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Over the course of its history, the Milky Way has ingested multiple smaller satellite galaxies'.
While these accreted stellar populations can be forensically identified as kinematically dis-
tinct structures within the Galaxy, it is difficult in general to precisely date the age at which
any one merger occurred. Recent results have revealed a population of stars that were ac-
creted via the collision of a dwarf galaxy, called Gaia-Enceladus!, leading to a significant
pollution of the chemical and dynamical properties of the Milky Way. Here, we identify the
very bright, naked-eye star v Indi as a probe of the age of the early in situ population of
the Galaxy. We combine asteroseismic, spectroscopic, astrometric, and kinematic observa-
tions to show that this metal-poor, alpha-element-rich star was an indigenous member of the
halo, and we measure its age to be 11.0 £+ 0.7 (stat) +0.8 (sys) Gyr. The star bears hallmarks
consistent with it having been kinematically heated by the Gaia-Enceladus collision. Its age
implies that the earliest the merger could have begun was 11.6 and 13.2 Gyr ago at 68 and
95 % confidence, respectively. Input from computations based on hierarchical cosmological
models tightens (i.e. reduces) slightly the above limits.

The recently launched NASA Transiting Exoplanet Survey Satellite (TESS)? has opened the
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Figure 1: [Mg/Fe] versus [Fe/H] abundances of a large sample of Milky Way stars, from the APOGEE
DR-14 spectroscopic survey data release’. Results on v Indi are marked by the blue star-shaped sym-
bol. Points in red show the sample of stars identified as being part of the accreted population from
Gaia-Enceladus’.

brightest stars across ~ 80 % of the sky® to micro-magnitude photometric studies in its two-year
nominal mission. These are stars visible to the naked eye, which present huge opportunities for
detailed characterization, study and follow-up. v Indi (HR8515; HD211998; HIP 110618) is a
very bright (visual apparent magnitude V' = 5.3) metal-poor subgiant, which was observed by
TESS during its first month of science operations. Based on nearly continuous photometric data
with 2-minute time sampling, we are able to measure a rich spectrum of solar-like oscillations
in the star. Combining these asteroseismic data with newly analysed chemical abundances from
ground-based spectroscopy, together with astrometry and kinematics from Gaia-DR2*, show this
single star as a powerful, representative tracer of old in situ stellar populations in the Galaxy. The
results on v Indi allow us to place new constraints on the age of the in situ halo and the epoch of
the Gaia-Enceladus merger.

We re-analysed archival high-resolution spectroscopic data on v Indi collected by the High
Accuracy Radial velocity Planet Searcher (HARPS) spectrograph® on the European Southern Ob-
servatory (ESO) 3.6-m telescope at La Silla, and by the Fiber-fed Extended Range Optical Spectro-
graph (FEROS)’ on the 2.2-m ESO/MPG telescope (also at La Silla). From these high-resolution
spectra we measured the overall iron abundance and detailed abundances for 20 different elements,
providing a comprehensive set of data on the chemistry of the star (see Methods for table of abun-



dances and further details). v Indi exhibits enhanced levels of a-process elements in its spectrum,
i.e., elements heavier than carbon produced by nuclear reactions involving helium. The logarith-
mic abundance relative to iron is [a/Fe] = 40.4. Among Galactic disk stars, elevated [a/Fe]
levels are associated with old stellar populations. v Indi shows an overabundance of Titanium of
[Ti/Fe] = 4+0.27+0.07, which puts it in the regime where a previous study® found ages exceeding
~ 9.5 Gyr for a-enhanced stars in the local solar neighbourhood, where v Indi resides.

