High frequency Alfvén eigenmodes detected with ion-cyclotron-emission diagnostics during NBI and ICRF heated plasmas on the ASDEX Upgrade tokamak
Résumé
Abstract The paper presents the first reported observation of high frequency Alfvén eigenmode excitation on the ASDEX Upgrade tokamak. The mode is driven in a novel way using radio frequency (RF) wave acceleration of either beam-injected deuterium ions or thermal He-3 minority ions in a three-ion heating scenario. In the case of beam ion acceleration, the instability only appears during deuteron acceleration at the third beam ion cyclotron harmonic (wave frequency ω = 3Ω D where Ω D is the deuterium cyclotron frequency), as the mode is not detected during the more commonly used second harmonic/minority heating scenario or in the absence of beam-injected ions. The mode frequency is around 0.6–0.7Ω D , where Ω D is evaluated in the low-field side plasma edge, and tracks the magnetic field B and the edge plasma electron density n e via the Alfvénic relation ω ∼ B n e −1/2 . The mode does not appear as a single frequency wave but as a bundle of closely spaced (in frequency) sub-modes. When the parallel beam ion velocity component is increased, the sub-mode frequency spacing is observed to decrease, possibly due to a change in the eigenmode structure. Under certain conditions, typically in discharges with a relatively low plasma current, I P < 0.7 MA, the mode appears to be driven directly by sub-Alfvénic deuterium beam ions. Absolute measurements of the mode amplitude show that at least 1% of the beam-injected power is transferred non-collisionally to the instability. While this is too low for practical alpha-channeling applications, discharges are planned with the aim of increasing the level of power transferred non-collisionally between fast ions and the instability.