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ABSTRACT
We simulate a radial velocity (RV) follow-up of the TRAPPIST-1 system, a faithful
representative of M dwarfs hosting transiting Earth-sized exoplanets to be observed with
SPIRou in the months to come. We generate an RV curve containing the signature of the seven
transiting TRAPPIST-1 planets and a realistic stellar activity curve statistically compatible
with the light curve obtained with the K2 mission. We find a ±5 m s−1 stellar activity signal
comparable in amplitude with the planet signal. Using various sampling schemes and white
noise levels, we create time-series from which we estimate the masses of the seven planets.
We find that the precision on the mass estimates is dominated by (i) the white noise level
for planets c, f, and e and (ii) the stellar activity signal for planets b, d, and h. In particular,
the activity signal completely outshines the RV signatures of planets d and h that remain
undetected regardless of the RV curve sampling and level of white noise in the data set. We
find that an RV follow-up of TRAPPIST-1 using SPIRou alone would likely result in an
insufficient coverage of the rapidly evolving activity signal of the star, especially with bright-
time observations only, making statistical methods such as Gaussian Process Regression hardly
capable of firmly detecting planet f and accurately recovering the mass of planet g. In contrast,
we show that using bi-site observations with good longitudinal complementary would allow
for a more accurate filtering of the stellar activity RV signal.

Key words: techniques: radial velocities – stars: individual: TRAPPIST-1 – stars: activity –
methods: statistical.

1 IN T RO D U C T I O N

Transiting Earth-sized exoplanets are prime targets to better un-
derstand planet formation and evolution. In addition to estimating
planet radii from transit depths, one can also measure planet masses
through ground-based follow-ups of the host star radial velocity
(RV) using high-precision velocimeters. The resulting mass-radius
relations are used to constrain the planet interior structures and,
beyond that, the whole paradigm of planet formation (e.g. Weiss &
Marcy 2014; Zeng, Sasselov & Jacobsen 2016; Alibert & Benz
2017; Dorn et al. 2018). However, most of Earth-sized planets
unveiled with the Kepler space telescope through transit photometry
lack mass measurement, as they produce low-amplitude RV signa-
tures (�1 m s−1) on stars that are too faint for RV surveys in the V
band. As a result, the mass–radius diagram of Earth-sized planets is
populated by only a handful of planets with well-constrained bulk
density (Santerne et al. 2018).

M dwarfs are the most promising targets to unveil Earth-like
exoplanets with precise masses and radii. Beyond the fact that

� E-mail: baptiste.klein@irap.omp.eu

they largely outnumber stars with earlier spectral type in the solar
neighbourhood (Henry et al. 2006), they feature smaller sizes and
masses, and more compact habitable zones (HZ), making HZ
terrestrial planets easier to detect as well as rosy candidates for
further atmosphere characterization with the James Webb Space
Telescope (Morley et al. 2017). Over the past few years, a growing
number of attractive Earth-sized exoplanets have been discovered
around M dwarfs from photometric surveys (Berta-Thompson et al.
2015; Dittmann et al. 2017; Gillon et al. 2017). This trend is
expected to step up with the ongoing TESS mission (Ricker et al.
2015) as M dwarfs are known to frequently host multiple terrestrial
planetary systems (e.g. Bonfils et al. 2013; Dressing & Charbonneau
2015; Gaidos et al. 2016).

The Spectro-Polarimetre Infra-Rouge (SPIRou; see Donati et al.
2018 for a complete review of the instrument and related science)
is a near infrared (nIR) échelle spectropolarimeter at the Canada–
France–Hawaii Telescope (CFHT) whose science observations have
recently started. The combination of a resolving power of ∼70 000
over the YJHK bands and a goal RV precision of ∼1 m s−1 makes
SPIRou ideally suited for detecting Earth-twins around M dwarfs,
not least in the HZ where they typically produce an RV stellar reflex
motion of ∼1 m s−1 (Artigau et al. 2018).
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The SPIRou Legacy Survey (SLS) is a 300n programme ded-
icated to the main science goals of SPIRou, with 75n focussing
on the RV follow-up of transiting planets around M dwarfs.
This component of the SLS (called the SLS-TF for SLS transit
follow-up) is expected to provide accurate mass measurements
for the most attractive transiting planets to be unveiled by a wide
range of photometric surveys (e.g. TESS; K2, Howell et al. 2014;
MEarth, Nutzman & Charbonneau 2008; ExTrA, Bonfils et al. 2015;
TRAPPIST, Gillon et al. 2017; NGTS, Wheatley et al. 2018). SPIP,1

the upcoming SPIRou’s twin at Telescope Bernard Lyot (TBL at Pic
du Midi observatory), will provide additional means to refine the
observation strategies of such follow-ups.

Transit photometry provides a priori information on the orbits of
the planets around host stars to be monitored within the SLS-TF
that can be used to optimize the RV follow-up strategy. Various
strategies of RV curve sampling have already been studied in the
literature (e.g. Ford 2008; Burt et al. 2018). It turns out that uniform
samplings of planet RV curves perform better than more specific
strategies, e.g. aiming at orbital quadratures where RVs are expected
to be largest.

Besides, a large fraction of M dwarfs exhibits strong magnetic
activity resulting in significant photometric and spectroscopic fluc-
tuations (e.g. Basri et al. 2010; West et al. 2011). The induced
RV signal tends to mimic planet signatures, making the former
extremely troublesome to filter (e.g. Saar & Donahue 1997; Queloz
et al. 2001; Desort et al. 2007; Dumusque et al. 2011; Borgniet,
Meunier & Lagrange 2015). If not properly modelled and filtered
out, this stellar activity signal is expected to strongly degrade the
RV characterization of the SLS-TF targets. Moreover, it imposes
additional constraints on the temporal sampling of the RV follow-
up that also needs to densely cover both the rotational cycle
of the host star and the typical time-scale on which it evolves.
Last but not least, it makes it extremely hard to recover planets
whose orbital periods lie close to the stellar rotation period or its
harmonics.

In this paper, we simulate an RV follow-up of TRAPPIST-
1 (2MASS J23062928-0502285), an ultracool M dwarf hosting
seven transiting terrestrial planets including 3 in the HZ (Gillon
et al. 2016, 2017) and possibly more non-transiting ones (Kipping
2018). Both the star and the planetary system are well constrained
from photometric surveys (Luger et al. 2017; Delrez et al. 2018;
Grimm et al. 2018, hereafter G18; Van Grootel et al. 2018) and the
stellar light curve exhibits quasi-periodic fluctuations, indicating
the presence of active regions at the surface of the star (Vida
et al. 2017) that makes this system a representative of the SLS-
TF targets. Moreover, TRAPPIST-1 will be observed as a member
of the SLS-TF targets in order to provide Transit Timing Variations
(TTV)-independent planet mass estimates, still highly required
given the significant differences between TTV and RV planet mass
measurements reported in the recent literature (see Mills & Mazeh
2017 and references therein).