Figure 1 shows [Mg/Fe] abundances of Milky Way stars, including v Indi, from the Apache
Point Observatory Galaxy Evolution Experiment (APOGEE) DR-14 spectroscopic survey release’
(see Methods for further details). v Indi’s abundances place it at the upper edge of the distribution
identified with the accreted Gaia-Enceladus population' (points in red at lower [Mg/Fe]); but more
in line with the in situ halo population at higher [Mg/Fe]. Were it to have been accreted, it is
unlikely the star could be a member of a different accreted population, as its high [Mg/Fe] would
suggest the progenitor dwarf galaxy would have had to have been at least as massive as Gaia-
Enceladus. Since the stellar debris from Gaia-Enceladus is thought to make up a high fraction of
the stellar mass of the present day halo, it seems improbable that there could exist another similar
undiscovered satellite. We therefore conclude, on the basis of chemistry alone, that v Indi is either
a member of the in-situ population, or a member of Gaia-Enceladus. We now use kinematics to
show that the former is most likely correct.

To place v Indi in context among other stars with similar elemental abundances, we selected
stars from APOGEE-DR14 having [Fe/H] equal (within the uncertainties) to our measured value
for v Indi. Figure 2 shows Gaia-DR2 velocity data for populations with low and high [Mg/Fe],
which roughly divides between in situ and accreted halo stars®!°. The cross-hair marks the loca-
tion of v Indi on both plots. The low [Mg/Fe] group includes many stars in the high-eccentricity
accreted halo, which was recently determined to be dominated by the Gaia-Enceladus accretion
event. Here, the low [Mg/Fe] population shows a flat distribution (the so-called Gaia Sausage)
in the tangential versus radial velocity plane, consistent with the strong radial motion from an ac-
creted population. In the vertical versus radial velocity plane, the distributions of the low and high
[Mg/Fe] stars are remarkably similar. This suggests the in situ, higher [Mg/Fe] population, which
includes v Indi (see below), was heated by the accreted population. We note also evidence from
simulations''=!* for mergers causing heating of in situ populations.

We derived Galactic orbital parameters for v Indi using the positions and velocities provided
by Gaia-DR?2 (see Methods). We performed the same orbital integrations for the populations with
low and high [Mg/Fe]. Figure 3 shows a contour plot of the resulting distributions of the eccen-
tricity, e, and maximum vertical excursion from the Galactic mid-plane, z,,.,. Low eccentricity
orbits are dominated by higher [Mg/Fe] stars, and are likely part of the thick disc/in situ halo. The
position of v Indi is marked on the contour plot; the uncertainties are too small to be visible on this
scale. Our analysis of the Gaia-DR2 data reveals that v Indi has a relatively eccentric orbit, with
e = 0.60 + 0.01, zmax = 1.51 + 0.02kpc, and a Galactic pericentric radius of ~ 2.5 kpc. Given
that v Indi lies in a region of kinematics space dominated by the higher [Mg/Fe] stars, and has an



[Mg/Fe] abundance in-line with those stars, it is likely to be a member of this population, formed
in situ (five times more likely, based on the data in Figures. 2 and 3).

From our discussion above we find that v Indi is an in situ star whose age can provide in-
sights on the origin of the low [Fe/H], high [Mg/Fe] population to which it belongs. The new
asteroseismic data from TESS provide the means to constrain the age very precisely. v Indi was
included on the 2-minute cadence list by the TESS Asteroseismic Science Consortium (TASC) as
a prime target for asteroseismology'#. It was observed for just over 27 days in Sector 1 of TESS
science operations. Figure 4 shows the frequency power spectrum of the calibrated lightcurve (see
Methods).

The star shows a rich spectrum of overtones of solar-like oscillations, modes that are stochas-
tically excited and intrinsically damped by near-surface convection'®. The modes may be decom-
posed onto spherical harmonics of angular degree [. Overtones of radial ([ = 0), dipole (I = 1)
and quadrupole (I = 2) modes are clearly seen. Because v Indi is an evolved star, its non-radial
modes are not pure acoustic modes. They show so-called “mixed” character', due to coupling
with waves confined in cavities deep within the star for which buoyancy, as opposed to gradients
of pressure, act as the restoring force. Frequencies of mixed modes change rapidly with time as
the star evolves toward the red-giant phase, and are very sensitive to the structure of the deepest
lying layers providing strong diagnostic constraints on the age and structure of a star. Previous
ground-based observations of precise Doppler shifts had detected solar-like oscillations in v Indi'7,
but with just a few days of data only a few oscillation modes could be identified'®. With TESS,
there is no ambiguity across several orders of the spectrum, and we measured precise frequencies
of 18 modes spanning six overtones (see Table 1, and Methods for further details).

