaximum, and long-termmean, as well as seasonal

amplitude between monthly long-term maximum and

minimum of surface water extent derived from GIEMS

and SWAMPS after coastal filtering globally, and at

three latitude bands, for the studied period (1993–2007).

FIG. 4. Time series of surface water extent derived from GIEMS (red), original SWAMPS

(dashed blue), SWAMPS with coastal filtering (blue), GLWD (black), Matthews and Fung

(1987) dataset (cyan), and MIRCA irrigated fields (green), at three latitude bands and

globally, for the period 1993–2007.
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Long-term mean values between GIEMS and

SWAMPS are close, but GIEMS shows larger ampli-

tude than SWAMPS regionally and globally. FromFig. 4

we can see that wetland surfaces derived from GIEMS

(red) and SWAMPS (dashed blue) have strong temporal

correlations globally (92%) and over the boreal region

(88%), but lower temporal correlations over mid-

latitudes (58%) and the tropics (48%). Furthermore, in

these two regions, GIEMS has a much stronger seasonal

cycle than SWAMPS.

In the rest of the study, the coastal filter is applied to

the SWAMPS data.

b. Basin-scale comparisons

1) COMPARISONS OVER THE AMAZON BASIN

The Amazon basin is the largest drainage basin in the

world with the largest discharge, and it is mostly located in

the tropical rain forest. Figure 5 shows the long-term

maximum inundationmaps (1993–2007) over theAmazon

basin, derived from the different wetland datasets. Spatial

distributions of surface water datasets are similar. Al-

though the spatial correlation between long-term maxi-

mum inundated maps of GIEMS and SWAMPS is nearly

90%, SWAMPS fractional surface water is much lower

than the GIEMS and GLWD ones. In Schroeder et al.

(2015), it is noted that SWAMPS has problems detecting

water underneath dense forest canopy. The ability of

passive microwaves to detect surface water below dense

forest was demonstrated early by Giddings and

Choudhury (1989) or Sippel et al. (1994) in their pioneer

works. It is rather surprising that SWAMPS cannot detect

these surface waters. GIEMS-D15 corrects GIEMS by

adding the small surface water fractions that are likely

TABLE 1. Monthly long-term min, long-term max, long-term

mean, and seasonal amplitude between monthly long-term max

and min of surface water extent derived from GIEMS and

SWAMPS after coastal filtering at three latitude bands and glob-

ally, for the period 1993–2007. Unit is 3 106 km2.

Min Max Mean Amplitude

Boreal

GIEMS 0.0 1.5 0.4 1.5

SWAMPS 0.2 1.2 0.6 1.0

Midlatitude

GIEMS 0.3 1.6 0.8 1.3

SWAMPS 0.7 1.2 0.9 0.5

Tropical

GIEMS 1.3 3.0 1.8 1.7

SWAMPS 1.7 2.3 1.9 0.6

Global

GIEMS 1.7 6.2 3.2 4.5

SWAMPS 3.0 5.0 3.9 2.0

FIG. 5. Long-term max inundation maps averaged over 1993–2007 from GIEMS and SWAMPS, and max inundation maps from the

different surface water datasets over the Amazon basin. Shown are GIEMS, GIEMS-D15, SWAMPS, GLWD, and Matthews and Fung

(1987) datasets.
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missed byGIEMS, and this is clearly seenwhen comparing

GIEMS and GIEMS-D15 inundation maps in Fig. 5.

Mean annual minimum and maximum inundation

maps of GIEMS, GIEMS-D15, and SWAMPS are

shown in Fig. 6. Similar to the long-term maximum in-

undated maps, the spatial distributions of the GIEMS

and SWAMPS datasets are similar (spatial correlation

of 80% and 90% for the minimum and maximum, re-

spectively), but SWAMPS detects much less surface

water than the two GIEMS versions.

Monthly time series of the surface water extents have

been calculated over the basin, along with the river

discharge at the mouth of the river (Fig. 7, top). The

monthly-mean annual cycle from January to December

FIG. 6. Mean annual (top) min and (bottom) max of the inundation derived from different surface water datasets over the Amazon basin

for (left) GIEMS, (center) GIEMS-D15, and (right) SWAMPS.