We describe in Section 2 the simulation of a SPIRou RV follow-
up of TRAPPIST-1 involving two distinct steps. First, we synthesize
a TRAPPIST-1 RV curve containing both the planet signatures and
a realistic stellar activity component scaled on the K2 light curve
(Luger et al. 2017). We then select the data points according to
various sampling schemes to build a range of data sets with different
properties. In Section 3, we detail our model to recover the planet
masses from a given data set. We present our results for the different

1http://www.tbl.omp.eu/INSTRUMENTATION2/spip

Table 1. Best estimates of TRAPPIST-1 mass, radius, and effective tem-
perature from Van Grootel et al. (2018).

Quantity Value

M∗/M� 0.089
R∗/R� 0.121
Teff (K) 2516

sampling configurations in Section 4 and finally discuss the results
and conclude in Section 5.

2 SYNTHETI C DATA SETS

We first synthesize a densely sampled RV curve containing both
the planetary signature and a realistic realization of the stellar
activity RV signal. We then use various sampling schemes to select
observational data sets to which we add random values in order
to account for instrument and photon noises. The main stellar
parameters used in this paper are indicated in Table 1.

2.1 Planetary RV signature

Based on the low planet eccentricities reported in G18 and the
planetary system stability discussed therein, we consider the simple
case of seven planets with circular coplanar orbits assuming no
planet–planet interaction. The orbital periods are set to the best
estimates from Delrez et al. (2018, hereafter D18). We used Kepler’s
third law to derive the RV semi-amplitudes from the stellar mass
measured by Van Grootel et al. (2018, see Table 1) and the last
estimates of the planet masses from TTVs (see G18). Initial phases
were injected to the planetary orbits using the mid-transit times
from D18 with respect to their time reference. The orbital period,
mass, semi-amplitude, and initial phase of the injected planets are
shown in Table 2.

2.2 Synthesis of the stellar activity RV signal

TRAPPIST-1 light curve obtained as part of campaign 12 of
the NASA K2 mission exhibits quasi-periodic fluctuations of
∼10 mmag peak-to-peak (Luger et al. 2017), symptomatic of the
presence of active regions at the stellar surface (Vida et al. 2017).
Such stellar activity is expected to produce a significant RV signal
that needs to be taken into account in a realistic way when simulating
the RV follow-up of the star. By synthesizing simultaneously a
photometric curve and the corresponding RV curve, we ensure that
the data set we produce is broadly consistent with the statistical
properties of the K2 light curve of Trappist-1. This implies that we
neglect every RV perturbation induced by the convective blueshift
which is anyway expected to be strongly damped for M dwarfs
compared to Sun-like stars (e.g. Meunier et al. 2017). This also
implies that we ignore the Zeeman splitting when computing the
line profile, as the magnetic field of TRAPPIST-1 remains poorly
constrained.

We model the stellar surface by a dense grid of 20 000 cells with
identical projected area when crossing the meridian. With the aim
of including dark and bright inhomogeneities at the stellar surface,
we assign a relative brightness factor to each of the cells. For each
grid cell, we compute the local intensity line profile using the Unno-
Rachkovski analytical solution of the radiative transfer equation, as-
suming a plane-parallel Milne-Eddington stellar atmosphere (Unno
1956). Each local line features a continuum level that is weighted
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Table 2. Key parameters of the injected RV signatures of the seven TRAPPIST-1 planets listed in a decreasing order of RV semi-amplitude. The orbital periods
are taken from D18. The planetary masses are the best estimates from G18 and the RV semi-amplitudes are derived using Kepler’s third law. The orbital phases
are computed from the mid-transit times reported in D18 (T0 – 2,450,000 [BJDTDB]) assuming circular orbits. The bottom row shows the planet orbital phase
shifts roughly corresponding to the maximum TTV predicted by G18 models (see fig. 2 therein).

Planet b c g f e d h

Orbital period (d) 1.51087637 2.42180746 12.354473 9.205585 6.099043 4.049959 18.767953
Mass (M⊕) 1.017 1.156 1.148 0.934 0.772 0.297 0.331
RV semi-amplitude (m s−1) 2.838 2.757 1.590 1.427 1.353 0.597 0.399
Initial phase (rad) − 1.80 0.45 − 1.27 − 0.57 1.60 2.32 − 0.18
Maximum phase-shift predicted from G18 (rad) 0.006 0.007 0.018 0.028 0.021 0.011 0.006

Figure 1. Illustration of the modelled stellar surface at a given time. The
colour of the inhomogeneities indicates their relative brightness: 1 for the
quiet photosphere (white), >1 for a bright feature (red), and <1 for a dark
feature (blue).

by limb darkening; moreover, it is Doppler-shifted to the projected
rotational velocity. The summation of all the local line profiles from
the different cells weighted by the local brightness factors provides
a global line profile that may be regarded as the cross-correlated
function of the spectrum. We then derive the RV at the corresponding
phase by fitting a Gaussian to the global profile. The relative photon
flux is computed by summing the limb-darkened brightness factors
of all cells. Our approach for synthesizing the stellar activity RV
signal slightly differs from the one used in Boisse, Bonfils & Santos
(2012) in that we can more easily include multiscale magnetic fields
and differential rotation in the stellar model, as well as the Zeeman
broadening and polarized Zeeman signatures of the modelled line
profiles, found to be reliable proxies for diagnosing and modelling
stellar magnetic activity (Haywood et al. 2016; Hébrard et al.
2016).

The synthetic star is assumed to rotate as a solid-body with a
period of 3.3 d (Luger et al. 2017). The time-step for the generation
of the RV and photometric data points is set at 0.01 d. Our model
allows for a dynamical evolution of the active regions at the stellar
surface. At each time-step, an active region is added to the model
with a given probability. The position of the feature is randomly
chosen at the stellar surface as active regions are likely to be found
at all latitudes on late M dwarfs (Barnes et al. 2001; Barnes &
Collier Cameron 2001) and, in particular, on TRAPPIST-1 (D18;

Ducrot et al. 2018; Morris et al. 2018b). Consistently with Morris
et al. (2018a), each newly created feature is randomly chosen to
be either brighter or darker than the stellar photosphere. Its relative
brightness factor with respect to the stellar photosphere is scaled
from Berdyugina (2005, �T = ±100 K) using Plank’s law in the
K2 spectral band. The injected inhomogeneity is circular on the
line of sight with a relative size Sr with respect to the whole
stellar surface. The radius of each new active region is initially
set to zero, increases linearly during the first third of its lifetime
and decreases linearly during its remaining lifetime. After that,
the feature is removed from the star. The radius of the feature at
the time of its maximum size is drawn from a normal distribution
centred at 0.1 per cent to ensure small active regions on the stellar
surface in agreement with Rackham, Apai & Giampapa (2018) and
Morris et al. (2018b). Surface features are allowed to overlap each
other. As a result, our modelled star is populated by a patchwork of
dark and bright small features as illustrated in Fig. 1 at any given
time.