To constrain the mass and age of v Indi we used as input the measured oscillation frequen-
cies; the spectroscopically estimated effective temperature, [Fe/H] abundance and [«a/Fe] ratio;
and, as another observational constraint, the stellar luminosity given by the Gaia-DR2 parallax
and Tycho2!” V and B-band magnitudes. These inputs were compared, using well-developed
modelling techniques?, to intrinsic properties and predicted observables of stellar evolutionary
models in evolutionary sequences sampling a dense grid in mass and composition. We find a mass
of 0.85 + 0.04 (stat) £0.02 (sys) M, and an age of 11.0 £ 0.7 (stat) +0.8 (sys) Gyr. The precision
achieved in mass and age is notably inferior when the asteroseismic inputs are not used.

The asteroseismic age is consistent with the claim that stars in the region of [Mg/Fe]-[Fe/H]
space that includes v Indi were heated kinematically by the Gaia-Enceladus merger. That episode
has been estimated to have occurred between 9 and 12 Gyr ago 21?2, Recent results also indicate
that the in situ halo was in place prior to the merger?>. We may therefore use the age of v Indi to
place a new limit on the earliest epoch at which the merger occurred (i.e., the star must have already
been in place). We must take into account the uncertainty on our estimated age, and the potential
duration in time of the merger itself. Numerical simulations in the literature suggest timescales
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Figure 2: Velocities of stars from APOGEE-DR14 having [Fe/H] lying within uncertainties of the
[Fe/H] of v Indi. The points in blue show results for 637 stars with [Mg/Fe]> +0.25, while those in red
are for 918 stars with [Mg/Fe]< +4-0.25. Results on the full APOGEE-DR14 sample are plotted in grey.
Plotted, in Galacto-centric cylindrical coordinates and as a function of radial velocity, are tangential
velocity (upper panel) and vertical velocity (lower panel). The dashed cross-hair marks the location
of v Indi in these planes.
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Figure 4: Frequency-power spectrum of the TESS lightcurve of v Indi, showing a rich spectrum of
solar-like oscillations. Marked on the plot are the angular degrees, [, of modes whose frequencies we
reported in order to model the star.



for the relevant mass range of between 1 and 2 Gyr . Using our posterior on the age of v Indi,
and allowing for a spread of up to 2 Gyr for the merger, we estimate the earliest the merger could
have begun was 11.6 and 13.2 Gyr ago at 68 and 95 % confidence (see Methods). The results
are fairly insensitive to the merger duration (e.g., reducing the duration to 1 Gyr reduces the 95 %
limit by 0.3 Gyr). Theoretical computations, based on hierarchical cosmological models (again,
see Methods), suggest a low probability that the merger occurred before v Indi formed. Including
this information tightens (i.e. reduces) slightly the above limits.

Data Availability

Raw TESS data are available from the MAST portal at https://archive.stsci.edu/access-mast-data.
The TASOC lightcurve is available at https://tasoc.dk/. The TESS lightcurve and power spectrum
is also available on request from the corresponding author. The high-resolution spectroscopic
data are available at http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form (HARPS v Indi),
https://www.blancocuaresma.com/s/benchmarkstars (HARPS solar spectrum), and
http://archive.eso.org/wdb/wdb/adp/phase3_spectral/form (FEROS). MARCS model atmospheres
are available at http://marcs.astro.uu.se/. APOGEE Data Release 14 may be accessed via
https://www.sdss.org/dr14/.

