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4ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology,
Castelldefels 08860, Spain

We devise a method to shortcut the adiabatic evolution of a spin-1 Bose gas with an external
magnetic field as the control parameter. An initial many-body state with almost all bosons popu-
lating the Zeeman sublevel m = 0, is evolved to a final state very close to a macroscopic spin-singlet
condensate, a fragmented state with three macroscopically occupied Zeeman states. The shortcut
protocol, obtained by an approximate mapping to a harmonic oscillator Hamiltonian, is compared
to linear and exponential variations of the control parameter. We find a dramatic speedup of the
dynamics when using the shortcut protocol.

PACS numbers:

I. INTRODUCTION

Ultracold spinor Bose gases provide a beautiful ex-
ample to study fragmented Bose-Einstein condensates
(BEC) [1], where Bose-Einstein condensation occurs in
two or more single particle states simultaneously. This is
an unusual scenario, in contrast with conventional Bose-
Einstein condensation where bosons cluster together into
a single state. For single-component bosons, condensa-
tion in a single state is enforced by repulsive interactions:
The energetic cost of fragmentation is too high because
of the associated exchange energy [2].

For bosons with an internal degree of freedom, one
can escape this mechanism by building correlations be-
tween the particles to cancel the exchange energy [1]. A
spin-1 BEC with antiferromagnetic interactions in a tight
trap has been predicted to host such fragmented conden-
sates for vanishing magnetic fields [3–10]. The atoms
condense into a single spatial mode but there remains a
large internal degeneracy at the single-particle level. An-
tiferromagnetic interactions lift this degeneracy, and lead
to a total spin-singlet ground state which is completely
fragmented between the three sublevels. The many-body
singlet state displays strong quantum correlations, and
has attracted much theoretical interest. Its experimental
realization would enable to investigate the phenomenon
of condensate fragmentation due to symmetry (here spin
rotational symmetry) in boson systems, a fundamental
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issue in quantum gases [1].

This spin-singlet fragmented condensate is fragile
against any perturbation lifting the single-particle degen-
eracy, such as external magnetic fields [4–6]. In experi-
ments with alkali atoms, the most relevant perturbation
is the quadratic Zeeman splitting between the Zeeman
sublevels m = 0 and m = ±1 [11]. For finite atom
number N , there is a small but non-vanishing window
where the singlet state survives as the quadratic Zee-
man splitting increases from zero, before a crossover to
a single m = 0 condensate takes place (“single BEC do-
main”) [8–10]. An appropriate witness of the transition

is the variance ∆N0 ≡
√
〈N2

0 〉 − 〈N0〉2 which goes from

∝ N in the spin-singlet state to ∝
√
N in an uncorrelated

many-body state [10].

Because of the sensitivity to external perturbations,
the singlet state has so far eluded experimental obser-
vation. The gap to the first excited states is low and
scales as the inverse of the number of atoms [3]. Evapo-
rative cooling used to produce quantum gases is unable
to reach such ultralow temperatures. Another procedure
is to adiabatically produce the singlet state by first ap-
plying a magnetic field and condensing in the m = 0
state, and then slowly remove the field to produce the
desired singlet state — see the sketch in Fig. 1. In or-
der to stay adiabatic, the dynamics must be very slow
in view of the small energy scales involved, making the
procedure vulnerable to heating or inelastic losses.

In this article we introduce a way to shortcut the adi-
abatic following and thus produce the desired final state
in times much shorter than those needed in adiabatic
processes. Such methods have been recently derived for
a number of quantum mechanical systems — see for in-
stance Ref. [12], and promise to provide important ad-
vances in actual implementations of quantum technolo-
gies, for instance trapped ions [13]. Exact protocols have
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been derived for particular problems, e.g. the quantum
harmonic oscillator [14]. In other cases, approximate
procedures, obtained by adapting exact ones, have been
proven to be quite promising when applied to quantum
many-body systems [15–17].