We simultaneously synthesized stellar photometric and RV
curves over a 400-d period using the aforementioned time-step.
We removed a 100-d burn-in period to ensure that the surface
covered by active regions is more or less stable in time with the
appearance of new feature roughly compensating the disappearance
of old ones. We tuned both the lifetime and probability of appearance
of the injected features so the simulated light curve scales with that
obtained from the K2 mission. The main attributes of the injected
features on the stellar surface are listed in Table 3.

The synthetic photometric and RV activity curves are shown
in Fig. 2.2 We obtain a stellar activity signal with an amplitude
ranging from ∼5 m s−1 to almost 10 m s−1 depending on the
epoch. The lower two panels, respectively, show the mean size
and surface coverage of the bright and dark features in our model.
The average feature relative area, Sr ∼ 0.06 per cent of the total
stellar area, is slightly larger than the features modelled in Rackham
et al. (2018) and lies close to threshold of undetected features
in Morris et al. (2018b). The autocorrelation functions (ACFs)
of the noiseless photometric and RV curves are shown in Fig. 3.
Both time-series show 3.3-d quasi-periodic shapes symptomatic
of short-lived active regions with half-life of ∼2 Prot. The ACF
peak at a difference of one Prot is damped, though less than

2The modelling of the stellar activity RV curve presented here ignores both
the smaller brightness contrast of surface features at nIR wavelengths on the
one hand, and the impact of the magnetic fields that these features likely host
on the other hand; preliminary simulations indicate that, whereas the first
effect decreases the amplitude of the stellar activity RV curve, the second
one amplifies it, with both effects more or less cancelling each other for
magnetic field strengths of ∼2 kG. We thus conclude that despite these
simplifications, our simulation is able to predict the shape and amplitude of
the stellar activity RV curve within better than a factor of 2.
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Figure 2. Synthetic RV and light curves of TRAPPIST-1. Top: relative brightness curve with respect to the quiet photosphere; second: stellar activity RV
curve; third: mean feature relative area with respect to the visible disc; bottom: fs accounting for total surface covered by bright and/or dark features with
respect to the whole stellar surface. In the two lower panels, the quantities relative to dark features are plotted in grey dotted lines, those relative to bright
features are plotted is light-green dashed lines and the dark-green solid lines refer to both dark and bright features.

Table 3. Parameters of the features generated at the stellar surface for
synthesizing stellar photometric and RV curves. The Jeffreys’s distribution
is defined in Gregory (2007).

Parameter Value Unit

Probability of new feature 0.04 –
at each time-step
Feature lifetime N (5.0, 0.5) (Prot)
Relative brightness dark spot Jeffreys(0.6,0.8) –
Relative brightness bright spot Jeffreys(1.1,1.3) –
Latitude of the feature U (−90, 90) (deg)
log10 maximum relative size N (−3.0, 0.3) –
Model for spot size evolution Linear –

the one in the original K2 light curve (e.g. fig. 6 in Morris
et al. 2018a), partly as a result of the noise not being included
yet.

2.3 Scheduling of the observations

The synthetic TRAPPIST-1 RV curve (i.e. planet and stellar activity
RV signals) is shown in Fig. 4. The lower two panels, respectively,

display the stellar activity and planet RV curves whose levels of
fluctuation are similar. We simulated TRAPPIST-1 RV follow-ups
using the various sampling schemes listed in Table 4. Each sampling
strategy provides a set of epochs at which we select the data points
from the densely sampled RV curve containing both the planetary
and stellar RV curves. All data sets are built from the same 90-d
visibility window to ensure that all simulations feature the same
realization of the stellar activity signal.

More specifically, sampling scheme A leads to an evenly sampled
data set with a sampling frequency of 2 d−1, i.e. greater than the
Nyquist frequency of the planet signal. Schemes B and C assume
that TRAPPIST-1 observations are carried out from CFHT and
TBL, when the star is visible at an airmass of �1.5. To account for
stochastic weather conditions, the observations are achieved with a
probability of 0.85 and 0.5 at CFHT and TBL, respectively. Scheme
C restricts CFHT observations to bright time periods (∼15 d centred
on full-Moon periods), whereas scheme B allows observations in
bright and dark time periods, making scheme C more consistent
with typical observational constraints at CFHT. Finally, scheme
D is similar to scheme B except that we assume that the TBL is
not available, leaving us with only one telescope for following-up
TRAPPIST-1, this time with no constrain on the moon phase.

MNRAS 488, 5114–5126 (2019)
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Figure 3. Normalized ACFs of the noise-free stellar photometric (blue solid
line) and RV curves (red dashed line). Trappist-1 rotation period is indicated
through the black vertical line.

Figure 4. Top: Synthetic TRAPPIST-1 RV curve containing both stellar
activity signal and planetary signatures. Middle: stellar activity RV signal
shown in Fig. 2. Bottom: Planetary signature containing the RV signal of
the seven planets.

Table 4. List of the observational sampling strategies considered in this
study. Columns 1–3 show, respectively, the name of the configuration, the
size of the data set and the sampling frequency. Additional details on the
selection scheme are added in column (4).

Scheme Npts fs (d−1) Comments

A 180 2 Even sampling
B 120 ∼2 CFHT (bright and dark times) and TBL
C 86 ∼2 CFHT (bright time only) and TBL
D 76 ∼1 CFHT only (bright and dark times)

2.4 White noise

We account for the instrumental and photon noises by adding
random values drawn from a Gaussian distribution to each newly
created data set. For each sampling scheme listed in Table 4, we
consider random noise levels of 1 and 2 m s−1 rms in order to
quantify the losses in the precision of the mass estimates when the
noise level increases. At 1 m s−1, we assume the photon noise to
be the dominant contribution of the white noise, implying thus that

other sources of noise such as the instrument itself or the correction
for tellurics in the spectra produce a contribution much smaller
than 1 m s−1 which is optimistic and less realistic than the 2 m s−1

case. In what follows, each sampling scheme from Table 4 will be
indexed by the rms of the injected white noise expressed in m s−1.
For example, case A1 designates a data set sampled with scheme A
with a white noise of 1 m s−1 rms.

3 FI TTI NG THE RV TI ME-SERI ES

We fit the synthetic RV time-series using the following model

Vr (t) = Vp(t) + Vj (t) + ε(t), (1)

where Vp(t) and Vj (t), respectively, account for the planetary
signature and stellar activity signal and ε(t) ∼ N (0, σ 2(t)), where
the error on the data point at time t, σ (t), is assumed to be known.
Furthermore, we assume that systematics, quantified with simul-
taneous observations of RV standards with SPIRou, are already
corrected.

