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ABSTRACT

Main sequence low-mass stars are known to spin-down as a consequence of their magnetised stellar
winds. However, estimating the precise rate of this spin-down is an open problem. The mass-loss rate,
angular momentum-loss rate and the magnetic field properties of low-mass stars are fundamentally
linked making this a challenging task. Of particular interest is the stellar magnetic field geometry. In
this work, we consider whether non-dipolar field modes contribute significantly to the spin-down of
low-mass stars. We do this using a sample of stars that have all been previously mapped with Zeeman-
Doppler imaging. For a given star, as long as its mass-loss rate is below some critical mass-loss rate,
only the dipolar fields contribute to its spin-down torque. However, if it has a larger mass-loss rate,
higher order modes need to be considered. For each star, we calculate this critical mass-loss rate,
which is a simple function of the field geometry. Additionally, we use two methods of estimating
mass-loss rates for our sample of stars. In the majority of cases, we find that the estimated mass-loss
rates do not exceed the critical mass-loss rate and hence, the dipolar magnetic field alone is sufficient
to determine the spin-down torque. However, we find some evidence that, at large Rossby numbers,
non-dipolar modes may start to contribute.
Keywords: magnetohydrodynamics (MHD) - stars: low-mass - stars: stellar winds, outflows - stars:

magnetic field- stars: rotation, evolution

1. INTRODUCTION

It is well known that thermally driven stellar winds
cause low-mass stars to spin down over their main
sequence lifetimes (e.g. Weber & Davis 1967). Many
authors have attempted to model the rotation pe-
riod evolution of these stars (Gallet & Bouvier 2013;
Brown 2014; Gallet & Bouvier 2015; Matt et al.
2015; Johnstone et al. 2015; Amard et al. 2016;
Blackman & Owen 2016; van Saders et al. 2016;
Gondoin 2017; Sadeghi Ardestani et al. 2017; See et al.
2018; Garraffo et al. 2018) but accurately determining
angular momentum-loss rates is a difficult task. An open
question in this context is the impact of magnetic field
geometry. Parameter studies using MHD simulations
have shown that, when considering only single spherical
harmonic modes, the angular momentum-loss rate is
highest when the field is dipolar and drops dramatically
for higher order field configurations, e.g. quadrupolar,
octupolar, etc. (Garraffo et al. 2015; Réville et al.
2015). However, the magnetic fields of real stars are
known to be a mixture of many spherical harmonic
modes (e.g. DeRosa et al. 2012). It turns out that,
when constructing so-called “braking laws” that specify
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the rate at which stars lose angular momentum, the
relevant magnetic parameter to consider is the open flux
(Vidotto et al. 2014; Réville et al. 2015; Finley & Matt
2017; Pantolmos & Matt 2017; Finley & Matt 2018).
This is the flux associated with field lines that extend
into interplanetary space, i.e. the field lines along which
stellar winds carry away mass and angular momentum.
Previous studies have suggested that the open flux,

and hence angular momentum-loss rates, are dominated
by the dipolar component of the stellar magnetic field
(Jardine et al. 2017; See et al. 2017, 2018). However,
the open flux is not a directly observable quantity and
attempts to estimate it are difficult and model depen-
dent. Indeed, there have been some suggestions that
higher order magnetic field modes may play a significant
role in the spin-down of low-mass stars (Brown 2014;
Garraffo et al. 2018). Recently, Finley & Matt (2017,
2018) formulated a braking law in terms of the pho-
tospheric field strengths of the dipole, quadrupole and
octupole components of the field. Formulating braking
laws in this manner is advantageous because the field ge-
ometry can be accounted for without resorting to model
dependent open flux estimates. This braking law can
therefore be used to more precisely test the claim that
dipole magnetic fields dominate over higher order geome-
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tries when estimating angular momentum-loss rates.
To use the braking law of Finley & Matt (2018, hence-

forth F18), we have to determine the field strengths as-
sociated with the dipole, quadrupole and octupole com-
ponents of stellar magnetic fields. This is something
that the Zeeman-Doppler imaging (ZDI) technique can
uniquely do. ZDI is a tomographic technique that can
reconstruct the large-scale photospheric magnetic field
geometries of low-mass stars (Semel 1989; Brown et al.
1991; Donati & Brown 1997; Donati et al. 2006). The
magnetic field maps produced from ZDI are expressed in
terms of a spherical harmonic decomposition (e.g. see
appendix B of Folsom et al. (2018b)) allowing us to take
advantage of the F18 braking law.
As well as the magnetic properties of the star, knowl-

edge of the mass-loss rate is also important to accurately
determine angular momentum-loss rates. Mass-loss rates
for low-mass stars are notoriously difficult to determine
due to the diffuse nature of their winds. Currently, only
indirect methods of measuring stellar mass-loss rates
are possible (Wood et al. 2014; Vidotto & Bourrier 2017;
Jardine & Collier Cameron 2018). Consequently, when
using braking laws, the mass-loss rate is likely to be the
least well constrained input parameter.
In this paper, we investigate whether the dipole

magnetic field dominates when calculating angular-
momentum losses using the F18 braking law. In section
2, we present this braking law and demonstrate that only
the dipole component of the magnetic field contributes
to a stars’s spin-down torque if the star’s mass-loss rate
is below some critical mass-loss rate. In section 3, we dis-
cuss the magnetic properties of the ZDI sample used in
this work. Two methods for estimating mass-loss rates
are introduced in section 4. In section 5, we calculate
the critical mass-loss rates for our sample and analyse
which stars are the most likely to have mass-loss rates
that exceed the critical mass-loss rate. A discussion of
the uncertainties of our work are presented in section 6.
Finally, a discussion and the conclusions of our results
are presented in section 7.

2. FINLEY & MATT (2018) BRAKING LAW

The braking law of F18 takes the form of a twice broken
power law and is given by

T = ṀΩ⋆〈RA〉
2 (1)

where T is the angular momentum loss-rate or spin-down
torque, Ṁ is the mass-loss rate, Ω⋆ = 2π/Prot is the
angular frequency, Prot is the rotation period and 〈RA〉
is the torque averaged Alfvén radius. Physically, 〈RA〉
corresponds to the lever arm of the spin-down torque
and is given by

〈RA〉/r⋆ = max
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Here, r⋆ is the stellar radius, Υ =
B2

⋆
r2
⋆

Ṁvesc
is the wind

magnetisation and vesc is the escape velocity of the star.
Rd = Bd/B⋆, Rq = Bq/B⋆ and Ro = Bo/B⋆ are the

Table 1: Adopted solar parameters. Note that the upper
and lower bounds on the field strengths are the range of
values observed in cycle 24 rather than formal errors.

Symbol Adopted value

Mass M⊙ 1.99× 1033g
Radius r⊙ 6.96× 1010cm
Angular frequency Ω⊙ 2.6× 10−6Hz
Dipole field strength Bd,⊙ 0.9+0.7

−0.6G

Quadrupole field strength Bq,⊙ 0.8+1.8
−0.6G

Octupole field strength Bo,⊙ 1.2+1.2
−0.8G

magnetic field ratios where B⋆ = Bd + Bq + Bo. By
definition, Rd +Rq +Ro = 1. The subscripts d, q and
o indicate dipole, quadrupole and octopole respectively.
The precise meaning of Bd, Bq and Bo will be further
discussed in section 3. Finally, Kd = 1.53, Kq = 1.7,
Ko = 1.8, md = 0.229, mq = 0.134 and mo = 0.087
are fit parameters obtained from the MHD simulations
of F18.
Mathematically, equation (2) can predict arbitrarily

small Alfvén radii if Υ is very small. However, we im-
pose a lower limit on the Alfvén radius of

√

2/3 r⋆. This
is the lever arm associated with a completely unmagne-
tised and inviscid wind and smaller values are unphysical.
The factor of

√

2/3 is a consequence of our definition of
the angular momentum-loss rate in equation (1). It is a
geometric factor that arises when integrating the angular
momentum-loss rate over all latitudes (e.g. compare with
Weber & Davis (1967)). We also note that this brak-
ing law only accounts for contributions from the dipo-
lar, quadrupolar and octupolar field modes. Although
real stellar magnetic fields contain higher order spherical
harmonic modes, this braking law likely provides a rea-
sonable estimate of the torque. As discussed later in this
section, high order field modes only become relevant at
high mass-loss rates. However, if the mass-loss rate of
a star is high enough for field modes above the octupo-
lar mode to contribute, the Alfvén radius is likely to be
so small that it is close to, or below, the unmagnetised
rA =

√

2/3 r⋆ limit.
It is instructive to analyse the behaviour of this braking

law. As an illustrative example, in fig. 1 we plot angu-
lar momentum-loss rate as a function of mass-loss rate
using equations (1) and (2) for solar parameters (these
are listed in table 1; the values used for Bd,⊙, Bq,⊙ &
Bo,⊙ are discussed in section 3). While the mass-loss
rate of the Sun is relatively well constrained from ob-
servations, the same is not true for other stars. Under-
standing how this braking law behaves as a function of
mass-loss rate is therefore a useful exercise. The three
components of equation (2) are plotted as three separate
power laws. The predicted angular momentum-loss rate
from the F18 braking law is the upper envelope of these
three functions.
Fig. 1 shows that, equation (2a; red dot-dashed line)

dominates at low mass-loss rates, equation (2b; blue solid
line) dominates at intermediate mass-loss rates and equa-
tion (2c; green dashed line) dominates at high mass-loss
rates. Since equation (2a) depends only on Bd, equation
(2b) depends on Bd & Bq and equation (2c) depends
on Bd, Bq & Bo, the general trend is that more high
order, non-dipolar, field modes are required to properly
calculate the spin-down torque at higher mass-loss rates.
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Figure 1. : Angular momentum-loss rate as a function
of mass-loss rate using equations (1) and (2) for solar
parameters (see table 1). The three power laws show
the three components of equation (2); red dot-dashed
line for the dipole component (equation (2a)), blue solid
line for the dipole + quadrupole component (equation
(2b)) and green dashed line for the dipole + quadrupole
+ octupole component (equation (2c)). The true angu-
lar momentum-loss rate is the upper envelope of these
3 power laws. Black dotted lines indicate the mass-loss
rate at which equations (2a) & (2b) intersect (labelled as