Code Availability

The adopted asteroseismic modelling results were provided by the BeSPP code, which is available

on request from A.M.S. (aldos@ice.csic.es). NLTE corrections were estimated using the inter-
active online tool at http://nlte.mpia.de. The computation of Kurucz models with ATLAS9 was
performed using http://atmos.obspm.fr/index.php/documentation/7. Publicly available codes used

to model the data include IRAF (http://ast.noao.edu/data/software), MOOG
(https://www.as.utexas.edu/ chris/moog.html), the MCMC code emcee (https://github.com/dfm/emcee),
the peak-bagging codes DIAMONDS (https://github.com/EnricoCorsaro/DIAMONDS) and TAMCMC-
C (https://github.com/OthmanB/TAMCMC-C), the stellar evolution code MESA
(http://mesa.sourceforge.net/), and the stellar pulsation code GYRE
(https://bitbucket.org/rhdtownsend/gyre/wiki/Home). Other codes used in the analysis — including
frequency analysis tools — are available on reasonable request via the corresponding author.
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Table 1: Measured oscillation frequencies of v Indi, with 1 ¢ uncertainties.

Degree, I Frequency (#Hz) Uncertainty (pHz)

2 234.60 0.18
0 238.52 0.20
0 262.93 0.18
2 284.62 0.18
0 287.72 0.13
1 295.81 0.14
1 300.84 0.11
2 310.10 0.13
1 315.44 0.19
1 323.41 0.15
2 335.33 0.07
0 338.38 0.05
1 347.96 0.11
1 353.98 0.15
2 361.33 0.11
0 363.70 0.07
1 373.91 0.15
1 380.39 0.17
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Methods

Spectroscopic analysis
The results of our detailed spectroscopic analysis are presented in Methods Table 1.

We base the analysis primarily on the average of six HARPS spectra obtained in 2007 De-
cember, retrieved from the instrument archives. They have a resolving power, R, of 115000 and
cover the spectral domain from 379 to 691 nm (with a gap between 530.4 and 533.8 nm). The
signal-to-noise ratio, S/N, at 550 nm lies in the range 177 to 281. We carried out a differential,
line-by-line analysis relative to the Sun. The high-quality (S/N~470) solar HARPS spectrum was
taken from the online library of Gaia FGK benchmarks'. It is a solar reflected spectrum from
asteroids with a similar resolution to that of the spectra for v Indi. For oxygen we made use of
the OI triplet at ~777.4nm. Because this range is not covered by the HARPS spectra, we used
the spectrum available in the FEROS archives (R ~ 47000 and a mean S/N of 340). For the Sun,
numerous asteroid spectra were considered. All the spectra were normalised to the continuum by
fitting low-order cubic spline or Legendre polynomials to the line-free regions using standard tasks
implemented in the IRAF software?.

The stellar parameters and abundances of 20 elements were determined self-consistently
from the spectra, plane-parallel MARCS model atmospheres®, and the 2017 version of the line-
analysis software MOOG. We used a line list* augmented®® for CI, ScII, Mn1, Col, Cul, Zn1,
Y II, and Zr II. Equivalent widths (EW) were measured manually assuming Gaussian profiles. Only
lines above 480.0 nm were considered because of strong line crowding in the blue that leads to an
uncertain placement of the continuum. With the exception of Mg I A571.1, lines with relative width
RW = log(EW/)\) > —4.8 were discarded. Hyperfine structure (HFS) and isotopic splitting were
taken into account for Sc, V, Mn, Co, and Cu using atomic data from the Kurucz database with an
assumed Cu isotopic ratio’. The blends driver in MOOG was employed for the analysis. The
corrections are very small for v Indi, but can be significant for the Sun. The determination of the
Li and O abundances from LiI A670.8 and [OI] A\630.0 relied on a spectral synthesis®, taking the
macroturbulent and projected rotational velocities of v Indi into account.

The four model parameters — effective temperature 7.g, surface gravity log g, metallicity
[Fe/H] and microturbulence parameter £ — were modified iteratively until the excitation and ion-
ization balance of iron was fulfilled and the Fel abundances exhibited no trend with RW. The
abundances of iron and the « elements were also required to be consistent with the values adopted
for the model atmosphere. For the solar analysis, 7. and log g were held fixed at 5777 K and
4.44 dex, respectively, whereas the microturbulence, £, was left as a free parameter (we obtained
€5 =0.97 km s!). We also performed the analysis with the surface gravity of v Indi fixed to the
asteroseismic value of log g = 3.46 dex in order to increase both the accuracy and precision of
the spectroscopic results. For this constrained analysis, we adjusted 7.g to satisfy iron ionization
equilibrium.