3.1 Fit of the planetary signal only

As a sanity check, we first consider the ideal case of a data set
containing only the planet signatures embedded in white noise,
which can thus be modelled according to Vr (t) = Vp(t) + ε(t). We
search for Np planets with circular orbits assuming no planet–planet
interactions (see the justifications in Section 4). Therefore, we fit
the RV planet signatures using a linear combination of sinusoids
such that

Vp(t) =
Np∑
n=1

αn cos

(
2π

Pn

t

)
+ βn sin

(
2π

Pn

t

)
, (2)

where αn = Kn cos φn and βn = −Kn sin φn, with Kn and φn the
semi-amplitude and orbital phase of the nth planet. The planet
orbital periods, Pn, are frozen to their best estimates from D18.
This results in a linear 2Np-parameter model Vp = Xω, where
ω = (

α1, β1, .., αNp
, βNp

)
and X is a

(
N, 2Np

)
array, N being

the number of data points. Assuming a Gaussian white noise, the
parameter posterior density function, p(ω|Vr ), can be analytically
derived, leading to

p(ω|Vr ) = N
(
A−1b, A−1

)
(3)

where{
A = XT�−1X

b = XT�−1Vr
(4)

where the covariance matrix of the white noise, �, is such that 	ij =
σ (ti)2δij, δ being the Kronecker delta.

We used equation (3) to derive maximum a posteriori estimates
as well as 1σ uncertainties on the planet masses and orbital phases
for the four sampling schemes listed in Table 4 at white noise levels
of 1 and 2 m s−1 rms. In each case, the estimation is carried out on
50 signals with different white noise realizations from which we
average the best planet parameters and error bars.

In this ideal test case, we are able to recover the masses at a >10σ -
precision level for planets b, c, g, f, and e for all sampling schemes
and white noise levels. The precision of the mass estimates for
planets d and h systematically lies above 5σ except for cases C2 and
D2 for which the mass of planet h is estimated at a precision �3σ .
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Table 5. Prior density probabilities used for the MCMC sampling for the
interpolation of the stellar activity.

Parameter Prior

ln θ1 [ln(m s−1)] U (−1, 10)
ln θ2 [ln(d)] U (0, 5)
θ3 [Prot] U (0.9, 1.1)
θ4 U (0.1, 4.0)

3.2 Fitting the stellar activity RV signal

We now fit a signal that contains no planet, but only the stellar
activity signal and white noise. In this purpose, we use Gaussian
Process Regression (GPR; Rasmussen & Williams 2006) to model
the stellar activity RV signal. The shape of the ACF of the synthetic
data set (see Fig. 3) suggests that a quasi-periodic covariance kernel
will be adapted to reconstruct the synthetic stellar activity RV curve
(Haywood et al. 2014, hereafter H14):

k(ti , tj ) = θ2
1 exp

[
− (ti − tj )2

θ2
2

−
sin2 π(ti−tj )

θ3

θ2
4

]
, (5)

where ti and tj are the times associated with observations i and j.
This covariance function depends on four hyperparameters called θ1

to θ4; θ1 is the amplitude of the Gaussian Process (GP) that scales
with the amplitude of the stellar activity signal, θ2 is the time-
scale for the evolution of the active regions, θ3 is the period of the
GP, whereas θ4 is called the smoothing parameter that controls the
number of high-frequency structures that can be included into the fit.
In what follows, the vector containing the four hyperparameters is
called θ .

We used GPR to independently model photometric and RV time-
series of the stellar activity signal evenly sampled with scheme A.
White noises of 1 m s−1 and 1 mmag rms were added, respectively,
to the RV and photometric time-series so that the two data sets
have similar signal-to-noise ratios. The 4 GP hyperparameters are
jointly estimated by maximizing the posterior density function of
the hyperparameters, p(θ |Vr ), sampled using a Bayesian Markov
Chain Monte Carlo (MCMC). We adopted the non-informative
priors listed in Table 5 to ensure a physically realistic fit of the
stellar activity signal. The period of the GP is expected to lie close
to the stellar rotation period (Angus et al. 2018), explaining thus the
narrow prior distribution adopted for θ3. The likelihood of the GP
fit to the stellar activity RV signal, L = p(Vr |θ ), is such that

2 lnL = −N ln 2π − ln (|K + �|) − Vr
T (K + �)−1 Vr (6)

where K is the GP covariance matrix. Concretely, we use the EMCEE

affine invariant sampler (Foreman-Mackey et al. 2013, 100 walkers,
2000 iterations) to sample the posterior density. After removing a
burn-in period of ∼10 autocorrelation times from the chain, we
compute the median and uncertainties on each parameter from the
posterior distribution.3

This process is repeated for 50 photometric and RV time-series
with different white noise realizations, resulting in residuals of about
0.6 m s−1 and 0.8 mmag rms for RV and photometric time-series,
respectively. Table 6 shows the average over the 50 time-series of
the best and the median values of the hyperparameters. We find
similar GP periods and time-scales for both photometric and RV

3The 1σ error bars are given by 0.5(x2 − x1), where x1 and x2, respectively,
correspond to the 16th and 84th percentiles of the posterior distributions of
each parameter.

time-series, consistent with the injected rotation period and the one
derived from the ACF of Fig. 3. We note that θ4 is roughly twice
as large in photometry as in RV, reflecting the fact that a given
feature at the stellar surface produces a signature in the RV curve
that evolves twice as fast as its counterpart in the light curve. The
interpolation of photometric and RV time-series is shown in Fig. 5
for a given realization of white noise.

Following the approach of Aigrain, Pont & Zucker (2012), we
computed the first derivative of the synthetic noise-free light curve
and found a linear correlation coefficient of −0.89 with the stellar
activity RV curve, indicating a net anticorrelation between the two
signals. We fitted the evenly sampled stellar activity RV curve from
Fig. 5 with the first derivative of the stellar light curve, evaluated
at the same time values, using a linear model. This resulted in
residuals of 1.4 m s−1 rms, i.e. larger than that obtained when the
stellar activity signal is modelled with GP (0.56 m s−1 rms).

3.3 Simultaneous fit of stellar activity RV signal and planetary
curves

We now model the synthetic data sets described in Section 2
using equation (1), including all model components (planet, stellar
activity, and white noise). The goal is to simultaneously filter the
stellar activity signal with a GP directly trained in the data set and
estimate the planetary semi-amplitudes and orbital phases. This
time, our model contains 2Np linear planet parameters and four non-
linear GP hyperparameters. We use a Bayesian MCMC to sample
the posterior density marginalized over the planet parameters:

p(θ |Vr ) ∝ π(θ )
∫

ω

p(Vr |θ , ω)π(ω)dω, (7)

where θ and ω are assumed independent, and where π(θ ) and
π(ω) stand for the prior density on θ (listed in Table 5) and the
linearized planetary amplitudes, respectively. We analytically derive
equation (7), assuming an infinitely broad Gaussian prior density
for ω that is similar as a non-informative uniform prior density [see
section 2.7.1 in Rasmussen & Williams (2006) for a detailed generic
demonstration and expression for the likelihood]. After removing
a burn-in period of a few autocorrelation times from the chain,
we compute the set of GP hyperparameters, θbest, that maximizes
the posterior density as well as the median and error bars on the
hyperparameters from the posterior samples. At a given posterior
sample θ , the posterior distribution for the planet parameters is such
that

p(ω|Vr , θ ) = N
(
A(θ )−1b(θ ), A(θ )−1

)
, (8)

where{
A(θ ) = XT [� + K(θ )]−1 X
b(θ) = XT [� + K(θ )]−1 Vr

. (9)

We use equation (8) at θ = θbest to estimate the planet parameters as
well as their 1σ error bars. Note that these error bars are significantly
larger than the dispersion of the best planet parameters obtained by
computing equation (8) for all the samples of the joint posterior
distribution. The planetary masses and their error bars are finally
derived from the estimates of the semi-amplitudes using Kepler’s
third law. We stress that this procedure is in principle applicable
to any planetary system with circular orbits of known periods (and
phases).
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5120 B. Klein and J.-F. Donati

Table 6. Best and median estimates of the four hyperparameters of the GP when fitting the light and stellar activity
RV curves without any planetary component. Note that the values indicated in this table are averaged over 50 data sets
with different white noise realizations of 1 m s−1 and 1 mmag for the RV and photometric curves, respectively.