Ṁcrit) and where equations (2a) & (2c) intersect. The
shaded region roughly indicates the observed solar mass-
loss rate.
Physically, this is because high order field modes decay
more rapidly as a function of distance from the star (e.g.
see Réville et al. 2015). If the mass-loss rate is low, the
Alfvén radius (the lever arm of the spin-down torque)
will be large and extend out to a distance where non-
dipolar field components have decayed away. However,
if the mass-loss rate is large, the Alfvén radius may be
small enough that high order field components have not
completely decayed away and must be accounted for.
We can define a critical mass-loss rate, Ṁcrit, below

which only the dipole field strength is required to prop-
erly determine the angular momentum-loss rate of the
star. This critical mass-loss rate is given by equating
equations (2a) & (2b) and solving for the mass-loss rate1.
It is given by

Ṁcrit = 0.33
B2

⋆r
2
⋆

vesc

R4.82
d

(Rd +Rq)2.82
, (3)

where we have substituted in the values for Kd, Kq, md

andmq. For solar parameters, Ṁcrit ∼ 5×10−14M⊙yr
−1.

The observed mass-loss rate for the Sun, Ṁ ∼ 2 ×
10−14M⊙yr

−1, is lower than this critical mass-loss rate

1 In principle, to properly calculate Ṁcrit, one should calculate
the mass-loss rate at which equation (2a) equals equation (2b)
and also the mass-loss rate at which equation (2a) equals equation

(2c). Ṁcrit is then given by the smaller of these two mass-loss
rates. However, for the sample of stars presented in section 3, it
turns out that the mass-loss rate at which (2a) equals equation
(2b) is always smaller than the mass-loss rate at which (2a) equals
equation (2c).

and, consequently, we only need the dipole component
of the solar magnetic field to calculate the solar angular-
momentum loss rate using the F18 braking law. How-
ever, there are caveats to this statement, related to the
variability of the Sun’s magnetic activity, that we shall
return to in section 6.3.

3. THE STELLAR SAMPLE AND ITS MAGNETIC
PROPERTIES

The sample of stars we will use in this study is the
one presented by See et al. (2019). This sample consists
of 85 stars that have had their magnetic fields mapped
with ZDI. Some of these stars have been mapped at mul-
tiple epochs resulting in 151 magnetic maps. This col-
lection of ZDI maps is drawn from many sources and
represents nearly two decades of observations. The pa-
rameters (mass, radius, luminosity and rotation period)
used for this work are listed in table 1 of See et al. (2019)
and were generally taken from the original paper that
the ZDI map was published in. Additionally, convective
turnover times, τcz, were calculated using the formula-
tion presented by Cranmer & Saar (2011)2.
In addition to the parameters listed in table 1 of

See et al. (2019), we also require field strength values
for the dipole, quadrupole and octupole components of
the magnetic field for this work, i.e. Bd, Bq and Bo in
equation (2). In the MHD simulations of Finley & Matt
(2018), Bd, Bq and Bo correspond to field strengths
at the rotation pole (or, equivalently in their simula-
tions, the magnetic pole). However, these authors only
considered axisymmetric field topologies whereas ZDI
maps contain both axisymmetric and non-axisymmetric
modes. Rather than using polar field values, we will
instead use the stellar surface averaged unsigned field
strength for each spherical harmonic mode3. We shall
denote these as 〈BZDI,d〉, 〈BZDI,q〉 and 〈BZDI,o〉. Values
for 〈BZDI,d〉, 〈BZDI,q〉 and 〈BZDI,o〉 are shown in table 3
for our entire sample along with citations to the original
paper each ZDI maps is published in.
Numerous studies have shown that magnetic activity

indicators scale with the ratio of the rotation period
over the convective turnover time, which is known as
the Rossby number, Ro = Prot/τcz. In the top row of
fig. 2, we plot 〈BZDI,d〉, 〈BZDI,q〉 and 〈BZDI,o〉 against
Ro. Each component follows a relatively tight power law
relation at large Rossby numbers and appears to sat-
urate at small Rossby numbers. This separation into
saturated and unsaturated regimes is well known from
X-ray studies (Pizzolato et al. 2003; Wright et al. 2011;
Wright & Drake 2016; Stelzer et al. 2016; Wright et al.
2018). We have also plotted solar values in each of these

2 As noted in See et al. (2019), Cranmer & Saar (2011) state
that this method of calculating convective turnover times is valid
for stars with effective temperatures in the range 3300 K . Teff .
7000 K. Although a number of our stars have Teff < 3300 K, they
all lie in the saturated regime where the magnetic properties of
stars, such as field strength, do not change significantly as a func-
tion of Rossby number. Therefore, this method of calculating con-
vective turnover times will not greatly affect our results.

3 More formally, for each harmonic mode, we consider the power
in the poloidal component of the component we are interested
in. For example, using the formalism shown in appendix B of
Folsom et al. (2018b), 〈BZDI,q〉 would be calculated using the αℓ,m

and βℓ,m coefficients with ℓ = 2 & m = {0, 1, 2} and all other co-
efficients set to zero.
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Figure 2. : Average ZDI magnetic field strength (top row) and field ratio (bottom row) against Rossby number for the
magnetic dipole (left), quadrupole (center) and octupole (right) components. The subscript i = {d, q, o} represents
each of the three components. Each point is colour coded by stellar mass. The range of solar values for each component
is shown using a magenta strut. A three parameter fit (equation (4)) is performed for each component in the top row
(solid red line). The best fit values can be found in table 2.

Table 2: Best fit parameters for equation (4)
Bsat,i Rocrit,i βi

Dipole 137±48 0.05±0.02 -1.31±0.10
Quadrupole 73±21 0.05±0.01 -1.25±0.08
Octupole 65±17 0.05±0.01 -1.37±0.09

panels. These values are calculated using the Solar mag-
netograms from Vidotto et al. (2018) that cover most of
cycle 24. For each magnetogram, we calculate a sur-
face averaged poloidal dipole, quadrupole and octupole
field strength. These are then averaged to determine the
average poloidal dipole, quadrupole and octupole field
strength over cycle 24 and plotted with magenta squares.
The range of possible values over cycle 24 for each of
these quantities is plotted with a magenta strut.
For each field component, we perform a three parame-

ter fit of the form

〈BZDI,i〉 = Bsat,i for Ro < Rocrit,i

〈BZDI,i〉 = Bsat,i

(

Ro

Rocrit,i

)βi

for Ro ≥ Rocrit,i
(4)

where the subscript i = {d, q, o} represents each of
the three components, Bsat,i is the field strength in the
saturated regime, Rocrit,i is the critical Rossby number
separating the saturated and unsaturated regimes and
βi is the power law index in the unsaturated regime.
As discussed in See et al. (2019), we have excluded the

stars with Ro . 0.012 from these fits since they appear
to display bimodal magnetic fields (Donati et al. 2008;
Morin et al. 2008a, 2010) for which there is currently no
definitive explanation. The best fit values can be found
in table 2 and the corresponding best fit curves are plot-
ted in red in fig. 2. All three fits have similar Rocrit
and β values within the error bars. The most notable
difference in the fits is that the dipole component has
a larger saturation field strength compared to the other
two components. The saturation field strength is likely
to be the least well constrained parameter however, since
there are far fewer stars here compared to the unsatu-
rated regime. Additionally, due to observational biases,
the Rossby number is correlated to stellar mass in our
sample of stars. Although we have parameterised our fit
in terms of Rossby number, there may be an additional
dependence on stellar mass that is hard to disentangle
from the dependence on Rossby number.
As well as the raw field strengths, we can also con-

sider the field ratios defined in section 2 for our sample
of stars, i.e. Ri = 〈BZDI,i〉/

∑

j〈BZDI,j〉. These are plot-
ted against Rossby number in the bottom row of fig 2.
Each component shows a large amount of scatter with no
obvious structure present. On average, Rd has a higher
value than Rq or Ro although this is not necessarily true
for any individual star.

4. ESTIMATING MASS-LOSS RATES
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Figure 3. : Mass-loss rate (top), angular momentum-loss rate (middle) and spin-down time-scale (bottom) as a function
of Rossby number. These quantities are calculated using (or are associated with) the CS11 (left), M15 (center) and
modified M15 (right) models. Each point is colour coded by stellar mass. Solid lines correspond to the parameter of
interest in each panel calculated for a given stellar mass over a range of Rossby numbers (see text for details). The
solid lines are plotted in intervals of 0.1M⊙ from 0.1M⊙ to 1.3M⊙ and are also colour coded by stellar mass. The
lines corresponding to 0.1M⊙ have been plotted with a dashed black line for visibility. The average solar value in each
panel is shown with a magenta square and the range of variability is shown with a magenta strut when applicable.

In this section, we estimate mass-loss rates for our sam-
ple of stars. Since estimating mass-loss rates for low-
mass stars is difficult and model dependent, we explore
two different methods. Although the main purpose of
this section is to estimate mass-loss rates to compare to
critical mass-loss rates in section 5, we will also present
the torques and spin-down time-scales associated with
these methods since these are simple to calculate once
mass-loss rates have been estimated.