FIG. 7. (top) Time series and (bottom) anomaly of surface water extent derived from the

different wetland datasets, along with the river discharge over theAmazon basin from 1993 to

2007. Anomaly is calculated by removing the monthly-mean annual cycle from time series.
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is computed by averaging values from all Januaries to

Decembers between 1993 and 2007. Then these values

are subtracted from the time series for each given

month, to obtain the anomaly time series (Fig. 7, bot-

tom). Time series and anomaly correlations are shown in

Table 2. The behaviors of time series of GIEMS (red)

and SWAMPS (blue) are very similar to that of the river

discharge (brown), with very high correlations. Time

series correlation between GIEMS and SWAMPS is

95%. It is 78% and 74% with the river discharge for

GIEMS and SWAMPS, respectively. Time series cor-

relations with the river discharge increase when calcu-

lated with 1-month lag, as expected, reaching 91% and

88%, respectively. The anomaly correlation between

GIEMS and SWAMPS is surprisingly high (77%). The

same analysis has been carried out over the Orinoco

basin, showing a correlation of 99% between time series

of GIEMS and SWAMPS and a correlation of 97%

between their anomalies. More details can be found in

the supplemental material.

2) COMPARISONS OVER THE NIGER BASIN

The Niger basin is characterized by a large inner delta

that results in a region of braided streams and has

marked seasonal floods. Long-term maximum in-

undation maps are shown over the Niger basin in Fig. 8,

while their minimum and maximum are presented in

Fig. 9, and Fig. 10 shows their time series and anomalies,

as well as that derived from the river discharge data.

Time series and anomaly correlations between GIEMS/

SWAMPS and other ancillary datasets are shown in

Table 3. Time series of GIEMS and SWAMPS are in

opposite phase (Fig. 10), making the time series corre-

lation negative (240%). Again, GIEMS shows a much

stronger seasonal cycle than SWAMPS over this basin.

GIEMS and the river discharge (brown) show similar

behavior with a time series correlation of nearly 81%

(for the common period 1998–2005). In contrast,

SWAMPS does not show the same seasonal cycle,

making its time series correlation with the river dis-

charge negative (260%). Note that other studies

TABLE 2. Time series and anomaly correlations between

GIEMS, SWAMPS, and river dischargeQ over the Amazon basin

for the period 1993–2007. Numbers in parentheses are calculated

with 1-month lag between GIEMS/SWAMPS and Q.

Time series

correlation

Anomaly

correlation

GIEMS/SWAMPS 95% 77%

GIEMS/Q 78% (91%) 54% (58%)

SWAMPS/Q 74% (88%) 57% (61%)

FIG. 8. Long-term max inundation maps averaged over 1993–2007 from GIEMS and SWAMPS, and max inundation maps from the

different surface water datasets over the Niger basin. Shown are the GIEMS, GIEMS-D15, SWAMPS, GLWD, and Matthews and Fung

(1987) datasets.
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analyzed GIEMS over the Niger region, for example,

Pedinotti et al. (2012) or Aires et al. (2014). Pedinotti

et al. (2012) evaluate the ability of the ISBA–Total

Runoff Integrating Pathways (TRIP) continental hy-

drologic system to represent key processes (surface

water, rivers and floodplain dynamics, and water stor-

age) related to the hydrological cycle of the Niger basin.

To this end, GIEMS is used to evaluate the long-term

simulations that showed that the flooding scheme leads

to a nonnegligible increase of evaporation over large

flooded areas, which in turns improved the Niger River

discharge estimates at several locations. The objective of

Aires et al. (2014) is to develop downscaling methodolo-

gies to obtain a long time record of inundation extent over

FIG. 9. Mean annual (top) min and (bottom) max of the inundation derived from different surface water datasets over the Niger basin for

(left) GIEMS, (center) GIEMS-D15, and (right) SWAMPS.

FIG. 10. (top) Time series and (bottom) anomaly of surface water extent derived from the

different wetland datasets (1993–2007), along with the river discharge (1998–2005) over the

whole Niger basin. MODIS surface water extent time series for the inner delta only (dashed

brown) is available from 2000.
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the inner Niger delta at high spatial resolution (500m)

based on the existing low-spatial-resolution results of the

GIEMS dataset and observations from MODIS.