As will be shown, the approximate shortcut protocol
will be obtained from a large N limit of the quantum
many-body system. This limit will allow us to map our
original many-spin problem into an effective harmonic os-
cillator, for which an exact solution is available [14]. In-
terestingly, very recently a similar harmonic description
of a spinor BEC has allowed the authors in Ref. [18] to
prove parametric amplification of a spinor system. This
work proves experimentally the appropriateness of the
harmonic description.

The article is organized as follows. In Section II, we
present the theoretical model to describe the spinor BEC
and discuss the adiabatic preparation of the ground state.
In Section III we obtain our protocol to shortcut the adi-
abatic evolution in the spinor system from a continuum
approximation to the spin dynamics. In Section IV we
apply our shortcut protocol to the BEC regime (domi-
nated by the quadratic Zeeman energy). In Section V
we consider a broader range of parameters, discussing
the quality of our protocol to produce fragmented BEC
starting from the BEC side. In Section VI we present re-
sults making use of current experimental setups [18]. In
Section VII, we briefly summarize our work and present
the main conclusions.

II. THEORETICAL MODEL

A. Description of the system

We consider an ultracold gas of spin-1 bosons in a har-
monic trap under the action of an external magnetic field.
We assume a single spatial mode in the trap, that is, all
bosons condense in the same spatial orbit irrespective
of their internal state. With this assumption we are left
with three single-particle states, |+1〉, |0〉 and |−1〉, cor-
responding to the Zeeman states with magnetic quantum
numbers m = +1, 0,−1, respectively. The linear Zeeman
effect acts only as a shift in the energy and does not
contribute to determine the equilibrium state. The main
contribution of the magnetic field is the quadratic, or
second order, Zeeman (QZ) effect [11], see Appendix A.
Under these assumptions, the system is well described by
the Hamiltonian [8, 9]

Ĥ =
Us
2N

Ŝ2 − qN̂0 , (1)

where Us > 0 is the spin interaction energy per atom, N
is the number of atoms, Ŝ2 is the (dimensionless) total

spin operator, q is the quadratic Zeeman energy and N̂m
is the number operator of the Zeeman state m = 0,±1.

The first term in the right-hand side of Eq. (1) de-
scribes antiferromagnetic interactions between pairs of

q

E
n
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gy

q � Us

q = 0
−q � Us

FIG. 1: Sketch of the proposed experimental protocol. A spin-
1 BEC is prepared at large positive values of the quadratic
Zeeman energy (QZE) q with all atoms in the m = 0 state.
In this regime, the initial state is very close to the ground
state (arbitrarily close as q → ∞). In the adiabatic method,
the QZE is slowly reduced in such a way that the state of
the system remains always close to the instantaneous ground
state. Stopping the QZE ramp at q = 0, the system ends up
in a total spin-singlet ground state with strong spin correla-
tions. Stopping the ramp at a large, negative value of q, we
prepare instead a twin Fock state with half the atoms in the
Zeeman m = ±1. In this paper we target the production of
the singlet state, and examine this procedure and alternative
ramps which are not adiabatic but result in a state close to
the ground state in a much faster time.

atoms, and favours configurations with low total spin S.
In absence of the quadratic Zeeman term, q = 0, the
eigenstates are known analytically and are given by the
total spin eigenstates |N,S,M〉, where S is the total spin

and M the eigenvalue of Ŝz, the projection of the total
spin on the z axis. This is the basis we will be using in the
following sections. Low-S configurations are obtained by
putting many spin-1 atoms to form singlet state pairs,
while the remaining atoms can occupy any Zeeman sub-
level. For practical convenience, from now on N will be
set to an even number. The ground state for evenN is the
total spin singlet |N,S = 0,M = 0〉. This highly frag-
mented state, termed “spin-singlet condensate” (SSC),
takes the form of a condensate of delocalized spin-singlet
pairs,

|SSC〉 ∝
(
Â†
)N/2

|vac〉 (2)

where A† = (â†0)2−2â†+1â
†
−1 creates a pair of atoms in the

two-particle singlet state, âm is an annihilation operator
for a particle in the Zeeman state with third component
of the angular momentum equal to m, and |vac〉 is the
boson vacuum. This fragmented state is characterized by
three macroscopically populated states, 〈N+1〉 = 〈N0〉 =
〈N−1〉 = N/3, with large fluctuations of the individual
components [1].