4.1. Cranmer & Saar (2011) method

Our first method of estimating mass-loss rates uses the
1 dimensional model of Cranmer & Saar (2011, hence-
forth CS11) which takes the stellar mass, radius, lumi-
nosity, rotation period and metallicity as inputs. We
have chosen to use solar metallicity for all our stars for
simplicity. This model estimates the energy generated
from turbulent convective motions in the stellar interior.
It then tracks this energy as it travels upwards through

the photosphere in the form of MHD waves. Eventually
the energy is deposited along open field lines, heating up
the local plasma and driving a hot coronal wind.
Fig. 3a shows the mass-loss rates of our sample esti-

mated with the CS11 model. We have also plotted curves
where each line corresponds to mass-loss rates for a fixed
stellar mass over a range of Rossby numbers (similar
curves are plotted on the other panels of fig. 3). These
lines are included to illustrate the behaviour of the CS11
model over a range of fixed masses and are intended to
aid the reader in interpreting the data points. Addition-
ally, they allow for a rough estimate of mass-loss rates
in regions of parameter space that our ZDI sample does
not cover. For each line, stellar radii and luminosities,
which are required by the CS11 model, are estimated
by interpolating over the grid of stellar evolution models
of Baraffe et al. (2015) at an age of 2 Gyr. This age is
chosen to be older than the zero age main sequence but
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younger than the main sequence turnoff for the types of
stars in our sample. We have therefore assumed that the
stellar radius and luminosity are only a function of mass,
and not age or rotation, when calculating these curves
which is approximately true on the main sequence. This
method produces radius and luminosity estimates that
are broadly representative of the stars we are interested
in. Although it is a relatively simple method of esti-
mating radii and luminosities, it is appropriate since the
curves are simply illustrative and included only to help
the reader interpret the data points. Overall, the data
points in fig. 3 follow the trends shown by the lines al-
though there will be small deviations due to a number
of different factors, e.g. the fact that the stars in our
sample have a range of ages. For a given stellar mass, we
see that the mass-loss rates follow the activity-rotation
relation shape described in section 3. The most striking
feature is the range of predicted mass-loss rates, span-
ning around ten orders of magnitude. The main deter-
minant of the mass-loss rate for the CS11 model is the
stellar mass, with rotation (or Rossby number) having a
secondary effect.
Using these mass-loss rates, we can calculate torques,

TCS11, and spin-down time-scales, τCS11. TCS11 is calcu-
lated using the F18 braking law (equation (2)) and are
shown in fig. 3d. τCS11 is given by I⋆Ω⋆/TCS11, where
I⋆ is the moment of inertia of the star. Again, we use
the stellar evolution models of Baraffe et al. (2015) to
obtain moments of inertia for our sample of stars. τCS11

is plotted in fig. 3f. Similarly to the mass-loss rate, we
have plotted TCS11 and τCS11 curves in panels (d) and
(f). When calculating the TCS11 curves, we used the
fits to our magnetic field data (equation (4)) to deter-
mine the magnetic properties required in equation (2).
Due to the low mass-loss rates estimated by this model
and the correspondingly low torques, the characteristic
spin-down time-scales are large, especially at the lowest
masses. Given that M dwarfs are known to spin down
on time-scales shorter than those shown in fig. 3f (e.g.
Douglas et al. 2017), one might interpret the large τCS11

values for M dwarfs as evidence that the CS11 model
substantially underestimates the mass-loss rates for low-
mass stars.

4.2. Rotation evolution method

Our second method is to determine the mass-loss rate
required by the F18 braking law in order to reproduce
the rotation period evolution seen in open clusters. We
will base this on the rotation period evolution model of
Matt et al. (2015, henceforth M15) which was tuned to
broadly reproduce observed rotation period distributions
in open clusters, e.g. see their fig. 2. As discussed in sec-
tion 3, many forms of magnetic activity can be parame-
terised in terms of the Rossby number but with different
scalings depending on whether the star is in the so-called
saturated or unsaturated regime. Motivated by this idea,
Matt et al. (2015) assumed that magnetic terms in their
spin-down torque can also be parameterised by Rossby
number with different scalings in the saturated and un-
saturated regimes (see their equations (4) and (5)). The

resulting torque has the form

T = 100 T0

(

Ω⋆

Ω⊙

)

for Ro < Rocrit

T = T0

(

τcz
τcz⊙

)2 (
Ω⋆

Ω⊙

)3

for Ro ≥ Rocrit.

(5)

Here, T0 is an additional mass (and radius) dependent
factor that is given by

T0 = 6.3× 1030 erg

(

r⋆
r⊙

)3.1 (
M⋆

M⊙

)0.5

. (6)

This additional mass dependence is required to explain
observations that show that the lowest mass stars take
much longer to spin down compared to their higher mass
counterparts. M15 chose their critical Rossby number to
be Rocrit = 0.2. It is worth noting that this value is larger
than the Rocrit values we obtained in our three parameter
fits in section 3. For the Sun, this model estimates a
spin-down torque of 6.3× 1030erg which is the value one
finds if one assumes the Sun is a solid body and spinning
down according to Skumanich (1972), i.e. Ω ∝ t−1/2 (see
section 4.3 of Finley & Matt 2018, for further details).
This value for the solar spin-down torque is similar to
the values used in other rotation evolution models (see
fig. 1 of Matt et al. 2015, for a comparison).
In fig. 3e, we plot the torque for our sample using equa-

tion (5). These torques are larger than those estimated
using the CS11 model (fig. 3d) with the largest disagree-
ment occurring for the lowest mass stars. In fig. 3b,
we plot the mass-loss rate required by the F18 braking
law to reproduce the torque used by M15, i.e. the mass-
loss rate at which equations (1) & (2) equals equation
(5). These mass-loss rates are much higher than those
estimated using the CS11 model. This is unsurprising
given the lower torques estimated when using the CS11
mass-loss rates. Lastly, we plot the spin-down time-scale
associated with this model, τM15, in fig. 3g. The τM15

values are generally smaller than the τCS11 values due to
the larger TCS11 values.

4.3. Modified rotation evolution method

There is a striking problem with the model presented
in section 4.2. If one calculates the solar spin-down
torque using the F18 braking law and the observed solar
mass-loss rate, one obtains a value of T = 2.5× 1029erg
which is a factor of 25 smaller than the value pre-
dicted by the rotation evolution model of Matt et al.
(2015). Conversely, if one calculates the mass-loss rate
for the Sun in the manner described in section 4.2, us-
ing the parameters from table 1, one obtains a value of
Ṁ = 1.8 × 10−12M⊙ yr−1. This is a factor of ∼ 70 big-
ger than the observed solar mass-loss rate. Additionally,
this method also estimates mass-loss rates that are much
larger than mass-loss rates inferred from Ly-α observa-
tions (see (Vidotto et al. 2016) for a sample of stars that
have both ZDI maps and mass-loss rates inferred from
Ly-α observations). Clearly, there is a discrepancy be-
tween the F18 braking law and the rotation evolution
models (also see discussion in Finley et al. 2018, 2019).
Although the origin of this discrepancy is unclear, one

possible explanation is that the MHD models used by



Do non-dipolar magnetic fields contribute to spin-down torques? 7

10−2 10−1 100

Rossby number

10−13

10−12

10−11

10−10

10−9

10−8

Ṁ
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Figure 4. : Critical mass-loss rate (equation (3)) against
Rossby number. Points are coloured coded by stellar
mass. The average solar Ṁcrit is shown with a magenta
square and the range over cycle 24 is shown by the ma-
genta bar. The lower limit of this range extends off the
plot and has a value of Ṁcrit = 5.7× 10−16M⊙ yr−1 (the
full range and variability of the magenta bar is shown by
the magenta curve in fig. 6). For each star, the angular
momentum-loss rate is dominated by the dipole compo-
nent of stellar magnetic field if its actual mass-loss rate
is below the critical mass-loss rate shown here.

F18 may under predict the torques. One solution is to
include a multiplicative correction factor in the F18 brak-
ing law. In fig. 3c, we recalculate mass-loss rates using
the method from section 4.2 but including a multiplica-
tive factor of 25 in the F18 braking law. This value is
chosen such that the solar mass-loss rate is recovered
when using the method described in section 4.2 for the
Sun. Including the multiplicative factor reduces the esti-
mated mass-loss rates by a factor of between 50 and 390,
the value of which depends on the values of 〈BZDI,d〉,
〈BZDI,q〉 & 〈BZDI,o〉 for each star. We note that if the
F18 braking law does underestimate spin-down torques
by a factor of 25, then the torques in fig. 3d should all
be larger by this amount.

5. CRITICAL MASS-LOSS RATES

Having estimated mass-loss rates in section 4, we can
now compare them to the critical mass-loss rates as de-
fined in section 2. Fig. 4 shows that the overall trend is
for the critical mass-loss rate to decrease as a function of
Rossby number. This decrease can be attributed to the
dependence of Ṁcrit on B2

⋆ (see equation (3)). Physically,
this is because stars with strong magnetic fields require a
correspondingly large mass-loss rate for the Alfvén radius
to be small enough for non-dipolar fields to contribute to
the spin-down torque. There is also a large amount of
scatter in fig. 4 that can be attributed to the scatter
in B2