Table 1: Spectroscopically derived abundances and 1o uncertainties, without (uncon-
strained) and with (constrained) an asteroseismic constraint on log g. Values in brackets
give the number of features each abundance is based on. For iron, the number of Fe | and
Fe Il lines is given. The final iron abundance is the unweighted average of the Fe | and
Fe Il based values. Abundances corrected for NLTE effects are marked by an asterisk.

Element Unconstrained Constrained
abundance abundance

[Fe/H]* —1.46+0.07 (58,5) —1.43+0.06 (58,5)
[Li/H| —0.014+0.09 (1) +0.04+0.07 (1)
[C/Fe] +0.33+0.09 (1) +0.31+0.08 (1)
[O/Fe] (O +0.60+0.10 (2) +0.56+0.09 (2)
[O/Fe] ( [O I]) +0.41+0.09 (1) +0.45+0.08 (1)
[Na/Fe] —0.20+0.10 (2) —-0.214+0.10 (2)
[Mg/Fel* +0.34+0.08 (1) +0.32+0.08 (1)
[Si/Fel]* +0.18+0.06 (7) +0.17+0.06 (7)
[Ca/Fe]* +0.41+0.07 (6) +0.40+0.06 (6)
[Sc/Fe] +0.00+0.06 (2) +0.02+0.06 (2)
[Ti/Fe] +0.27+0.07 (4) +0.27+0.07 (4)
[V/Fe| +0.00+0.12 (3) +0.02+0.11 (3)
[Cr/Fe]* —0.13+0.08 (1) —0.14+0.08 (1)
[Mn/Fe]* —0.23+0.08 (3) —0.23+0.07 (3)
[Co/Fe] +0.18+0.10 (3) +0.19+0.09 (3)
[Ni/Fe| —0.08+0.07 (13) —0.08+0.07 (13)
[Cu/Fe] —0.38+0.08 (1) —0.39+0.08 (1)
[Zn/Fe| +0.16+0.09 (1) +0.15+0.09 (1)
[Y/Fe] +0.08+0.07 (3) +0.10+0.07 (3)
[Zr/Fe] +0.38+0.08 (1) +0.40+0.08 (1)
[Ba/Fe] —0.024+0.13 (2) +0.00+0.13 (2)




The uncertainties in the stellar parameters and abundances were computed following well-
established procedures'®. In particular, the analysis was repeated using Kurucz atmosphere models
and the differences incorporated in the error budget. However, the deviations with respect to the
default values (Kurucz minus MARCS) appear to be small: AT.4 =-15 K, Alog g =-0.01, and
abundance ratios deviating by less than 0.01 dex.

We also computed corrections to the abundances for non-LTE (NLTE) effects, with those
corrections defined as the difference in abundance required to fit a line profile using NLTE or
LTE models, respectively. The NLTE corrections were estimated for most of the spectral lines
in the LTE analysis using the interactive online tool at nlte.mpia.de. Corrections for v Indi
were computed using a MARCS model atmosphere. We also computed corrections for the Sun,
but using a more appropriate MAFAGS-OS model, and subtracted the solar corrections from the
corrections for v Indi in order to compensate for the LTE minus NLTE differences in the reference
regime. Note the difference between MARCS and MAFAGS is negligible for main-sequence stars
stars'!.

We used the online tool to compute corrections for O, Mg, Si, Ca, and Cr. The data used
are based on the NLTE model atoms''~'>. NLTE corrections for the lines of Mn were computed
separately!®!7, as these atoms are not yet a part of the publicly released grid that is coupled to the
online tool. For several elements, no NLTE data are available in the literature.

We found corrections that are typically within the quoted abundance uncertainties — for exam-
ple, the correction to the overall Iron abundance [Fe/H] was 0.07 — which do not have a significant
impact on the estimated fundamental properties of the star.