Time series of the surface water derived fromMODIS

visible images over theNiger basin for the period 2000–07

(Bergé-Nguyen and Crétaux 2015) were also compared

to the behavior of GIEMS and SWAMPS over this re-

gion. From Fig. 10 (top) and Fig. 11, it is clear that

GIEMS and MODIS surface water time series have

similar seasonal dynamics over the common period

(2000–07). However, GIEMS has a higher maximum

value than MODIS, which could suggest an over-

estimation from GIEMS over this region. In addition,

the interannual variability is not totally similar between

GIEMS and MODIS. Similar passive microwave sig-

natures can be observed over arid regions and over

water: these two surface types have low emissivities with

rather large emissivity polarization differences. As a

consequence, reliable and accurate detection of surface

water in arid and semiarid regions is not trivial. In

GIEMS, NDVI information is used in the process to

help solve these ambiguities. SWAMPS obviously en-

counters difficulties in this type of environment, with

false detection of water in deserts and underestimation

of water surfaces in inundated deltas. This is in agree-

ment with Schroeder et al. (2015). As a result, over the

Niger delta, SWAMPS does not capture at all the water

surface dynamics.

3) COMPARISONS OVER THE OB BASIN

The Ob basin in western Siberia is selected to repre-

sent the boreal environments. SWAMPS surface waters

are again much less extended than the other estimates

(see Figs. 12 and 13). SWAMPS surface water peaks

generally in May, one month earlier than GIEMS. Time

series correlation between GIEMS (SWAMPS) and the

river discharge for the studied period is 91% (62%).

When calculated with 1-month lag, time series correla-

tion decreases for GIEMS to 80%, while it increases for

SWAMPS to 91% (Table 4). The same conclusions can

be found for the anomaly correlations between GIEMS,

SWAMPS, and river discharge over the Ob basin (also

Table 4). The lag between GIEMS and SWAMPS could

be partly related to differences in the snow filtering per-

formed monthly with GIEMS and daily with SWAMPS.

GIEMS estimates are flagged too quickly by the NSIDC

snow mask, so we are missing the end of the high-water-

stage season (September–October). The river discharge

from the Ob River and GIEMS have been compared in

Papa et al. (2008b), and the use of the snowmaskwas well

discussed. The snow flag in GIEMS is under analysis and

will be refined for the next version of the dataset.

4. Discussion

As already observed in Fig. 1, the maximum surface

water extent estimated by SWAMPS for the major ba-

sins is limited compared to the other estimates. The

annual maximum SWAMPS surface extent (including

TABLE 3. Time series and anomaly correlations between

GIEMS, SWAMPS, and river dischargeQ over the Niger basin for

the period 1993–2007. Numbers in parentheses are calculated with

2-month lag between GIEMS/SWAMPS and Q.

Time series

correlation

Anomaly

correlation

GIEMS/SWAMPS 240% 20%

GIEMS/Q 81% (51%) 23% (44%)

SWAMPS/Q 260% (10%) 22% (12%)

FIG. 11. Time series of surfacewater extent derived fromGIEMS, SWAMPS, andMODIS for

the inner Niger delta.
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the coasts) and the GLWD surfaces are similar, and this

feature is advertised in Schroeder et al. (2015). How-

ever, ;50% of the surface water with SWAMPS is lo-

cated along the coasts. This clearly relates to

contamination by the ocean in the observation fields of

view of the passive microwave observations and to the

lack of adequate filtering in the retrieval algorithm. The

SWAMPS algorithm fits the global maximum water

extent of GLWD, but as the coastal waters were

mistakenly included in the tuning, the inland water ex-

tent is therefore strongly underestimated. The range of

seasonal variability of SWAMPS is also strongly re-

duced because coastal regions do not evolve in time.

The underestimation of the SWAMPS extent under

dense vegetation is particularly significant, as observed

in the Amazon basin. The well-established SAR esti-

mate from Hess et al. (2003) is 243 000 km2 at the high

stage, very close to the GIEMS values, and very

FIG. 12. Long-term max inundation maps averaged over 1993–2007 from GIEMS and SWAMPS, and max inundation maps from the

different surface water datasets over the Ob basin. Shown are the GIEMS, GIEMS-D15, SWAMPS, GLWD, and Matthews and Fung

(1987) datasets.

FIG. 13. As in Fig. 7, but for the Ob basin. River discharge (brown) is available until 2004.
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different from the Phased Array type L-band Synthetic

Aperture Radar (PALSAR) estimates (40 000km2)

provided by Schroeder et al. (2015) in their paper.