⋆ , Rd and Rq. Lastly, there is a departure from
the overall trend at the lowest Rossby numbers that is
caused by the bimodal magnetic fields of the lowest mass
M-dwarfs (Donati et al. 2008; Morin et al. 2008a, 2010).
In the top row of fig. 5, we show the ratio of the mass-

loss rate to the critical mass-loss rate against Rossby
number for each of the mass-loss rate estimates outlined
in section 4. The dotted lines indicate Ṁ = Ṁcrit. For
the CS11 model, we find that the majority of the stars
have Ṁ < Ṁcrit and, consequently, only the dipole com-
ponent of the field is required to properly estimate the
torque using the F18 braking law for most stars using
this method. The few stars that do have Ṁ > Ṁcrit are
the highest mass stars since the mass-loss rates estimated
by CS11 model has a strong dependence on stellar mass.
It should be noted that a significant number of the points
in the Ṁ > Ṁcrit regime are for one star, τ Boo. This
is the star that we have the most ZDI maps for and is
also the highest mass star in our sample. In contrast to
the CS11 model, a majority of the stars have Ṁ > Ṁcrit

when using the rotation evolution method (M15) to es-
timate mass-loss rates. However, as discussed in section
4.3, these mass-loss rates are likely to be too high. Us-
ing the modified rotation evolution method to estimate
mass-loss rates results in a significant reduction in the
number of stars that have Ṁ > Ṁcrit.
Fig. 5 demonstrates that there may be regimes where

the mass-loss rates of low-mass stars are sufficiently high
that non-dipolar field modes need to be accounted for
to properly calculate their spin-down torques. It will
be interesting to determine how different the spin-down
torques for these stars are if we only accounted for their
dipole fields. In the bottom row of fig. 5, we plot the
ratio of the torque calculated using the full F18 braking
law, TF18, to the torque calculated using just the dipole
component, TF18,dip, i.e. equation 2a. This ratio is cal-
culated using the mass-loss rate estimates from section
4, i.e. the mass-loss rates shown in figs. 3a, 3b & 3c.
By definition, this ratio is equal to 1 when Ṁ < Ṁcrit.
However, when Ṁ > Ṁcrit, TF18 is bigger than TF18,dip.
This can be seen in fig. 1 where the dipole only line
(red dot dashed line) drops below the upper envelope of

the three curves for Ṁ > Ṁcrit. Physically, the reason
that TF18 > TF18,dip is because the Alfvén radii is suffi-
ciently small, at high mass-loss rates, for the non-dipolar
fields to contribute to the spin-down torque. However,
since TF18,dip does not account for the flux in non-dipolar
modes, the resulting torque is smaller. TF18/TF18,dip can
reach values of around 3.7, 4.4 and 2.1 respectively for the
CS11, M15 and modified M15 methods. However, this is
skewed by τ Boo. If we put τ Boo aside, TF18/TF18,dip

never exceeds 1.6 for the CS11 and modified M15 meth-
ods.
It is interesting to note that, generally, the non-dipolar

field modes only become important at large Rossby num-
bers. For the CS11 method, this is mainly an effect of the
stellar mass. As already noted, the stars with the highest
mass-loss rates, i.e. those most likely to have Ṁ > Ṁcrit,
are the highest mass stars. In our sample, these happen
to be the ones with the largest Rossby numbers. For the
rotation evolution and modified rotation evolution mod-
els, the explanation is slightly different. We have already
noted that the critical mass-loss rate has a dependence
on B2

⋆ . For these models, both Ṁ (for a given mass) and
B2

⋆ decrease as a function of Rossby number in the unsat-

urated regime. However, B2
⋆ , and hence Ṁcrit, decreases
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Figure 5. : Top: the ratio of mass-loss rate to critical mass-loss rate against Rossby number. Points above the dotted
Ṁ = Ṁcrit line have a non-dipolar field contribution to spin-down torque. Bottom: The ratio of the torque calculated
using the F18 braking law to the torque calculated using just the dipole component of the F18 braking law against
Rossby number. Both quantities are calculated using the CS11 (left), rotation evolution (middle) and modified rotation
evolution (right) methods. Points are colour coded by stellar mass.

more steeply than Ṁ . As such, broadly speaking, Ṁ
becomes larger than Ṁcrit as Rossby number increases.
This also predicts that Alfvén radii decrease as stars spin
down.

6. UNCERTAINTIES

In this section, we discuss the uncertainties, caveats
and open questions relating to the methods and mod-
els we have used in this paper as well as where future
progress may impact our conclusions.

6.1. Zeeman-Doppler imaging

Modern ZDI codes express magnetic fields in terms of
a spherical harmonic decomposition (e.g. see appendix B
of Folsom et al. (2018b)). It is well known that ZDI does
not recover the magnetic field associated with small scale
structures, e.g. starspots, due to flux cancellation ef-
fects (Reiners & Basri 2009; Morin et al. 2010; See et al.
2019). Typically, ZDI maps have a maximum spheri-
cal harmonic degree of ℓmax = 5 to 15. Lehmann et al.
(2018) recently showed that even the field strengths as-
sociated with low order ℓ modes, including the dipole,
quadrupole and octupole modes, can be systematically
underestimated by factors of a few by ZDI. The pos-
sibility of underestimated field strengths has two main
consequences for our results.
The first consequence is that the spin-down torque will

be underestimated due to the dependence of the F18
braking law on magnetic field strength. Underestimated

field strengths may partially alleviate a problem noted
by Finley et al. (2019). Similarly to this work, these au-
thors estimated the spin-down torques for a number of
stars with ZDI maps using the F18 braking law. How-
ever, they used mass-loss rates inferred from Ly-α ob-
servations (see e.g. Wood et al. (2014)). The torques
they estimated using the F18 braking law were smaller
than the torques estimated by the M15 rotation evolu-
tion model by a factor of ∼ 3 − 30. Closer agreement
between these two torque estimates could be achieved if
the dipolar, quadrupolar and octupolar field strengths
are larger than those inferred by ZDI. Their results are
also consistent with our results from section 4.2. The
mass-loss rates we estimate using the rotation evolution
method are much larger than those inferred from Ly-
α. As with the results of Finley et al. (2019), the dis-
crepancy between rotation evolution based estimates of
stellar torques and braking law based estimates can be
partially alleviated by larger field strengths. However, it
is unlikely that the discrepancy can be fully accounted
for by underestimated field strengths from ZDI.
The second consequence relates to the fact that Ṁcrit ∝

B2
⋆ . If the true field strengths are a factor of several

higher than that recovered by ZDI, the critical mass-loss
rate would increase by roughly an order of magnitude.
Consequently, even fewer stars than suggested in section
5 will have Ṁ > Ṁcrit.

6.2. Mass-loss rate estimates
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Figure 6. : Top: critical mass-loss rate for the Sun calculated using magnetic data from Vidotto et al. (2018, magenta
line) and Finley et al. (2018, blue line). The solar mass-loss rate estimated by Finley & Matt (2018) is also shown
(black line). Regions where the mass-loss rate is greater than the critical mass-loss rate are shaded in gray. Bottom:
Sunspot number.

Estimating mass-loss rates is notoriously difficult be-
cause the mechanisms that drive stellar winds are still
poorly understood. Although the CS11 model is one
of the more sophisticated models currently available for
estimating mass-loss rates, it still has limitations. It
is based on many previous observations and theoreti-
cal works and uncertainty in those works will propagate
through into the final mass-loss rate estimate. For ex-
ample, one key part of the model that remains relatively
unconstrained is the magnetic characteristics of low-mass
stars. Parameters such as the amount of energy flux in
Alfvén waves, the fraction of the stellar surface covered
in open flux tubes and the rate at which these flux tubes
expand above the stellar surface all play an important
role in determining the overall mass-loss rate but remain
uncertain. Other details such as the terminal wind speed
or the location of the transition region are also hard to
determine reliably and will contribute to the overall un-
certainty of this model. We refer the interested reader
to section 6 of CS11 for a much more comprehensive dis-
cussion of these uncertainties.
Our second method of estimating mass-loss rates re-

lies on rotation period evolution models. Although mod-
els are now able to capture the overall rotation evolu-
tion behaviour of low-mass stars, none can yet fit all
the available data. Additionally, the rotation evolution
models are also not well constrained in areas of param-
eter space where rotation period data is sparse, partic-
ularly for the lowest mass and the oldest stars. In the
model of Matt et al. (2015), the rotation periods of the
lowest mass stars are not reproduced well which can be
seen when comparing the model to observations from the
Hyades (see fig. 14 in Douglas et al. 2016) and Praesepe
(see fig. 11 in Douglas et al. 2017). Outside of the low-
est mass M dwarfs, the disagreement between the M15
model and observed rotation periods can be up to ∼50%
in some mass and age ranges. Our mass-loss rate esti-

mates that are based on the rotation evolution models
(section 4.3) will therefore be correspondingly uncertain.
However, since the model reproduces the broad features
seen in rotation period distributions with a relatively
simple torque prescription, it is ideal for the purposes
of this work.

6.3. Stellar variability

In this work, we have estimated mass-loss and an-
gular momentum-loss rates at single instances in time
(or at a few instances for stars with multiple ZDI
maps). However, stellar magnetic activity is known
to be time variable. Therefore, their mass-loss and
angular momentum-loss rates are also time variable.
For example, the angular momentum-loss rate of the
Sun is expected to vary over a range of time-scales
(Pinto et al. 2011; Réville & Brun 2017; Finley et al.
2018; Perri et al. 2018). As noted in section 2, the Sun
has a mass-loss rate that is smaller than its critical mass-
loss rate. However, that was calculated using averages of
the solar dipolar, quadrupolar and octupolar fields over
∼8 years using the data from Vidotto et al. (2018). In
the top panel of fig. 6, we show the critical mass-loss
rate as a function of time for the Sun. This is done using
data from Vidotto et al. (2018) and Finley et al. (2018)
shown in magenta and blue respectively4. From 2010 to
2018, where data is available from both studies, the two
critical mass-loss rate estimates are broadly comparable.
We also plot the solar mass-loss rate determined from in
situ spacecraft measurements (Finley et al. 2018) with a

4 The solar magnetograms of Vidotto et al. (2018) consist of the
radial, meridional and azimuthal components while Finley et al.
(2018) only consider the radial component in their work. So far in
this work, we have used the magnetograms of Vidotto et al. (2018)
because they provide a better comparison to ZDI maps that also
contain all 3 vector components. However, the dataset studied by
Finley et al. (2018) covers a longer time period and so we have
included both in fig. 6.
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black line. Times when the mass-loss rate exceeds the
critical mass-loss rate (estimated from the Finley et al.
(2018) data) are shaded in gray. For reference, the bot-
tom panel shows sunspot number indicating periods of
maximum activity around 2001 and 2013. We see that
the solar mass-loss rate does not exceed the critical mass-
loss rate for the majority of the last two solar cycles
suggesting that the dipole magnetic field dominates the
solar torque most of the time. However, the non-dipolar
components become important around solar maximum.
This is due to the growing quadrupolar field and shrink-
ing dipolar field at solar maximum (DeRosa et al. 2012).
The magnetic fields of stars that have been mapped

with ZDI over multiple epochs are also known to evolve
over time (e.g. Jeffers et al. 2014; Boro Saikia et al. 2016;
Lavail et al. 2018; Boro Saikia et al. 2018). Correspond-
ingly, their estimated torques also change as a function
of time. As with the Sun, this means other stars can
spend some times with Ṁ > Ṁcrit and other times with
Ṁ < Ṁcrit. In the context of long-term rotation pe-
riod evolution, models are only sensitive to the spin-down
torque averaged over time-scales of Myr or more so com-
parisons with instantaneous torque estimates will always
be uncertain.