Parameter Light curve RV
Best Median Best Median

θ1 0.33 per cent 0.34 ± 0.05 per cent 2.6 m s−1 2.6 ± 0.3 m s−1

θ2 (d) 7.2 7.2 ± 0.8 7.9 7.8 ± 0.8
θ3 (d) 3.30 3.30 ± 0.04 3.30 3.30 ± 0.02
θ4 0.65 0.67 ± 0.09 0.37 0.37 ± 0.03

Figure 5. From top to bottom: Photometric time-series, residuals after the
GP interpolation of the photometric time-series, RV time-series and residuals
after the GPR. The red dotted-lines are the injected signals and the blue dots
with error bars are the GP prediction at the observation times. The grey error
bands are the ±1σ predictions of the GP.

3.4 Model comparison and evidence estimation

Which of the TRAPPIST-1 planets are detected with the algorithm
described above? Although apparently intuitive, this issue requires
the use of a robust criterion to be addressed in a reliable way. In our
case, we carried out a Bayesian comparison of models searching,
respectively, for Np and Np + 1 planets, where Np varies from 0 to
6. Assuming that we have no prior information on the number of
searched planets, two models are compared by computing the so-
called Bayes factor, i.e. the ratio of the Marginal Likelihoods (MLs)
of the two models. The ML being mathematically intractable in
our case, we used the method of Chib & Jeliazkov (2001, hereafter
CJ01) to approximate its value from the posterior density obtained
when sampling the parameter space of each model (see also H14
for more details on the implementation of the method).

For each data set, we compute the ML of models searching for 0–
7 planets, where the searched planets are added by decreasing order
of RV semi-amplitude (i.e. TRAPPIST-1 b, c, g, f, e, d, and h).
We then derive the Bayes factor comparing every model containing
at least one planet with the model searching for one fewer planet.
According to Jeffreys (1961), a Bayes factor greater than 150 (∼5

in log) is associated with a fair detection of the planet added to the
model. The evidence in favour of the planet will be regarded as
strong if the Bayes factor lies within 150–20 (∼5–3 in log), positive
if it falls within the range 20–3 (∼3–1 in log) and inconclusive
otherwise.

4 R ESULTS

4.1 Fitting simulated data

We used the model described in Section 3 to recover TRAPPIST-1
planet masses for the sampling schemes listed in Table 4 and for
white noise levels of 1 and 2 m s−1 rms. Our first goal being to assess
the effects of the stellar activity signal and sampling strategies on the
quality of the mass estimates, we start by systematically searching
for seven planets in the data sets. For each sampling scheme and
white noise level, we fit 50 time-series, each with different white
noise realisations of equal rms. The best estimates of the planet
masses and GP hyperparameters with error bars are obtained by
taking the median of the distributions. The outcome of the MCMC
samplings and the best estimates for the planet masses are shown
in Tables 7 and 8, respectively.

Case A1, i.e. evenly sampled data with 1 m s−1 white noise,
provides the best fit of the signal with an average reduced χ2, χ2

r

(i.e. χ2/N , where N is the number of data points), of ∼0.3. We
find hyperparameters consistent with those obtained when fitting
the stellar activity signal alone (see Table 6), indicating a good
interpolation of the stellar activity signal by the GP. Compared to
the mass estimates obtained with the TTVs, our mass estimates are
significantly more precise for planets b and c, and show comparable
precision for planets g, f, and e. However, planets d and h whose
masses were derived with >10σ precision in the absence of stellar
activity in case A1, now show largely degraded mass estimates, with
a precision level below 3σ . The error bars on the planet orbital phase
estimates are ∼3 to ∼140 times larger than the phase-shift induced
by the maximum TTVs predicted from G18 models (see Table 2),
justifying thus to have ignored the dynamical interactions between
the planets when modelling the data. An example of the fit to our
A1 data set is shown in Fig. 6, where we displayed, in particular,
the reconstructed activity and planetary RV curves as well as the
residuals of the fit to the synthetic data. The corresponding posterior
distribution of the four GP hyperparameters is shown in Fig. 7. In
the Appendix, we show examples of reconstructed RV times series
as well as posterior densities for all sampling schemes with 1 and
2 m s−1 rms white noise.

When we increase the white noise level from 1 to 2 m s−1 (i.e.
case A2), we note that the error bars on the hyperparameter estimates
are roughly doubled except for the amplitude of the GP whose
precision is only slightly degraded. Compared to case A1, the error
bars on the mass estimates of planets c, f, and e are multiplied by
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TRAPPIST-1 RV Observations 5121

Table 7. Results of the interpolation of the synthetic data sets for the sampling schemes listed in Table 4 and for white noise levels of 1 and 2 m s−1. Column
1 indicates the sampling case indexed by the rms of the injected white noise expressed in m s−1, column 2 is the number of searched planets and columns 3
to 6 are the medians and 1σ error bars of the GP hyperparameters averaged over ∼50 input data sets with different realizations of white noise. We show the
logarithm of the maximum likelihood, ML and Bayes factor for each model compared to the model with one less planet in columns 7–9. The median reduced
χ2 of the fit, χ2

r (i.e. χ2/N , where N is the number of data points), is shown in column 10. The hyperparameters listed without error bars were frozen to the
indicated value during the MCMC sampling to ensure the convergence of the algorithm.