In the microwaves, the surface emissivities of water

and desert surfaces are both rather low, with large po-

larization differences. As a consequence, there can be

confusion between deserts and surface waters from

passive microwave observations. This is typically what

happens over deserts with SWAMPS, with anomalous

detection of surface water over arid regions. In GIEMS,

the systematic use of visible and near-infrared obser-

vations helps suppress these ambiguities.

Figure 14 (top) shows the time correlation between the

two datasets and Fig. 14 (bottom) shows the time corre-

lation between their anomalies, for the major 23 river

basins in the world. The correlation is important for most

basins, for the time series as well as for their anomalies. It

is even very high for some tropical basins (Orinoco and

Mekong). This tends to confirm the seasonal variations of

the surface water estimates, despite their different sea-

sonal amplitudes. Note that correlations on time series or

anomalies can be high despite large bias errors.

Over Asia (i.e., northeastern India and Bangladesh),

GIEMS estimates large surface water extents that are

related partly to rice paddies (see theMIRCAestimation

of the rice paddies extent over the tropical region in

Fig. 4). It is also suspected thatGIEMS is very sensitive to

saturated soil in this region, and as a consequence might

overestimate the surface water extent in these regions.

5. Conclusions

Two global satellite-derived surface water datasets

are compared on a monthly-mean basis from 1993 to

2007 (GIEMS and SWAMPS), along with two widely

used static maps of the surface water. The 23 largest

basins in the world have been studied, and three basins

representative of different environments (the Amazon

basin in the tropics, the Niger basin in a semiarid envi-

ronment, and the Ob River in the boreal region) have

been presented. Although they are based on similar

observations, mainly passive and active microwaves, the

satellite-derived datasets show large differences, glob-

ally and regionally, in terms of surface extents both at

minimum and maximum inundation in the year. The

TABLE 4. Time series and anomaly correlations between

GIEMS, SWAMPS, and river discharge Q over the Ob basin for

the period 1993–2007. Numbers in parentheses are calculated with

1-month lag between GIEMS/SWAMPS and Q.

Time series

correlation

Anomaly

correlation

GIEMS/SWAMPS 70% 38%

GIEMS/Q 91% (80%) 49% (40%)

SWAMPS/Q 62% (91%) 28% (59%)

FIG. 14. Basinwide global (top) time series and (bottom) anomaly correlations for the 23 largest

basins in the world between GIEMS and SWAMPS datasets.
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global maximum inundation extent over 1993–2007 is

;6.2 3 106 km2 for GIEMS and ;10.3 3 106 km2 for

SWAMPS, compared to;133 106 km2 for GLWD and

;5.3 3 106 km2 for the Matthews and Fung (1987)

wetland dataset. Approximately 50% of the SWAMPS

inundated surfaces are located along the coast at the

maximum annual inundation. This is clearly related to

contamination by the ocean in the observation fields of

view. Once this problem is filtered out, the long-term

maximum surface water from SWAMPS is reduced to

;5 3 106 km2. Globally and for the studied basins, the

annual amplitude of the inundation extent is very lim-

ited in SWAMPS compared to GIEMS (47% lower).

Despite their large difference in the seasonal amplitude,

GIEMS and SWAMPS have similar temporal dynamics

for most parts of the globe. Over the Amazon basin,

GIEMS and SWAMPS show a very high temporal cor-

relation (95%), but with SWAMPS maximum extent is

half the size of that observed with GIEMS and

with previous SAR estimates. Over the Niger basin,

SWAMPS seasonal cycle is out of phase with both

GIEMS and MODIS-derived estimates, as well as with

river discharge data. This confirms the fact that

SWAMPS fails to capture the seasonal dynamic of

wetlands here. GIEMS and MODIS surface water time

series agree in the seasonal variability, but GIEMS wa-

ter extent is significantly larger than the MODIS one. In

the Ob region, the different snow detection method

could explain part of the difference in the seasonal cycle.

A clear advantage of the SWAMPS dataset today is its

longer time period, up to 2013. The current version of

the GIEMS algorithm requires a large quantity of an-

cillary satellite products to run, including outputs from

the GEWEX International Satellite Cloud Climatology

Project (Rossow and Schiffer 1999) that stopped in 2008.

Efforts are underway to extend the GIEMS time series

to current times, to provide the community with a long

time record of carefully evaluated surface water extent

all over the globe, using a reduced number of ancillary

parameters for more robustness.
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