6.4. Braking law

While the F18 braking law allows for a rapid assess-
ment of the spin-down torque of a star, there are still ar-
eas in which it can be improved. For instance, the MHD
simulations on which this braking law is based assume
a fixed coronal temperature and use the polytropic as-
sumption which can have a small impact on the resulting
wind solutions (Pantolmos & Matt 2017). Additionally,
F18 only investigated axisymmetric field configurations
while we have also included non-axisymmetric field com-
ponents in this work. By using the F18 braking law, we
have effectively moved power from the non-axisymmetric
modes to the axisymmetric ones. Although the effect
of including non-axisymmetric modes into braking law
studies like that of F18 is not entirely understood, we do
not expect that it would drastically change our results
(also see section 5.1 of Finley et al. 2018).
Lastly, using Ulysses data, Finley et al. (2018) showed

that the simulations used to construct the F18 braking
law appear to underestimate the open flux for a given
input solar magnetogram. This problem is not unique
to the F18 simulations (e.g. Linker et al. 2017). Corre-
spondingly, the F18 spin-down torque estimates are also
probably underestimated by a factor of a few just due to
the open flux problem. The reason for this is not clear
but any potential solution may increase the contribution
of non-dipolar modes to the spin-down torque. In order
to increase the open flux, the height of the last closed
field loop must decrease (this radius is variously called
the opening radius or source surface radius in the litera-
ture depending on the context). Since non-dipolar fields
decay more rapidly than dipolar fields as a function of ra-
dius, the contribution of non-dipolar modes to the open
flux is increased by opening up magnetic flux closer to
the stellar surface. Unfortunately, it is currently difficult
to quantify the magnitude of this effect but it should be
kept in mind.

7. DISCUSSION AND CONCLUSION

Using a sample of stars that have been mapped
with Zeeman-Doppler imaging and the braking law of
Finley & Matt (2018), we have investigated whether
non-dipolar magnetic fields contribute significantly to
stellar spin-down. In order to use this braking law, mass-
loss rates have to be estimated for each of the stars. In
general, large mass-loss rates are required for non-dipolar
fields to contribute to stellar spin-down. We quantify this
in terms of a critical mass-loss rate, Ṁcrit, that depends
on the field strength and geometry of the star. If a star
has a mass-loss rate smaller than Ṁcrit, only the dipolar
field mode is required to calculate the spin-down torque.
However, higher order field modes need to be accounted
for when stars have mass-loss rates larger than Ṁcrit. We
used two methods to estimate mass-loss rate.
The first method uses the model of Cranmer & Saar

(2011). Using these mass-loss rates, we find that the
non-dipolar magnetic field modes do not contribute to
spin-down for the majority of the stars in our sample.
The stars that do have mass-loss rates larger than Ṁcrit

are the highest mass stars in our sample. This is due to
the strong dependence of mass-loss rate on stellar mass
in the Cranmer & Saar (2011) model.
The second method estimates mass-loss rates by deter-

mining the mass-loss rates required by the Finley & Matt
(2018) braking law to reproduce the spin-down torques
from the rotation evolution model of Matt et al. (2015).
This method produces much higher mass-loss rates than
the model of Cranmer & Saar (2011). Consequently, a
majority of the sample have mass-loss rates larger than
Ṁcrit. However, this method overestimates the solar
mass-loss rate. This is likely because the Finley & Matt
(2018) braking law is under-predicting the spin-down
torque. To reproduce the observed solar mass-loss rate
using this method, a multiplicative factor of 25 needs
to be included in the Finley & Matt (2018) braking law.
Once this is included, far fewer stars have mass-loss rates
that exceed Ṁcrit. In this model, the stars where high
order field modes need to be accounted for are those at
large Rossby number.
Our core conclusion is therefore that non-dipolar mag-

netic fields do not contribute significantly to stellar spin-
down for the majority of low-mass stars. However, there
are stars in some parameter regimes, whose mass-loss
rates are estimated to be particularly large, for which
this may not be true. This result is based on the mass-
loss rate estimates of two models although one could
in principle conduct this sort of study using any mass-
loss rate model. Indeed, different methods of estimating
mass-loss rates may predict different parameter regimes
in which non-dipolar fields need to be accounted for. It
is also worth noting that this conclusion assumes that
the mass-loss rate of a star is known. In reality, small-
scale fields are important for heating and determining the
mass-loss rate (e.g. Cranmer & Saar 2011; Suzuki et al.
2013). However, for a given mass-loss rate, only the
dipole field is important for stellar spin-down for most
stars.
Lastly, it is worth discussing our results in the con-

text of rotation evolution models. In recent years, higher
magnetic field complexity has been invoked when a re-
duced torque is required by rotation evolution models
to fit the observed period distributions in open clusters.
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The justification for this is that MHD simulations have
shown that, all else being equal, stars with higher or-
der spherical harmonic field modes have vastly reduced
torques (Réville et al. 2015; Garraffo et al. 2016). For
example, Garraffo et al. (2018) cite the higher field com-
plexity of rapid rotators as evidence that they should
also have reduced spin-down torques. However, the
MHD simulations for computing torques conducted be-
fore those of Finley & Matt (2017, 2018) have gener-
ally only considered a single spherical harmonic order in
each simulation. In reality, the magnetic fields of stars
are a superposition of many spherical harmonic modes.
While it is true that some stars within our sample have
more magnetic energy at higher order spherical harmonic
modes, i.e. fields associated with smaller spatial scales,
all of the stars contain a non-negligible dipole component
(see fig 2a). This is the reason why non-dipolar modes
do not significantly contribute to stellar spin down for
the majority of our stars.
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Table 3: Numerical values used and derived in this study for our sample of stars. Listed are the dipole, quadrupole & octupole field strengths, mass-loss
rates, spin-down torque, spin-down time-scale and the paper in which the ZDI map of each star was originally published. For quantities with multiple
estimates, the method used is noted in brackets.

Star ID 〈Bd〉 〈Bq〉 〈Bo〉 Ṁ (CS11) Ṁ (M15) Ṁ (mod M15) Ṁcrit T (CS11) T (M15) τ (CS11) τ (M15) Reference
(G) (G) (G) (M⊙ yr−1) (M⊙ yr−1) (M⊙ yr−1) (M⊙ yr−1) (erg) (erg) (Gyr) (Gyr)