The second term in Eq. (1) describes the interaction of
the system with the external magnetic field. In the non-
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interacting limit Us → 0 and for q > 0, the QZE forces
all the spins to occupy the state m = 0, thus forming
a single Bose-Einstein condensate with 〈N0〉 = N and
〈N+1〉 = 〈N−1〉 = 0, the so-called z-polar state,

|Polar〉z ∝
(
â†0

)N
|vac〉 . (3)

It is worth noting that M remains fixed when changing
q, because the Hamiltonian commutes with Ŝz. This is
a good approximation to the behavior due to the exper-
imental conditions of the atomic quantum gases, which
are highly isolated from the environment, and to the mi-
croscopic rotational invariance of the spin exchange in-
teraction [11].

For simplicity, we take M = 0. Also, as the number
of particles N is fixed during the evolution, we will omit
it on the kets, thus, for now on we will use the notation
|S〉 ≡ |N,S, 0〉.

B. Ground state for intermediate values of |q|

For generic values of q, Us, we write a general state
|φ〉 with fixed N and M = 0 as |φ〉 =

∑
S cS |S〉. The

Schrödinger equation Ĥ|φ〉 = E|φ〉 in the S basis re-
duces to the following discrete eigenvalue equation (see
Appendix B),

hS,S+2 cS+2 + hS,S−2 cS−2 + hS,S cS = E cS . (4)

In the upper panel of Fig. 2 we show the transition from
the Us-dominated fragmented regime to the single BEC
regime when varying the ratio qN2/Us. The transition
between the two regimes takes place at values qN2Us ' 1
and is seen in the behavior of the variance ∆N0/N of the
populations in the m = 0 Zeeman state. As explained in
the introduction in the uncorrelated BEC state, ∆N0 ∝√
N , while in the spin-singlet state the fluctuations are

much larger, ∆N0 ∝ N .

C. Adiabatic preparation of the singlet ground
state

Experimentally, the value of the QZE can be controlled
easily in real time. For instance, for Sodium atoms with
hyperfine spin F = 1 in a magnetic field B, the quadratic
Zeeman shift contributes a positive amount to q. It is also
possible to achieve q < 0 by using the differential level
shift induced on the individual Zeeman sublevels by a far
off-resonant microwave field (see [19] for details). With
a suitable choice of the microwave polarization, detuning
and power, the sign and magnitude of q can be changed
at will.

This experimental control of the QZE opens a way
to the generation of strongly correlated states in spin-
1 quantum gases. The principle is the following. For
zero magnetization and a large and positive QZE, the

ground state is very close to a single BEC with all atoms
in the m = 0 Zeeman state. A good approximation of
this state can be prepared “by hand”, e.g. by applying
radio-frequency —rf— pulses with suitable frequency and
polarization to a spin-polarized ensemble in m = +1, for
instance. Starting from this initial state and decreasing
slowly the value of q, the system will adiabatically follow
its ground state, and end up prepared in the SSC state
given in Eq. (2) when q ≈ 0.

We can estimate the speed at which the magnetic field
should be decreased by the usual adiabatic criterion,
|〈j|Ḣ|i〉| � ~ω2

ji, where |i〉 and |j〉 are two eigenstates
of the Hamiltonian. The dangerous region is around
q < Us/N

2, where the energy gap to the first excited
state takes its minimum value ∼ 3Us/N . In this region,
the QZE ramp has to be very slow. We make a crude
estimate by assuming that q decreases between Us and
0 in a time τ . Also in this region, N±1 are on the order

of N/3. This leads to |〈j|Ḣ|i〉| ∼ NUs/3τ and to the
adiabaticity criterion,

τ � N3~
27Us

. (5)

The catastrophic scaling τ ∝ N3 shows that this method
will be limited to small, mesoscopic samples. Using very
long ramp times to fulfill the adiabaticity criterion will
make the protocol vulnerable to experimental limitations
not captured by the single-mode Hamiltonian, such as
technical heating (specific for each experimental setup)
and inelastic losses (specific for each atom).