The above analyses yielded an estimated effective temperature of 7o = 5320 £ 24 K from
the asteroseismically constrained analysis and T,g = 5275 &£ 45 K from the unconstrained anal-
ysis; and a NLTE-corrected metallicity of [Fe/H]= —1.43 + 0.06 from the constrained analysis,
and [Fe/H]= —1.46 4 0.07 from the unconstrained analysis. Detailed chemical abundances are
listed in Table 1. The values in brackets give the number of features each abundance is based on.
For iron, the number of Fel and Fe Il lines is given. The final iron abundance is the unweighted
average of the Fel and Fe Il values. For oxygen, we adopt the value given by [OI] A 630 because
it is largely insensitive to non-LTE and 3D effects.

We also analyzed the chromospheric activity of v Indi using 116 archival Ca HK spec-
tra from the SMARTS Southern HK program, obtained 2007-2012. The median S-index cali-
brated to the Mount Wilson scale is 0.138, which is converted to the bolometric-relative HK flux
log(Rj;x) = —5.16 using an empirical relation'® and the color index B — V' = 0.65. This is in
good agreement with other results in the literature °. Chromospheric activity is a well-known
proxy for age, and this low value is consistent with a very old star?®. The empirical age-activity



relationship?! is calibrated to a low activity limit of log(Rjy,) = —5.10, corresponding to lower
limit age of 8.4 Gyr with an estimated uncertainty of 60%, consistent with the result from our as-
teroseismic analysis.

APOGEE-DR14 and Gaia-DR2 analysis

To construct Figure 1 of the main paper, we used abundances from the fourteenth data release (DR-
14) of the SDSS IV-APOGEE survey, which obtained high resolution (2 ~ 20, 000), high signal-
to-noise ratio (SNR =~ 100 per pixel) spectra in the near infrared H-band. We take the calibrated
[Fe/H] and [Mg/Fe] abundances directly from the APOGEE DR-14 catalogue, selecting only stars
which form part of the main survey (i.e. part of the ’statistical sample”). We also performed a
cross match between this catalogue and the stars identified*? as being part of the Gaia-Enceladus
population on the basis of their angular momenta (as measured using Gaia-DR2 data); as such,
this population is likely contaminated by thick disk stars, which have considerably higher [Fe/H]
and [Mg/Fe] than the true Gaia-Enceladus populations.

For the kinematics analysis (Figures 2 and 3 of the main paper), we used the six-dimensional
information (positions and velocities) provided by Gaia-DR?2 to derive Galactic orbital parameters
for v Indi, as well as stars from APOGEE-DR14 having [Fe/H] equal (within the uncertainties) to
our measured value for v Indi. APOGEE stars were targeted*** based on their (J — K) color and
H-band magnitude alone, and so the selection does not result in any significant kinematic biases
to the data. More than 90 % of the APOGEE stars we selected have a Gaia-DR?2 proper motion.

By reconstructing and taking samples from the covariance matrix of the astrometric parame-
ters, we performed orbital integrations from 1000 realisations of the initial phase-space coordinates
of the star. We used the python package galpy?®, adopting a Milky-Way-like potential (having
verified that reasonable changes to the potential did not affect the conclusions drawn from our
results). To convert between the observed astrometric parameters (positions, parallaxes, proper
motions, and radial velocities) and Galactocentric positions and velocities we adopted the Galac-
tocentric distance of the GRAVITY collaboration?® of 8.127 kpc, the height zy = 0.02 kpc of the
Sun above the midplane of the Galaxy?’, and a solar velocity from a recent re-assessment of the
stellar kinematics of the solar neighbourhood?®.