Solar-like stars

HD 3651 2.9 1.93 0.701 4.72E-15 1.08E-12 3.32E-15 6.34E-13 1.32E+29 2.78E+30 224 10.7 Petit et al. (in prep)
HD 9986 0.539 0.291 0.114 5.63E-14 4.87E-12 9.03E-14 3.85E-14 3.60E+29 1.29E+31 201 5.6 Petit et al. (in prep)
HD 10476 1.62 1.39 0.901 4.02E-14 1.59E-11 2.79E-13 1.26E-13 5.47E+29 4.61E+31 130 1.54 Petit et al. (in prep)
κ Cet 11.4 7.61 4.44 3.36E-13 1.28E-11 3.49E-14 1.08E-11 2.67E+31 1.99E+32 6.81 0.915 do Nascimento et al. (2016)
ǫ Eri (2007) 11 2.93 1.47 5.05E-14 2.86E-11 9.93E-14 1.28E-11 3.97E+30 1.45E+32 30.3 0.827 Jeffers et al. (2014)
ǫ Eri (2008) 7.48 4.85 2.82 5.05E-14 2.87E-11 1.90E-13 2.84E-12 2.80E+30 1.45E+32 43 0.827 Jeffers et al. (2014)
ǫ Eri (2010) 6.47 6.36 4.65 5.05E-14 2.71E-11 2.42E-13 1.26E-12 2.45E+30 1.45E+32 49.1 0.827 Jeffers et al. (2014)
ǫ Eri (2011) 6.79 3.24 2.68 5.05E-14 3.09E-11 2.23E-13 3.20E-12 2.56E+30 1.45E+32 46.9 0.827 Jeffers et al. (2014)
ǫ Eri (2012) 12.5 5.5 3.85 5.05E-14 2.40E-11 7.94E-14 1.17E-11 4.49E+30 1.45E+32 26.8 0.827 Jeffers et al. (2014)
ǫ Eri (2013) 15.6 4.03 4.06 5.05E-14 2.14E-11 5.48E-14 2.64E-11 5.48E+30 1.45E+32 21.9 0.827 Jeffers et al. (2014)
HD 39587 5.37 5.76 6.05 1.93E-12 6.32E-11 7.93E-13 1.69E-12 9.41E+31 1.43E+33 3.72 0.244 Petit et al. (in prep)
HD 56124 1.94 0.708 0.235 9.12E-14 4.50E-12 2.63E-14 6.52E-13 1.64E+30 2.12E+31 57.4 4.44 Petit et al. (in prep)
HD 72905 6.69 5.57 5.74 1.60E-12 4.06E-11 3.03E-13 3.33E-12 8.45E+31 8.69E+32 3.8 0.369 Petit et al. (in prep)
HD 73350 4.94 4.3 4.63 2.13E-13 7.36E-12 3.29E-14 1.60E-12 8.11E+30 7.48E+31 17.3 1.87 Petit et al. (2008)
HD 75332 5.14 1.91 1.86 1.31E-12 1.01E-11 2.96E-14 6.91E-12 1.16E+32 3.79E+32 4 1.23 Petit et al. (in prep)
HD 76151 2.71 1.32 0.608 6.42E-14 3.74E-12 1.57E-14 9.63E-13 1.56E+30 1.84E+31 55.3 4.68 Petit et al. (2008)
HD 78366 10.4 8.25 4.03 2.97E-13 2.14E-12 5.49E-15 9.40E-12 2.61E+31 7.61E+31 6.69 2.29 Petit et al. (in prep)
HD 101501 7.61 6.48 2.57 6.09E-14 4.25E-12 1.17E-14 3.48E-12 3.42E+30 3.55E+31 20.2 1.94 Petit et al. (in prep)
ξ Boo A (2007) 21.9 10.1 7.99 2.76E-13 3.95E-11 1.01E-13 4.53E-11 4.42E+31 6.52E+32 5.02 0.341 Morgenthaler et al. (2012)
ξ Boo A (2008) 12.1 7.86 7.88 2.76E-13 5.33E-11 2.75E-13 9.87E-12 2.58E+31 6.52E+32 8.63 0.341 Morgenthaler et al. (2012)
ξ Boo A (2009) 14.6 10.9 10.4 2.76E-13 4.79E-11 2.00E-13 1.23E-11 3.06E+31 6.52E+32 7.26 0.341 Morgenthaler et al. (2012)
ξ Boo A (Jan 2010) 9.04 5.43 4.73 2.76E-13 6.23E-11 4.51E-13 5.96E-12 1.97E+31 6.52E+32 11.3 0.341 Morgenthaler et al. (2012)
ξ Boo A (Jun 2010) 15.2 8.01 5.64 2.76E-13 5.17E-11 1.87E-13 1.93E-11 3.17E+31 6.52E+32 7.01 0.341 Morgenthaler et al. (2012)
ξ Boo A (Jul 2010) 11.2 6.34 5.04 2.76E-13 5.83E-11 3.16E-13 9.60E-12 2.39E+31 6.52E+32 9.32 0.341 Morgenthaler et al. (2012)
ξ Boo A (2011) 14.4 6.97 3.59 2.76E-13 5.48E-11 2.04E-13 1.89E-11 3.02E+31 6.52E+32 7.35 0.341 Morgenthaler et al. (2012)
ξ Boo B 9.34 8.15 6.34 2.70E-15 4.20E-11 4.35E-13 1.63E-12 2.89E+29 1.15E+32 284 0.714 Petit et al. (in prep)
18 Sco 0.776 0.92 0.407 6.17E-14 3.98E-12 6.22E-14 2.99E-14 5.73E+29 1.46E+31 126 4.92 Petit et al. (2008)
HD 166435 8.64 8.75 6.04 2.25E-12 1.17E-10 1.20E-12 4.06E-12 1.80E+32 3.24E+33 2.79 0.155 Petit et al. (in prep)
HD 175726 4.21 4.1 3.14 2.99E-12 7.72E-11 1.23E-12 1.20E-12 1.39E+32 1.85E+33 3.25 0.245 Petit et al. (in prep)
HD 190771 6.24 3.61 3.92 4.96E-13 1.84E-11 8.62E-14 4.38E-12 2.42E+31 2.38E+32 8.39 0.854 Petit et al. (2008)
61 Cyg A (2007) 9.77 4.76 2.62 8.03E-16 1.18E-12 3.03E-15 4.75E-12 6.94E+28 3.62E+30 319 6.11 Boro Saikia et al. (2016)
61 Cyg A (2008) 2.16 1.8 0.85 8.03E-16 3.73E-12 3.88E-14 1.29E-13 1.74E+28 3.62E+30 1.27E+03 6.11 Boro Saikia et al. (2016)
61 Cyg A (2010) 2.38 2.59 3.59 8.03E-16 2.93E-12 3.31E-14 1.08E-13 1.90E+28 3.62E+30 1.16E+03 6.11 Boro Saikia et al. (2016)
61 Cyg A (2013) 8.33 3.79 1.73 8.03E-16 1.55E-12 3.97E-15 3.68E-12 6.00E+28 3.62E+30 369 6.11 Boro Saikia et al. (2016)
61 Cyg A (2014) 6.91 3.33 1.56 8.03E-16 2.12E-12 5.44E-15 2.40E-12 5.05E+28 3.62E+30 438 6.11 Boro Saikia et al. (2016)
61 Cyg A (Aug 2015) 10.4 4.05 1.83 8.03E-16 1.06E-12 2.71E-15 6.58E-12 7.37E+28 3.62E+30 300 6.11 Boro Saikia et al. (2016)
61 Cyg A (Oct 2015) 6.88 2.71 1.82 8.03E-16 2.14E-12 5.48E-15 2.83E-12 5.03E+28 3.62E+30 439 6.11 Boro Saikia et al. (2018)
61 Cyg A (Dec 2015) 5.84 2.66 1.32 8.03E-16 2.51E-12 7.22E-15 1.81E-12 4.34E+28 3.62E+30 510 6.11 Boro Saikia et al. (2018)
61 Cyg A (2016) 6.23 3.67 3.44 8.03E-16 2.24E-12 6.47E-15 1.61E-12 4.60E+28 3.62E+30 481 6.11 Boro Saikia et al. (2018)
61 Cyg A (Jul 2017) 6.62 1.93 0.672 8.03E-16 2.28E-12 5.84E-15 3.25E-12 4.86E+28 3.62E+30 455 6.11 Boro Saikia et al. (2018)
61 Cyg A (Dec 2017) 3.84 1.71 0.928 8.03E-16 3.29E-12 1.47E-14 7.97E-13 2.95E+28 3.62E+30 749 6.11 Boro Saikia et al. (2018)
61 Cyg A (2018) 8.74 3.61 2.32 8.03E-16 1.43E-12 3.66E-15 4.40E-12 6.27E+28 3.62E+30 353 6.11 Boro Saikia et al. (2018)
HN Peg (2007) 9.62 6.61 4.01 2.01E-12 4.98E-11 2.36E-13 9.12E-12 1.62E+32 1.29E+33 2.55 0.321 Boro Saikia et al. (2015)
HN Peg (2008) 6.27 4.09 4.35 2.01E-12 5.70E-11 4.86E-13 4.11E-12 1.09E+32 1.29E+33 3.78 0.321 Boro Saikia et al. (2015)
HN Peg (2009) 6.83 3.86 4.2 2.01E-12 5.67E-11 4.22E-13 5.67E-12 1.18E+32 1.29E+33 3.49 0.321 Boro Saikia et al. (2015)
HN Peg (2010) 9.15 6.17 5.82 2.01E-12 4.89E-11 2.57E-13 8.43E-12 1.55E+32 1.29E+33 2.67 0.321 Boro Saikia et al. (2015)
HN Peg (2011) 7.72 6.8 5.94 2.01E-12 4.96E-11 3.43E-13 4.32E-12 1.32E+32 1.29E+33 3.12 0.321 Boro Saikia et al. (2015)
HN Peg (2013) 13.7 8.04 4.56 2.01E-12 4.08E-11 1.31E-13 2.18E-11 2.23E+32 1.29E+33 1.85 0.321 Boro Saikia et al. (2015)
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Table 3: continued

Star ID 〈Bd〉 〈Bq〉 〈Bo〉 Ṁ (CS11) Ṁ (M15) Ṁ (mod M15) Ṁcrit T (CS11) T (M15) τ (CS11) τ (M15) Reference
(G) (G) (G) (M⊙ yr−1) (M⊙ yr−1) (M⊙ yr−1) (M⊙ yr−1) (erg) (erg) (Gyr) (Gyr)

HD 219134 1.33 1.93 0.479 1.46E-15 2.83E-12 3.73E-14 3.46E-14 2.45E+28 3.65E+30 1070 7.2 Folsom et al. (2018a)
AV 1693 13.5 17.1 7.67 1.65E-13 1.49E-11 5.66E-14 4.89E-12 1.47E+31 2.09E+32 10.1 0.708 Folsom et al. (2018b)
AV 1826 9.5 10.2 7.37 8.85E-14 2.89E-11 1.67E-13 2.94E-12 6.67E+30 2.39E+32 19.5 0.544 Folsom et al. (2018b)
AV 2177 6.23 3.52 2.2 1.12E-13 3.40E-11 2.71E-13 2.54E-12 4.89E+30 2.00E+32 30.6 0.746 Folsom et al. (2018b)
AV 523 9.32 7.36 6.76 2.23E-14 2.83E-11 1.72E-13 3.39E-12 1.90E+30 1.46E+32 51.3 0.668 Folsom et al. (2018b)
EP Eri 14.9 9.55 1.61 7.68E-14 6.30E-11 3.01E-13 1.06E-11 9.23E+30 4.91E+32 19.4 0.365 Folsom et al. (2018b)
HH Leo 15.5 8.78 6.14 3.27E-13 5.74E-11 2.19E-13 1.84E-11 3.80E+31 7.77E+32 6.56 0.321 Folsom et al. (2018b)
Mel25-151 12 7.8 4.77 5.52E-14 2.99E-11 1.15E-13 9.37E-12 6.18E+30 2.34E+32 18.8 0.498 Folsom et al. (2018b)
Mel25-179 15.5 7.89 5.6 8.56E-14 2.77E-11 7.76E-14 2.15E-11 1.15E+31 2.76E+32 10.9 0.453 Folsom et al. (2018b)
Mel25-21 10.5 4.38 2.83 1.70E-13 2.88E-11 9.50E-14 1.41E-11 1.48E+31 2.74E+32 9.31 0.503 Folsom et al. (2018b)
Mel25-43 5.59 3.05 1.35 7.59E-14 3.79E-11 3.31E-13 2.26E-12 3.43E+30 1.93E+32 35.7 0.634 Folsom et al. (2018b)
Mel25-5 6.71 3.04 2.14 8.32E-14 4.45E-11 2.89E-13 5.51E-12 6.22E+30 3.10E+32 18.5 0.371 Folsom et al. (2018b)
TYC 1987-509-1 11.4 10.2 5.51 1.53E-13 1.72E-11 6.45E-14 5.83E-12 1.16E+31 1.85E+32 12.2 0.769 Folsom et al. (2018b)
V447 Lac 9.95 10.3 7.8 3.06E-13 1.38E-10 1.71E-12 3.39E-12 2.95E+31 1.90E+33 10.3 0.159 Folsom et al. (2016)
DX Leo 26.1 11.7 6.01 3.11E-13 5.14E-11 1.32E-13 6.10E-11 5.93E+31 9.45E+32 4.21 0.264 Folsom et al. (2016)
V439 And 9.51 4.61 2.46 4.35E-13 7.31E-11 4.29E-13 1.01E-11 3.59E+31 9.04E+32 6.59 0.262 Folsom et al. (2016)
Young Suns