Inelastic atom losses destroy the rotational symmetry
since atoms are lost at random from any Zeeman state. A
common source of inelastic losses is three-body recombi-
nation into a weakly-bound molecule and a fast atom,
resulting in three atoms lost from the trap. The to-
tal rate of these events can be written as NΓ3, where
Γ3 = (K3B/N)

∫
d3r n(r)3 is determined by a species-

dependent rate constant K3B and by the spatial density
n. Demanding less than one single inelastic event (on av-
erage) during the entire adiabatic protocol gives a bound
1/τ & NΓ3.

For illustrative purposes, we consider a gas of atoms
condensing in the Gaussian ground state of a tight har-
monic trap of frequency ω. The Gaussian ground state
of the trap is a good approximation of the actual con-
densate wavefunction for sufficiently low atom number
N < σ/a, with σ =

√
~/mAω the harmonic oscilla-

tor length, with mA the atomic mass and with a the
spin-independent s−wave scattering length. The spin-
dependent scattering length as is determined by the re-
lation Us = (4π~2as/mAN)

∫
d3r n(r)2 [3]. The bound

1/τ & NΓ3 can be written as a bound on the maximum
affordable atom number in trap, written in compact form
as

N � 5.1

(
σ

l3B

)3/5

, (6)
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where l3B = (mAK3B/~as)1/3 has the dimension of a
length.

We specialize to the case of F = 1 Sodium atoms,
where a ≈ 2.5 nm and as ≈ 0.1 nm [20] and three-body
loss rate constant K3B ∼ 1.6 × 10−30at.cm6/s [21]. Us-
ing ω/(2π) = 2 kHz, one finds N � 36 for the param-
eters given above, showing that the adiabatic approach
is reserved for mesoscopic samples containing only a few
atoms. This motivates us to find alternative solutions
enabling a substantial speed-up of the dynamics, which
is our main objective in the rest of this paper.

III. SHORTCUTS TO ADIABATICITY

In view of the limitations of the adiabatic approach de-
scribed above, we now examine a different method where
the same final result can be reached in a much shorter
time. In the literature, there are well-established short-
cut protocols for one-body harmonic potentials [14]. Our
strategy is to use these results to manipulate the many-
spin system of interest by mapping it to an effective har-
monic oscillator problem. We show in this section how
a reasonable harmonic approximation to the many-body
problem can be derived. By means of such approximate
equation we map the shortcut protocol to the exact time
dependent Schrödinger equation built from Eq. (4).

A. Continuum approximation

The first step consists in deriving a continuum approx-
imation to the Hamiltonian, Eq. (4). For large N and
considering 1 � S � N , the coefficients cS can be as-
sumed to vary smoothly from S to S ± 2. Hence, cS can
be approximated by a continuous function c(x), where
x ≡ S/N varies from 0 to 1. Following the derivations
in Appendix C, we arrive at an effective Schrödinger-like
equation for a harmonic oscillator

− ~2

2M∗
c′′(x) +

M∗ω2

2
x2c(x) = (E +Nq)c(x) (7)

with the oscillator frequency given by ~ω =
√
q(q + 2Us)

and the oscillator “mass” by M∗/~2 = N/2q. The
ground state obeying the boundary condition c(0) = 0
is the wave function

c(x) =
2
√

2

(πσ2)1/4

x

σ
exp

(
− x2

2σ2

)
(8)

σ =

√
2

N

(
q

q + 2Us

)1/4

, (9)

with energy

E =
3

2

√
q(q + 2Us)−Nq . (10)

In Fig. 2 we compare the approximated and the ex-
act solutions of our Hamiltonian. In the middle panel of
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FIG. 2: Upper panel: Fluctuation of the number of particles
in the m = 0 manifold, ∆N0/N computed for three different
number of atoms. Middle panel: Energy of the ground state
of the exact system compared with the energy of the ground
state obtained in Eq. (10) for different values of the parameter
q. When qN2U−1

s < 2, the system becomes Us-dominated
and, thus, the energy is constant [see Eq. (10)]. It is worth
noting that both in the fragmented (Us-dominated) and BEC
(q-dominated) regimes, the approximate value of the energy
agrees well with the exact one. Lower panel: Wave function
squared of the ground state compared to the one obtained
with the continuous approximation described in the text. The
middle and lower panels are obtained for a system of N = 100
spins. In all cases, Us/h = 104.13 Hz. For the lower panel,
we have used q = Us.