Asteroseismic analysis

The TESS target pixel file data for v Indi were produced by the TESS Science Operations Center
(SPOC)¥, and are available at the Mikulski Archive for Space Telescopes (MAST)
(http://archive.stsci.edu/). The lightcurve we analysed was extracted from target pixel files by the
TESS Asteroseismic Science Operations Centre (TASOC) pipeline®®. A rich spectrum of over-
tones of radial- and non-radial solar-like oscillations is clearly detectable (see Figure 4 of the main
paper). Even though the modes are intrinsically damped, the lifetimes are longer than the 27-day
length of the TESS data. The modes may as such be treated as being coherent on the timescale of



the lightcurve, and we extracted their frequencies using a well-tested weighted sine-wave fitting
analysis®"2, which allowed for the varying quality of the TESS photometry over the period of ob-
servation. Approaches based on fitting Lorentzian-like models to the resonant peaks®*** gave very
similar results. Corrections to the frequencies to allow for the line-of-sight velocity of the star**
are very small, and do not change the inferred stellar properties. The list of frequencies, together
with equivalent 1 o uncertainties, is presented in Table 1 of the main paper.

The oscillation frequencies were used as input to the stellar modelling, along with spectro-
scopically derived effective temperature 7., metallicity [Fe/H], and a-enhancement, [a/Fe], all
from the asteroseismically constrained analysis, and an estimate of the stellar luminosity L =
6.00 & 0.35 L, using the Gaia-DR2 parallax and Tycho2 V and B-band magnitudes®, and a
bolometric correction appropriate to the a-enhanced composition*® (and assuming negligible ex-
tinction). We note that a Spectral Energy Distribution (SED) fit*’ gave similar constraints on
luminosity.

Prior to use in the modelling we inflated the uncertainties on 7. and [Fe/H] to account for
systematic differences between spectroscopic methods by adding, respectively, 59 K and 0.062 in
quadrature to the formal uncertainties*®, yielding final values of T,z = 5320 4 64 K and [Fe/H]=
—1.43 + 0.09.

v Indi is a metal-poor star showing significant o enhancement, which affects the mapping
of [Fe/H] to the metal-to-hydrogen abundance ratio Z/X. Some modellers used grids of stellar
evolutionary models that did not include the requisite enrichment, and under such circumstances a
correction must be applied to the raw [Fe/H] to allow it to be used in modelling using those grids.
Here, the correction needed® is +0.25. This gave a corrected metallicity of [Fe/H]= —1.184-0.11,
where the error bar was inflated further to account for uncertainty in the correction.

Various codes**7 were used to model the star and to explore its fundamental stellar proper-

ties. v Indi is in a rapid stage of stellar evolution, and we found it was imperative that the codes
interrogated model grids sampled at a fine resolution in mass and metallicity in order to obtain
a good match of predicted observables of the best-fitting model to the actual observables. Our
best-fitting estimates are (.85 4= 0.04 (stat) £0.02 (sys) M and an age of 11.0 £ 0.7 (stat) 0.8
(sys) Gyr. The central values and statistical uncertainties were provided by one of the codes™,
which returned the best match to the input data. The systematic uncertainties reflect the scatter
between different results. In all cases, the errors correspond to a 68 % confidence level.

Figure 1 is an échelle diagram showing the match between the observed frequencies (in grey)
and the best-fitting model frequencies (coloured symbols).

We also tested the impact of removing the asteroseismic frequencies from the modelling.
This inflated the fractional uncertainty on the mass (stat) from ~ 5 % to ~ 8 %, and the fractional
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Figure 1: An échelle diagram showing the observed frequencies (in grey) and the best-fitting model fre-
quencies (coloured symbols). The diagram was made by dividing the spectrum into segments of length equal
to the average frequency separation Av between consecutive overtones, which were then stacked in ascend-
ing order, so one plots v versus (¥ mod Av). The [ = 0 (radial) modes are plotted with square symbols,
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uncertainty on age from less than 10 % to more than 30 %.



Gaia-Enceladus epoch analysis

Our estimated age for v Indi was used to place a new limit on the earliest epoch at which the Gaia-
Enceladus merger occurred. This took into account the uncertainty on the estimated age, and the
potential duration in time of the merger itself.