Case Np θ1 θ2 θ3 θ4 ln(Lmax) ln(ML) ln Bayes factor χ2
r

(ms−1) (d) (d) (Np ;Np − 1)

A1 3 2.94 ± 0.22 23.51 ± 12.20 3.25 ± 0.04 0.10 ± 0.07 −439.7 ± 3.2 −439.1 ± 3.9 – 0.1
4 2.77 ± 0.23 7.98 ± 0.74 3.27 ± 0.01 0.24 ± 0.02 −421.3 ± 3.5 −421.8 ± 3.4 17.6 ± 3.2 0.2
5 2.69 ± 0.27 7.53 ± 0.76 3.30 ± 0.02 0.38 ± 0.04 −393.9 ± 4.1 −394.6 ± 4.1 27.0 ± 2.1 0.3
6 2.64 ± 0.26 7.70 ± 0.80 3.30 ± 0.02 0.37 ± 0.04 −391.8 ± 4.1 −392.6 ± 4.1 2.2 ± 0.8 0.3
7 2.64 ± 0.27 7.70 ± 0.81 3.30 ± 0.02 0.37 ± 0.04 −391.5 ± 4.1 −392.2 ± 4.1 0.5 ± 0.4 0.3

A2 3 2.89 ± 0.27 20.16 ± 12.60 3.26 ± 0.09 0.12 ± 0.09 −469.1 ± 5.2 −469.6 ± 5.6 – 0.4
4 2.73 ± 0.28 9.04 ± 2.79 3.28 ± 0.05 0.23 ± 0.06 −459.0 ± 5.5 −459.8 ± 5.7 10.3 ± 3.0 0.4
5 2.61 ± 0.30 7.64 ± 1.74 3.29 ± 0.05 0.34 ± 0.06 −445.9 ± 4.9 −446.8 ± 4.9 13.0 ± 2.8 0.5
6 2.58 ± 0.31 7.78 ± 1.77 3.28 ± 0.04 0.34 ± 0.06 −444.0 ± 4.8 −444.9 ± 4.8 2.2 ± 1.1 0.5
7 2.59 ± 0.31 7.82 ± 1.80 3.28 ± 0.04 0.34 ± 0.06 −443.3 ± 4.6 −444.2 ± 4.6 1.0 ± 0.7 0.5

B1 3 3.09 ± 0.27 9.13 ± 3.95 3.28 ± 0.06 0.16 ± 0.09 −298.7 ± 2.9 −299.1 ± 2.9 – 0.1
4 2.82 ± 0.26 8.50 ± 1.84 3.26 ± 0.03 0.20 ± 0.04 −286.6 ± 3.0 −287.4 ± 3.0 11.8 ± 1.5 0.2
5 2.76 ± 0.32 8.42 ± 1.17 3.29 ± 0.03 0.37 ± 0.05 −268.9 ± 3.6 −269.7 ± 3.6 18.0 ± 2.2 0.2
6 2.76 ± 0.32 8.66 ± 1.24 3.28 ± 0.03 0.37 ± 0.05 −267.6 ± 3.4 −268.5 ± 3.4 1.4 ± 0.8 0.2
7 2.73 ± 0.32 8.96 ± 1.35 3.28 ± 0.03 0.37 ± 0.05 −265.7 ± 3.5 −266.5 ± 3.5 2.0 ± 0.9 0.2

B2 3 3.08 ± 0.34 11.15 ± 6.42 3.34 ± 0.11 0.16 ± 0.13 −316.2 ± 3.5 −317.0 ± 3.4 – 0.3
4 2.83 ± 0.34 8.59 ± 3.36 3.26 ± 0.08 0.23 ± 0.09 −307.2 ± 3.3 −308.2 ± 3.3 8.9 ± 2.0 0.4
5 2.74 ± 0.37 8.21 ± 2.22 3.27 ± 0.06 0.35 ± 0.08 −298.3 ± 3.1 −299.3 ± 3.2 9.1 ± 2.5 0.4
6 2.74 ± 0.38 8.53 ± 2.35 3.27 ± 0.05 0.35 ± 0.08 −297.0 ± 3.0 −297.9 ± 3.0 1.6 ± 0.9 0.4
7 2.72 ± 0.38 8.81 ± 2.53 3.27 ± 0.05 0.35 ± 0.08 −295.3 ± 3.0 −296.2 ± 3.0 1.9 ± 0.9 0.4

C1 3 3.32 ± 0.33 9.39 ± 4.42 3.29 ± 0.04 0.16 ± 0.09 −220.3 ± 2.1 −220.8 ± 2.1 – 0.1
4 3.16 ± 0.34 9.01 ± 3.17 3.28 ± 0.03 0.22 ± 0.06 −213.1 ± 2.4 −213.9 ± 2.4 6.9 ± 1.0 0.1
5 2.96 ± 0.36 8.10 ± 1.91 3.31 ± 0.04 0.36 ± 0.06 −201.6 ± 2.2 −202.3 ± 2.2 11.8 ± 1.5 0.1
6 2.90 ± 0.36 8.86 ± 2.22 3.30 ± 0.04 0.36 ± 0.06 −198.6 ± 2.3 −199.4 ± 2.2 3.0 ± 0.8 0.2
7 2.90 ± 0.36 8.74 ± 2.20 3.29 ± 0.04 0.36 ± 0.06 −197.8 ± 2.1 −198.5 ± 2.1 0.9 ± 0.4 0.2

C2 3 3.35 ± 0.42 11.94 ± 7.15 3.29 ± 0.11 0.17 ± 0.10 −230.2 ± 2.5 −231.1 ± 2.4 – 0.3
4 3.18 ± 0.43 10.35 ± 5.48 3.28 ± 0.09 0.24 ± 0.09 −224.4 ± 2.0 −225.3 ± 2.0 5.9 ± 1.2 0.3
5 2.91 ± 0.43 8.79 ± 3.90 3.29 ± 0.10 0.34 ± 0.10 −216.4 ± 2.8 −217.3 ± 2.9 8.0 ± 1.8 0.4
6 2.86 ± 0.44 9.80 ± 4.59 3.26 ± 0.10 0.34 ± 0.10 −213.6 ± 2.5 −214.5 ± 2.5 3.0 ± 1.4 0.4
7 2.88 ± 0.46 10.91 ± 5.51 3.24 ± 0.10 0.33 ± 0.11 −212.3 ± 2.7 −213.2 ± 2.8 1.4 ± 0.6 0.4

D1 3 3.25 ± 0.34 7.9 3.43 ± 0.04 0.37 −190.1 ± 2.3 −191.2 ± 2.3 – 0.1
4 3.01 ± 0.33 7.9 3.42 ± 0.04 0.37 −184.2 ± 2.3 −185.3 ± 2.3 5.9 ± 0.8 0.1
5 2.59 ± 0.31 7.9 3.31 ± 0.05 0.37 −173.3 ± 2.5 −174.4 ± 2.5 10.9 ± 1.4 0.2
6 2.60 ± 0.32 7.9 3.31 ± 0.05 0.37 −172.3 ± 2.5 −173.4 ± 2.5 1.2 ± 0.5 0.2
7 2.47 ± 0.32 7.9 3.30 ± 0.05 0.37 −168.7 ± 2.7 −169.8 ± 2.7 3.7 ± 0.7 0.2

D2 3 3.03 ± 0.48 7.9 3.43 ± 0.07 0.37 −199.0 ± 3.4 −200.1 ± 3.4 – 0.4
4 2.81 ± 0.50 7.9 3.40 ± 0.09 0.37 −194.1 ± 3.7 −195.3 ± 3.7 5.1 ± 1.2 0.4
5 2.52 ± 0.49 7.9 3.30 ± 0.11 0.37 −187.6 ± 3.3 −188.7 ± 3.3 6.9 ± 2.1 0.4
6 2.56 ± 0.50 7.9 3.29 ± 0.11 0.37 −186.5 ± 3.2 −187.6 ± 3.1 1.1 ± 0.5 0.4
7 2.41 ± 0.51 7.9 3.29 ± 0.12 0.37 −182.9 ± 3.3 −184.1 ± 3.3 3.6 ± 1.0 0.4

Table 8. Best TRAPPIST-1 planetary system mass estimates for data sets sampled with the schemes listed in Table 4 at a white noise of 1 or 2 m s−1 rms. In
each case, the values are averaged over ∼50 RV time-series with different white noise realization. Case TTV stands for the best mass estimates from G18.