Fig. 2 we see that the energy of the ground state is well re-
produced by the harmonic approximation. In particular
it is interesting to note that the harmonic approximation
works well both in the Us-dominated regime and in the
q-dominated one. Comparing the actual wave functions
in the lower panel of Fig. 2, we can see that the solution
of the approximate Hamiltonian has a similar shape as
the exact wave function although its maximum is slightly
displaced towards higher values of S/N .

B. Shortcut protocol to the adiabatic evolution

The idea behind the shortcut to adiabaticity in the
time-dependent evolution of an harmonic oscillator is the
following. First we consider that the system is initially
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in the ground state for a certain initial value q(0) of the
control parameter. Then, we impose that at a given time
tf the system must be exactly in the ground state for a
different value of the control parameter, q(tf ) = qf . The
goal is, thus, to find a function q(t) that does the job. If
the final time is sufficiently large, then any smooth ramp
of the control parameter should work, since the evolution
would be adiabatic. For short ramp times, an arbitrary
ramp function would in general result in the excitation of
many modes besides the ground state at the final time.
The goal is therefore to engineer the ramp function in
such a way as to minimize the excitations at t = tf and
beyond, i.e. one seeks to produce an almost stationary
state once the ramp is completed.

The Schrödinger-like equation in Eq. (7) is already
close to the one corresponding to a harmonic oscillator.
The control parameter is the QZE, q = q(t). The term on
the right-hand side (a shift in the total energy) does not
have any effect on the dynamics. We also limit ourselves
to the regime q � Us. The final Schrödinger-like equa-
tion Eq. (7) is that of a harmonic oscillator with time-
dependent “mass” and frequency ω2(t) = 2q(t)Us/~2. A
similar equation was considered in Ref. [16] to describe
the dynamics of a two-mode Bose-Hubbard model. Fol-
lowing the same method, we look for a self-similar solu-
tion c(x) = c0(x/ρ)/

√
neiΘ(ρ,ρ̇), with a scaling parameter

ρ. Such a solution exists if the scaling parameter obeys
the so-called Ermakov equation [14],

ρ̈+ ω(t)2ρ =
ω2

0

ρ3
. (11)

The constant ω0 is just an integration constant that we
set to ω0 = 1

~
√

2q0Us. This, together with the substitu-
tion b = 1/ρ gives

2ḃ2

b
− b̈+

2q(t)Us
~2

b =
2q0Us
~2

b5. (12)

b(t) is an arbitrary function that only has to satisfy the
frictionless conditions

bi ≡ b(t0) = 1 ,

bf ≡ b(tf ) =

(
qf
q0

)1/4

,

ḃ(t0) = ḃ(tf ) = b̈(t0) = b̈(tf ) = 0 ,

where t0 will always be zero. There is an infinite set of
functions b(t) that can be used for this purpose, as the
boundary conditions provide ample freedom to choose
b(t). Here we will use a simple polynomial ansatz, taken
from Ref. [14],

b(t) = bi+10(bf−bi)s3−15(bf−bi)s4+6(bf−bi)s5 , (13)

where s = t/tf . Thus, the function q(t) is

q(t) =

(
2q0Usb

4 + ~2 b̈

b
− 2~2 ḃ

2

b2

)
1

2Us
. (14)

(a)
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FIG. 3: Comparison between the linear, exponential and
shortcut ramps. In both panels we have Us/h = 104.13 Hz,
q0 = Us and qf/q0 = 10−3. In panel (a) we consider a slow
evolution with tf = 1 s, while in panel (b) a shorter evolution
is considered, tf = 0.01 s.