AB Dor (2001) 68.1 103 94.8 7.81E-13 2.73E-11 6.99E-14 1.35E-10 4.23E+33 2.90E+34 0.621 0.0905 Donati et al. (2003)
AB Dor (2002) 142 55.4 54.1 7.81E-13 7.87E-12 2.02E-14 3.11E-09 8.30E+33 2.90E+34 0.317 0.0905 Donati et al. (2003)
BD-16351 34 23.6 13.8 4.42E-13 8.71E-11 2.28E-13 8.20E-11 1.99E+32 3.52E+33 2.1 0.119 Folsom et al. (2016)
HII 296 65.4 32.5 27 3.23E-13 2.93E-11 7.52E-14 4.93E-10 4.47E+32 5.14E+33 1.15 0.0999 Folsom et al. (2016)
HII 739 7.44 5.89 6.99 7.37E-12 2.46E-10 4.07E-12 4.84E-12 8.74E+32 1.48E+34 1.48 0.0872 Folsom et al. (2016)
HIP 12545 73.9 40.8 32.7 8.07E-14 2.53E-11 6.49E-14 7.89E-10 1.96E+32 4.41E+33 1.56 0.0693 Folsom et al. (2016)
HIP 76768 68.2 18.6 20.4 5.01E-14 2.34E-11 6.01E-14 7.21E-10 9.24E+31 2.59E+33 3.17 0.113 Folsom et al. (2016)
Lo Peg 81.3 43.1 37.3 4.43E-14 1.63E-11 4.19E-14 3.34E-10 4.07E+32 1.00E+34 5.6 0.228 Folsom et al. (2016)
PELS 031 13.4 11 11.1 4.99E-13 1.67E-10 1.16E-12 1.60E-11 2.01E+32 8.03E+33 2.94 0.0734 Folsom et al. (2016)
PW And 102 44.5 27 1.79E-13 1.30E-11 3.33E-14 8.97E-10 4.21E+32 4.29E+33 1.63 0.16 Folsom et al. (2016)
TYC 0486-4943-1 14.9 12.4 10.5 4.15E-14 9.83E-11 7.33E-13 7.55E-12 1.08E+31 1.29E+33 23.9 0.198 Folsom et al. (2016)
TYC 5164-567-1 51.6 20.4 18.1 3.15E-13 4.39E-11 1.13E-13 3.36E-10 1.72E+32 2.50E+33 1.66 0.114 Folsom et al. (2016)
TYC 6349-0200-1 48.6 17 13.8 4.64E-14 4.47E-11 1.15E-13 4.06E-10 1.02E+32 4.22E+33 3.49 0.0843 Folsom et al. (2016)
TYC 6878-0195-1 43.5 16.7 12 3.68E-13 8.03E-11 2.06E-13 6.32E-10 4.81E+32 8.92E+33 0.766 0.0414 Folsom et al. (2016)
HD 6569 16.7 5.12 3.43 1.12E-13 5.23E-11 1.65E-13 2.93E-11 1.41E+31 4.42E+32 12 0.385 Folsom et al. (2018b)
HIP 10272 11 3.94 1.78 2.16E-13 7.69E-11 4.31E-13 1.26E-11 1.86E+31 6.86E+32 11.7 0.319 Folsom et al. (2018b)
BD-072388 84.5 41.2 38.4 2.48E-13 1.78E-11 4.57E-14 5.58E-10 2.28E+33 2.32E+34 1.63 0.16 Folsom et al. (2018b)
HD 141943 (2007) 29.4 23.8 29.3 2.54E-11 1.77E-10 4.55E-13 1.89E-10 1.39E+34 3.97E+34 8.66E-02 0.0302 Marsden et al. (2011)
HD 141943 (2009) 19.5 16.4 9.5 2.54E-11 2.40E-10 9.09E-13 7.96E-11 9.52E+33 3.97E+34 0.126 0.0302 Marsden et al. (2011)
HD 141943 (2010) 14.9 17.4 28.1 2.54E-11 2.35E-10 1.43E-12 2.91E-11 7.43E+33 3.97E+34 0.161 0.0302 Marsden et al. (2011)
HD 35296 (2007) 6.69 3.66 4.78 3.56E-12 2.70E-11 1.31E-13 6.61E-12 2.49E+32 1.05E+33 2.05 0.484 Waite et al. (2015)
HD 35296 (2008) 3 4.76 4.6 3.56E-12 2.94E-11 4.48E-13 3.10E-13 1.90E+32 1.05E+33 2.69 0.484 Waite et al. (2015)
HD 29615 60.6 26.1 28.6 3.77E-12 3.56E-11 9.13E-14 5.63E-10 2.19E+33 7.38E+33 0.288 0.0854 Waite et al. (2015)
EK Dra (2006) 25.9 18.6 16.6 1.40E-12 1.14E-10 3.85E-13 5.26E-11 4.09E+32 5.15E+33 1.3 0.104 Waite et al. (2017)
EK Dra (Jan 2007) 33.8 19.8 13.5 1.40E-12 9.59E-11 2.46E-13 1.12E-10 5.21E+32 5.15E+33 1.02 0.104 Waite et al. (2017)
EK Dra (Feb 2007) 14.9 12 13.6 1.40E-12 1.45E-10 9.88E-13 1.49E-11 2.45E+32 5.15E+33 2.17 0.104 Waite et al. (2017)
EK Dra (2008) 21.5 10.7 12.7 1.40E-12 1.39E-10 5.28E-13 5.36E-11 3.44E+32 5.15E+33 1.55 0.104 Waite et al. (2017)
EK Dra (2012) 13.3 30.7 23.4 1.40E-12 1.15E-10 1.19E-12 2.19E-12 2.22E+32 5.15E+33 2.4 0.104 Waite et al. (2017)
Hot Jupiter Hosts

τ Boo (Jan 2008) 0.889 0.794 0.873 7.66E-12 5.71E-11 1.14E-12 1.19E-13 4.54E+32 2.39E+33 2.17 0.413 Fares et al. (2009)
τ Boo (Jun 08) 0.868 0.778 0.772 7.66E-12 5.84E-11 1.17E-12 1.13E-13 4.45E+32 2.39E+33 2.21 0.413 Fares et al. (2009)
τ Boo (Jul 2008) 0.725 0.784 0.696 7.66E-12 6.07E-11 1.21E-12 6.06E-14 4.31E+32 2.39E+33 2.28 0.413 Fares et al. (2009)
τ Boo (2009) 1.23 1 0.831 7.66E-12 5.29E-11 1.03E-12 2.58E-13 4.84E+32 2.39E+33 2.03 0.413 Fares et al. (2013)
τ Boo (2010) 1.35 1.19 1.04 7.66E-12 4.95E-11 9.36E-13 2.80E-13 5.11E+32 2.39E+33 1.93 0.413 Fares et al. (2013)
τ Boo (Jan 2011) 1.63 0.745 0.899 7.66E-12 5.14E-11 9.86E-13 8.37E-13 4.95E+32 2.39E+33 1.99 0.413 Fares et al. (2013)
τ Boo (May 2011) 0.742 1.23 1.25 7.66E-12 5.18E-11 1.03E-12 3.18E-14 4.92E+32 2.39E+33 2 0.413 Mengel et al. (2016)
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Table 3: continued

Star ID 〈Bd〉 〈Bq〉 〈Bo〉 Ṁ (CS11) Ṁ (M15) Ṁ (mod M15) Ṁcrit T (CS11) T (M15) τ (CS11) τ (M15) Reference
(G) (G) (G) (M⊙ yr−1) (M⊙ yr−1) (M⊙ yr−1) (M⊙ yr−1) (erg) (erg) (Gyr) (Gyr)