Case mb mc mg mf me md mh

(M⊕) (M⊕) (M⊕) (M⊕) (M⊕) (M⊕) (M⊕)

TTV 1.017+0.154
−0.143 1.156+0.142

−0.131 1.148+0.098
−0.049 0.934+0.08

−0.078 0.772+0.079
−0.075 0.297+0.039

−0.035 0.331+0.056
−0.049

A1 0.988 ± 0.083 1.173 ± 0.049 1.130 ± 0.113 0.943 ± 0.077 0.762 ± 0.071 0.325 ± 0.133 0.332 ± 0.260
A2 0.991 ± 0.109 1.194 ± 0.093 1.116 ± 0.175 0.907 ± 0.147 0.773 ± 0.131 0.331 ± 0.155 0.402 ± 0.292
B1 1.040 ± 0.096 1.221 ± 0.079 1.127 ± 0.147 0.965 ± 0.124 0.837 ± 0.102 0.251 ± 0.129 0.565 ± 0.261
B2 1.059 ± 0.137 1.214 ± 0.130 1.143 ± 0.237 1.026 ± 0.207 0.816 ± 0.174 0.289 ± 0.178 0.624 ± 0.338
C1 1.190 ± 0.129 1.120 ± 0.134 1.329 ± 0.230 0.774 ± 0.195 1.066 ± 0.165 0.459 ± 0.183 0.441 ± 0.353
C2 1.222 ± 0.178 1.105 ± 0.188 1.339 ± 0.316 0.918 ± 0.274 1.137 ± 0.236 0.549 ± 0.234 0.553 ± 0.428
D1 1.078 ± 0.173 1.262 ± 0.189 1.646 ± 0.271 1.173 ± 0.232 0.940 ± 0.144 0.306 ± 0.174 0.909 ± 0.336
D2 1.050 ± 0.201 1.285 ± 0.228 1.771 ± 0.330 1.138 ± 0.295 0.908 ± 0.221 0.291 ± 0.228 1.032 ± 0.412
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5122 B. Klein and J.-F. Donati

Figure 6. Fit of a data set sampled with A1 scheme with a given realization of the 1 m s−1 white noise. All RVs are expressed in m s−1. From top to bottom:
raw data set, stellar activity RV signal, RV signatures from planets b to h in a decreasing order of semi-amplitude and residuals (rms of 0.5 m s−1). In each
panel, the red dotted line is the injected RV curve and the grey solid line is the best prediction from the model. For the stellar activity and planetary signals, the
blue dots are obtained by subtracting all the components of the model except the one displayed in the data.
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Figure 7. Posterior distribution of the four GP hyperparameters returned
by the MCMC sampling for a given data set sampled with scheme A1. The
red solid lines indicate the best hyperparameter values, i.e. the values that
maximize the likelihood of the MCMC. The green dashed lines indicate
the median hyperparameter values over the posterior density. This plot was
made using the CORNER PYTHON module (Foreman-Mackey 2016).

a factor of ∼2, implying that the main limitation comes from the
white noise itself. In contrast, the precision on the mass estimates of
planets b, d, and h is dominated by the stellar activity signal itself,
as evidenced by the low increase in the error bars when switching
from case A1 to A2. With a white noise of 2 m s−1, only the mass
estimates of planets b and c remain more precise that those derived
from TTVs.

The fit to the RV time-series is noticeably degraded for sampling
scheme D. In this case, the MCMC sampling of the parameter space
does not converge anymore. The GP prefers to either minimize
the smoothing factor θ4 or shrink the time-scale θ2 so that the
correlation between consecutive data points becomes ridiculously
small leading to a non-physical modelling of the stellar activity
RV signal. This implies that the RV curve is no longer sampled at
a high enough rate to allow for a reliable fit of the data with the
four-hyperparameter GP we used.

When no stellar activity component is added to the data, data sets
sampled on the D1 scheme provide unbiased mass estimates with a
precision of >5σ for all TRAPPIST-1 planets, demonstrating that
sampling D performs a satisfactory coverage of the planetary phase
curves. This is also notable in Fig. 8 showing examples of orbit-
folded RV curves of planet signals for sampling schemes A1, C1, and
D2, with activity taken into account and filtered out from the data as
outlines in Section 3.3. Fig. 9 shows the histograms of the number of
observations per stellar rotation cycle for each considered sampling
scheme. Scheme D performs worst with only ∼3 data points per
stellar rotation period. This is an insufficient coverage of the stellar
rotation cycle before the spot pattern evolves significantly, leading
to the non-convergence of the MCMC process. To address this issue,
we have to freeze two of the 4 GP parameters, namely the time-scale
and smoothing parameters, θ2 and θ4, to their best estimates when
fitting the stellar activity signal only (see Table 6).

Fig. 10 shows the mass estimates as a function of the injected
masses for all the considered cases. With scheme D, the masses of

Figure 8. Orbit-folded recovered RV curves for TRAPPIST-1 planets c (top
row), g (middle row), and h (bottom row), and sampling schemes A1 (first
column), C1 (middle column), and D2 (right column) when stellar activity
is taken into account, each for a given realization of the white noise. For
each planet, the X-axis covers one orbital period on which all data points
are folded.

Figure 9. Histograms of the number of observations (Nobs) per stellar
rotation cycle for each sampling scheme. When relevant, the observations
are shown in dashed red and solid blue lines when from CFHT and TBL,
respectively.

planets g, f, and h are strongly overestimated, regardless of the white
noise level. In contrast, the amplitude of the GP is lower than when
fitting the stellar activity signal alone, implying an underestimation
of the latter (see Table 7). Moreover, the planet mass estimates
are considerably less precise than those obtained from TTV except
for planet b (see Table 8). In an attempt to improve the planet mass
estimates while still using a single telescope, we doubled the number
of observations per CFHT night. However, this configuration only
marginally improves the precision on the mass estimates and the
masses of planets g and h remain largely overestimated. This
demonstrates that doubling the number of observations per night
in this configuration still leads to an incomplete coverage of the
stellar rotation cycle. The same goes for sampling strategies aimed
at phases where the planetary signal is expected to be maximum.