To place constraints on the latter, we estimated the dynamical friction timescale for the orbit
of Gaia-Enceladus to decay due to the drag force exerted on it by the diffuse dark matter halo of
the Milky Way. We adopted a widely-used formulation®®, assumed that at the epoch of the merger
the mass ratio between Gaia-Enceladus and our Galaxy was one-quarter’?, and that the orbit of
Gaia-Enceladus was strongly radialised®. This procedure gave a merger timescale of less than
or around 1 Gyr. Numerical simulations in the literature suggest timescales for the relevant mass
range that are between 1 and 2 Gyr ®. Here, we adopt the largest value of 2 Gyr.

To estimate the limit on the epoch of the merger we start from the probability distribution on
the age of v Indi but considered as the cumulative probability distribution function that expresses
the probability of the existence of the star at any given epoch (plotted as the dashed line in both
panels of Figure 2). The probability tends to unity at epochs more recent than the central age esti-
mate, and to zero at epochs earlier than the central age estimate. (Note we combine the statistical
and systematic errors in quadrature, so that the distribution is described by a mean of 11 Gyr and
a standard deviation of 1.1 Gyr.) If the merger was instantaneous, the above distribution function
would give us the sought-for limit on the earliest possible epoch. But it is not, and so we use a
Gaussian distribution to describe the merger, having a FWHM of up to 2 Gyr. We may consider this
function as describing the probability of interaction of the merger with v Indi. When convolved
with the cumulative age probability distribution of the star, we obtain the cumulative probability
for the merger (solid black line in both panels of Figure 2), and limits on the earliest epoch of
merger of 11.6 Gyr ago at 68 % confidence, and 13.2 Gyr ago at 95 % confidence.

We then folded in a theoretical prior on the probability of occurrence of the merger at dif-
ferent epochs, based on hierarchical cosmological models of structure formation. We estimated a
cumulative prior probability using the Press-Schechter formalism>®¢!, as the conditional cumula-
tive probability P(t < tmerg) = P(Muw,t < tmerg| MEnc, tnc) that the Enceladus dark matter
halo (of mass Mg,,.) formed at the time ¢g,. and was later incorporated into the larger Milky Way
dark matter halo (of mass Mynw) already in place at the time of the merger t = {,,¢r, Which is
the independent variable in our computation. We assumed values for the virial mass of the Gaia-
Enceladus dark matter halo between a lower limoit of Mg, = 1 x 101 M° and 1 x 101! M,>92,
formed at the cosmic time tg,. = 1.5 Gyr which corresponds to the observed median age of Gaia-
Enceladus stars®®. Finally we assumed that at the epoch of merger the Milky Way dark matter
halo had a Virial mass Myw = 4 x 10*! M, which has been derived at redshift = = 2 from the
predicted cosmological halo mass accretion history of a Milky Way like galaxy®+.

Priors are plotted in Figure 2 as a dot-dashed line for Mg, = 1 x 10*° Mg, in the left-hand
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Figure 2: Inference on the epoch of the Gaia-Enceladus merger. The dashed black line in both panels
shows the measured cumulative posterior on v Indi. The dot-dashed black line is the estimated cumulative
prior probability for the merger assuming a virial mass of the Gaia-Enceladus dark matter halo of Mg, =
1x1019 Mg (left-hand panel) and 1 x 101! M (right-hand panel). The solid black line shows the cumulative
probability for the merger, dependent on the estimated age of v Indi and the assumed 2-Gyr-wide merger
duration (same in both panels); while the solid red line shows the cumulative probability for the merger also
taking into account the merger prior (different in each panel, since this depends on Mgy).

panel, and 1 x 10'! M, in the right-hand panel. Both suggest there was a low probability of the
merger occurring prior to the formation of v Indi. Including the prior, we obtain the cumulative
probabilities for the merger shown by the red lines in both panels, which tighten the limiting epoch
(at 95 % confidence) to 11.7 Gyr for Mg, = 1 x 10 M, (left-hand panel), and 12.4 Gyr for
M. = 1 x 10 M, (right-hand panel). We also tested the impact of varying tg,. by a 1 Gy,
and using a Milky Way mass up to 10'2 M. These variations gave changes of up to ~ 0.5 Gyr
in the inferred limit on the merger epoch; but overall the tendency is to tighten the limit obtained
without the prior.
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