τ Boo (May 2013) 1.32 1.26 1.08 7.66E-12 4.91E-11 9.28E-13 2.41E-13 5.14E+32 2.39E+33 1.91 0.413 Mengel et al. (2016)
τ Boo (Dec 2013) 1.92 1.74 0.925 7.66E-12 4.46E-11 7.18E-13 5.49E-13 5.56E+32 2.39E+33 1.77 0.413 Mengel et al. (2016)
τ Boo (2014) 1.05 0.893 0.965 7.66E-12 5.41E-11 1.08E-12 1.75E-13 4.75E+32 2.39E+33 2.07 0.413 Mengel et al. (2016)
τ Boo (Jan 2015) 1.14 1.02 1.06 7.66E-12 5.18E-11 1.03E-12 1.96E-13 4.92E+32 2.39E+33 2 0.413 Mengel et al. (2016)
τ Boo (2 Apr 2015) 1.07 0.435 0.309 7.66E-12 6.60E-11 1.32E-12 3.95E-13 4.03E+32 2.39E+33 2.44 0.413 Mengel et al. (2016)
τ Boo (13 Apr 2015) 0.826 0.378 0.229 7.66E-12 7.28E-11 1.45E-12 2.15E-13 3.71E+32 2.39E+33 2.65 0.413 Mengel et al. (2016)
τ Boo (20 Apr 2015) 1 0.426 0.321 7.66E-12 6.70E-11 1.34E-12 3.37E-13 3.98E+32 2.39E+33 2.47 0.413 Mengel et al. (2016)
τ Boo (May 2015) 1.34 0.811 0.745 7.66E-12 5.41E-11 1.06E-12 4.35E-13 4.75E+32 2.39E+33 2.07 0.413 Mengel et al. (2016)
HD 73256 3.54 3.07 3.44 9.98E-14 7.89E-12 5.97E-14 6.41E-13 2.56E+30 4.91E+31 48.8 2.54 Fares et al. (2013)
HD 102195 6.62 3.37 2.45 7.87E-14 1.59E-11 7.30E-14 3.67E-12 3.67E+30 8.94E+31 28 1.15 Fares et al. (2013)
HD 130322 1.82 1.08 0.451 1.72E-14 4.01E-12 3.27E-14 2.60E-13 2.47E+29 8.90E+30 164 4.56 Fares et al. (2013)
HD 179949 (2007) 1.17 1.16 1.07 5.10E-13 9.09E-12 1.53E-13 1.12E-13 1.33E+31 1.40E+32 22.1 2.1 Fares et al. (2012)
HD 179949 (2009) 2.04 1.94 1.29 5.10E-13 7.55E-12 6.60E-14 3.67E-13 1.78E+31 1.40E+32 16.6 2.1 Fares et al. (2012)
HD 189733 (2007) 3.88 7.53 7 3.94E-14 1.71E-11 2.44E-13 1.64E-13 1.22E+30 8.94E+31 74.7 1.02 Fares et al. (2010)
HD 189733 (2008) 9.17 8.26 5.71 3.94E-14 1.48E-11 6.57E-14 3.13E-12 2.67E+30 8.94E+31 34 1.02 Fares et al. (2010)
M dwarf Stars

CE Boo 98.7 25 17.9 9.46E-17 1.61E-12 4.14E-15 3.69E-10 1.44E+29 2.82E+31 180 0.916 Donati et al. (2008)
DS Leo (2007) 33.1 27.5 12.2 2.72E-16 1.35E-11 3.46E-14 2.08E-11 1.71E+29 5.99E+31 244 0.696 Donati et al. (2008)
DS Leo (2008) 32.6 24.3 11.6 2.72E-16 1.38E-11 3.55E-14 2.31E-11 1.68E+29 5.99E+31 247 0.696 Donati et al. (2008)
GJ 182 72.6 44.3 40.1 3.36E-15 1.94E-11 4.98E-14 3.96E-10 1.74E+31 1.91E+33 12.7 0.116 Donati et al. (2008)
GJ 49 15.7 8.71 5.32 1.82E-16 1.25E-11 3.91E-14 7.11E-12 4.93E+28 2.29E+31 612 1.32 Donati et al. (2008)
AD Leo (2007) 162 74.6 48.6 6.12E-17 2.44E-12 6.26E-15 5.09E-10 8.20E+29 2.55E+32 152 0.489 Morin et al. (2008a)
AD Leo (2008) 170 64.5 39.3 6.12E-17 2.25E-12 5.78E-15 6.57E-10 8.56E+29 2.55E+32 146 0.489 Morin et al. (2008a)
DT Vir (2007) 79.3 40.6 26.5 5.98E-16 1.25E-11 3.22E-14 2.14E-10 3.03E+30 6.67E+32 70.1 0.319 Donati et al. (2008)
DT Vir (2008) 39 48.5 47.9 5.98E-16 3.30E-11 1.07E-13 1.69E-11 1.58E+30 6.67E+32 134 0.319 Donati et al. (2008)
EQ Peg A 366 107 114 4.78E-17 5.63E-13 1.44E-15 3.09E-09 2.50E+30 4.03E+32 87.2 0.542 Morin et al. (2008a)
EQ Peg B 379 115 96 1.73E-18 2.99E-13 7.68E-16 1.74E-09 4.37E+29 3.01E+32 435 0.631 Morin et al. (2008a)
EV Lac (2006) 447 213 102 1.80E-17 3.11E-13 7.99E-16 2.37E-09 2.77E+29 5.49E+31 113 0.57 Morin et al. (2008a)
EV Lac (2007) 420 164 91.5 1.80E-17 3.45E-13 8.86E-16 2.48E-09 2.62E+29 5.49E+31 119 0.57 Morin et al. (2008a)
DX Cnc (2007) 92.3 37.2 33.8 4.54E-21 1.02E-12 2.61E-15 1.70E-11 3.87E+26 1.30E+31 4.13E+04 1.23 Morin et al. (2010)
DX Cnc (2008) 45.3 42.2 27.1 4.54E-21 2.82E-12 8.68E-15 1.67E-12 2.02E+26 1.30E+31 7.93E+04 1.23 Morin et al. (2010)
DX Cnc (2009) 53.5 26.4 17 4.54E-21 2.55E-12 6.55E-15 4.81E-12 2.35E+26 1.30E+31 6.80E+04 1.23 Morin et al. (2010)
GJ 1156 (2007) 35.3 31.9 26.5 2.92E-19 5.70E-12 2.02E-14 2.27E-12 4.33E+27 4.61E+31 8150 0.765 Morin et al. (2010)
GJ 1156 (2008) 74.9 62 40.1 2.92E-19 2.21E-12 5.66E-15 1.15E-11 8.63E+27 4.61E+31 4090 0.765 Morin et al. (2010)
GJ 1156 (2009) 71.4 47.7 30.7 2.92E-19 2.39E-12 6.14E-15 1.35E-11 8.26E+27 4.61E+31 4270 0.765 Morin et al. (2010)
GJ 1245 B (2006) 122 69.4 63.1 1.09E-19 7.98E-13 2.05E-15 3.60E-11 3.71E+27 1.95E+31 4410 0.841 Morin et al. (2010)
GJ 1245 B (2008) 38.2 33.6 28.5 1.09E-19 4.39E-12 1.45E-14 2.14E-12 1.28E+27 1.95E+31 1.28E+04 0.841 Morin et al. (2010)
OT Ser 66.3 47.6 53.4 2.82E-16 1.56E-11 4.00E-14 8.85E-11 1.14E+30 4.23E+32 134 0.361 Donati et al. (2008)
V374 Peg (2005) 588 235 183 4.92E-18 1.64E-13 4.22E-16 4.30E-09 1.42E+30 4.03E+32 157 0.556 Morin et al. (2008b)
V374 Peg (2006) 491 243 124 4.92E-18 2.23E-13 5.71E-16 2.50E-09 1.21E+30 4.03E+32 186 0.556 Morin et al. (2008b)
WX UMa (2006) 904 511 275 1.28E-20 2.14E-14 5.48E-17 1.49E-09 4.25E+27 1.00E+31 2.22E+03 0.94 Morin et al. (2010)
WX UMa (2007) 1160 485 219 1.28E-20 1.41E-14 3.61E-17 3.22E-09 5.33E+27 1.00E+31 1.77E+03 0.94 Morin et al. (2010)
WX UMa (2008) 1110 593 326 1.28E-20 1.50E-14 3.85E-17 2.41E-09 5.15E+27 1.00E+31 1.83E+03 0.94 Morin et al. (2010)
WX UMa (2009) 1590 212 229 1.28E-20 8.23E-15 2.11E-17 1.15E-08 7.13E+27 1.00E+31 1.32E+03 0.94 Morin et al. (2010)
YZ CMi (2007) 540 205 146 1.47E-17 2.27E-13 5.81E-16 3.86E-09 4.18E+29 7.80E+31 118 0.633 Morin et al. (2008a)
YZ CMi (2008) 514 185 166 1.47E-17 2.47E-13 6.33E-16 3.64E-09 4.00E+29 7.80E+31 123 0.633 Morin et al. (2008a)
GJ 176 6.6 15.4 14.2 9.04E-18 2.13E-12 1.46E-14 1.30E-13 1.66E+27 2.31E+30 6.12E+03 4.4 Hébrard et al. (in prep)
GJ 205 18.8 5.22 2.7 6.44E-17 1.41E-12 3.61E-15 2.06E-11 2.28E+28 5.12E+30 903 4.01 Hébrard et al. (2016)
GJ 358 123 15.9 8.15 1.22E-17 1.96E-13 5.03E-16 7.25E-10 2.96E+28 5.65E+30 372 1.95 Hébrard et al. (2016)
GJ 479 31.4 13.7 11 1.81E-17 2.32E-12 5.95E-15 2.54E-11 1.20E+28 7.02E+30 1.02E+03 1.75 Hébrard et al. (2016)
GJ 674 119 11.9 5.21 1.16E-18 8.00E-14 2.05E-16 7.55E-10 5.60E+27 2.35E+30 856 2.04 Hébrard et al. (in prep)
GJ 846 (2013) 9.09 2.1 1.08 4.96E-16 8.01E-11 7.81E-13 5.21E-12 1.06E+29 1.45E+32 554 0.404 Hébrard et al. (2016)
GJ 846 (2014) 18.2 7.29 2.42 4.96E-16 5.67E-11 2.43E-13 1.44E-11 1.99E+29 1.45E+32 294 0.404 Hébrard et al. (2016)