In contrast with scheme D, the fit of data sets sampled with
scheme B1 provides remarkably good mass estimates with unbiased

MNRAS 488, 5114–5126 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/488/4/5114/5532370 by guest on 28 M
ay 2023
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(a) (b)

Figure 10. Estimated planetary masses as a function of the injected masses for the four sampling cases listed in Table 4 at 1 m s−1 (left-hand panel) and
2 m s−1 (right-hand panel) rms white noise. For clarity purposes, we slightly shifted the mass estimates for the different sampling schemes to the left (for
planets g and d) or to the right (remaining planets).

estimates at a precision >8σ for planets b, c, g, f, and e. However,
the mass estimates of planets d and h are measured at a precision
<3σ with an overestimation of the mass of planet h. Case B2 leads
to unbiased mass estimates at a precision of �5σ for planets b,
c, g, f, and e. Compared to sampling B, scheme C provides mass
estimates degraded in precision due to a significant decrease in the
number of observations. However, the mass estimates for planets g
and f remain much less overestimated than in case D (see Fig. 8).
For these planets in particular, the mass estimates are less degraded
when moving from C1 to C2 than from C2 to D2, which implies
that the observational sampling mainly explains the erroneous mass
estimates recovered in case D2.

We finally generated ∼40 data sets sampled in case C1 with
different realizations of white noise and modelled each of them
using the procedure described in Section 3.3, but this time freezing
the planet orbital phases to their best estimates from D18. For
this sampling scheme, it turns out that freezing the planet orbital
phases when modelling the data set has virtually no impact on the
detectability of the planets and no more than marginally increases
the precision on the planet masses (by about 2 per cent).

4.2 Planet detection

We computed the Bayes factors relative to each of the seven
TRAPPIST-1 planets added in a decreasing order of RV semi-
amplitude for data sets sampled with the schemes listed in Table 4
with white noise levels of 1 and 2 m s−1 rms. We ran our estimation
algorithm on 50 data sets with different realization of white noise
and computed the average and standard deviation of the distribution
using a 3σ clipping process to prevent the average and standard
deviation from being affected by strong outliers.

As a result, planets b, c, g, f, and e are well detected at a white
noise level of 1 m s−1. When the white noise level is increased to
2 m s−1, we start to loose planet f with sampling scheme D and, to
a lesser extent, with sampling scheme C. In contrast, the evidence
for planets d and h lie systematically below the detection threshold.
Fig. 11 shows the Bayes factors in favour of planets f, e, d, and h
depending on the sampling scheme and white noise level. For each
sampling scheme, we note similar trends for the evolution of the
Bayes factor as a function of the planet searched at white noise
levels 1 and 2 m s−1. For sampling scheme A (i.e. evenly sampled
datasets), all planets are firmly detected except planets d (positive
evidence) and h (inconclusive). The evidence for planet d decreases
with the number of data points except for sampling C where the mass
of planet d is overestimated. Finally, the Bayes factor of planet h
is significantly higher is scheme D than in other schemes. This
trend is likely correlated to the overestimation of the mass of planet
h, whose accuracy strongly decreases from schemes A/B/C to D.
This observation needs however to be nuanced as planet h remains
undetected, in average, for all the sampling schemes.

5 D I SCUSSI ONS AND CONCLUSI ON

In this paper, we simulated RV follow-ups of TRAPPIST-1 using
various sampling strategies spread on the same 90-d period. We
first generated an RV curve for TRAPPIST-1a including a realistic
stellar activity signal generated from a non-magnetic stellar activity
model statistically compatible with the K2 light curve (Luger et al.
2017) and the planet RV signal using the parameters measured
from photometric analyses (D18; G18). This resulted in planet and
stellar activity curves with similar amplitudes (∼5 m s−1). We then
built time-series using various sampling schemes, namely evenly
sampled observations, bi-site observations from complementary
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(a) (b)

Figure 11. Logarithm of the Bayes factors relative to planets f, e, d, and h for the four sampling schemes listed in Table 4 at 1 and 2 m s−1 rms white noise
level (left-hand and right-hand panels, respectively). The blue, yellow, and red bands correspond to strong, positive, and non-conclusive evidence according to
Jeffreys (1961) criterion. A Bayes factor that lies beyond the black horizontal line is interpreted as a fair detection. The values that do not appear in the figure
lie beyond the Y-axis upper limit.

longitudes and observations from a single location, to which we
added a random noise accounting for additional noise sources
(photon and instrumental non-correlated noise).

The stellar activity curve is modelled using GPR with a quasi-
periodic kernel. Assuming that the planet orbital periods are known
from transit photometry, we obtain that masses can be estimated at
a precision � 5σ for planets b, c, g, and e at a white noise level
of 1 m s−1, regardless of the considered sampling scheme. Planets
d and h are systematically undetected. The increase in the white
noise level impacts the errors on the planet masses in different ways
among the error bars on the planet mass estimates, some being
dominated by the white noise and only poorly sensible to the stellar
activity signal (planets c, f, and e), while others are dominated by
the stellar activity (mostly planets b, d, and h).

Ancillary stellar activity indicators could be included to the GP
modelling of the stellar activity signal in a similar approach as
Rajpaul et al. (2015) and Jones et al. (2017). However, the sensitivity
of each indicator to stellar activity is shown to vary from one
indicator to another, as demonstrated by the obvious differences
observed between the most prominent peaks in the periodograms of
RV and ancillary indicators time-series (Hébrard et al. 2016). As a
consequence, we ignored them when modelling the stellar activity
signal.

This paper demonstrates that observational sampling is at least as
critical as RV precision for velocimetric follow-ups of transiting
planetary systems. For multiplanet TRAPPIST-1 analogues, we
show that a dense-enough coverage of both planet orbital and stellar
rotation cycles is essential to accurately recover the masses of all
planets whose semi-amplitude RV wobble exceeds 1 m s−1. Failing
to achieve so can cause some of the system planets to remain
undetected, or lead to tentative planet detections with erroneous
mass estimates.

In the specific case of TRAPPIST-1, we find that an uninterrupted
monitoring from CFHT can yield reliable mass estimates for planets
with strongest RV semi-amplitudes and/or for which mass estimates
are limited by the white noise (planets b and c, and to a lesser extent
g, f, and e). However, planets with weaker RV signatures (d and h
in particular, and potentially g and f as well) are likely to remain
undetected, or marginally detected with erroneous mass estimates.
Limiting observations to bright-time periods only is expected to
further degrade the situation, whereas adding data from a second
observing site with similar instrumental capabilities and located at a
complementary longitude can provide most of the missing material
for reliably recovering some of the less-massive planets. In this
respect, SPIRou at CFHT and SPIP, its upcoming twin at TBL,
are expected to form a powerful duo capable of achieving dense-
enough coverage for the velocimetric follow-up of transiting planet
candidates to be carried out within the SLS.

Besides that, we consider to adapt this study to other SLS-TF
targets, especially young very active stars, in order to investigate
how our results will be affected by significantly different activity
and planet RV curves and prepare future observations with SPIRou.
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