The six frictionless conditions previously mentioned
uniquely determine the fifth-order polynomial chosen.
We have tested that using a sixth-order polynomial or
power-law functions did not improve the results, hence
Eq. (13) is used in the rest of this work. Let us re-
mark that the freedom in choosing b(t) can be used to
design more constrained protocols depending on the spe-
cific needs, e.g. avoiding too large values of q(t).

IV. SHORTCUT TO ADIABATICITY IN THE
BEC REGIME

In this Section, we consider the performance of our
shortcut protocol in the BEC regime. That is, our main
goal is to evolve from the ground state of Eq. (1) for an
initial value of q(t = 0) = q0 = Us to the corresponding
ground state for q(tf ) = qf such that q0 > qf � Us/N

2.
Strictly speaking, the choice q0 = Us does not comply
with the assumption used to derive the protocol, q(t)�
Us. The reason why the protocol can be extended to this
situation is that for short times t . tf/4, the protocol
produces a very small variation of q, and the dynamics
thus remains mostly adiabatic.

To judge the quality of the shortcut protocol we will
compare it to two other ramps shapes, linear and expo-
nential,

qlin(t) =q0 − (q0 − qf ) t/tf , (15)

qexp(t) =(q0 − qf )
e−αt/tf − e−α

1− e−α + qf .

The linear ramp is uniquely determined, and the expo-
nential ramp was found to provide the best results for a
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FIG. 4: Mean squared spin 〈Ŝ2〉/N as a function of time computed for systems with N = 100 and N = 1000 spins evolved
following either the shortcut protocol, a linear or an exponential ramps. All cases describe the evolution of the exact solution
of the Schrödinger equation in situations where the evolution is clearly not adiabatic. Only the shortcut protocol brings the
system to a state with lower total spin S. In all panels the initial state corresponds to N2q0/Us = N2, thus deep in the BEC
phase (see Fig. 1 of [9]). Panels on the left, —(a) and (c)— target a state at N2qf/Us = 0.01N2, whereas right panels (b) and
(d) correspond to a final state closer to the fragmented phase N2qf/Us = 0.001N2. (a) and (b) correspond to N = 100 while
(c) and (d) are computed with N = 1000. The horizontal solid black and light grey lines show the level of fluctuations in the

ground state for q = qf , and the reference value 〈Ŝ2〉/N = 1/N , respectively. In all cases, Us/h = 104.13 Hz and tf = 0.01 s.

decay constant α = 5, a value we have used in all the
reported results. In Fig. 3 we compare the three ramps
considered for a slow evolution, see panel (a), and for a
faster one, see panel (b). The resulting shortcut protocol
is in all cases a smooth function. As can be seen in the
figure, for smaller values of tf , the protocol has a more
pronounced structure, requiring in some cases negative
intermediate values of q(t).

We benchmark our shortcut protocol by numerically
solving the full time dependent Schrödinger equation
with Ĥ from Eq. (1) for a particular ramp. We used

the mean-squared spin 〈Ŝ2〉 as a fidelity witness. Note
that in the regime we consider in this Section, the target
final value of qf is far above the value ∼ Us/N

2 below
which the ground state reduces to the total spin singlet
state. As a result, the value of 〈Ŝ2〉 in the ground state

corresponding to qf fulfills 1� 〈Ŝ2〉 � N .

In Fig. 4 we present the first results, corresponding to
two different dynamical situations. The first one shown
in Fig. 4 (a,c) goes from q0/Us = 1 to qf/Us = 0.01.
The second one shown in Fig. 4 (b,d) goes one order of
magnitude smaller, to qf/Us = 0.001. Also we compare
in the figure two different values of N = 100 and 1000.
Several features can be observed. In all cases, the short-
cut protocol performs clearly better than the other two

ramps, while the exponential ramp performs better than
the linear ramp. The spin witness 〈Ŝ2〉 at the final time
at tf = 0.01 s is substantially lower for the shortcut pro-

tocol (〈Ŝ2〉 decreases by an order of magnitude from its
initial value), and closer to the value expected in the fi-
nal ground state for larger N . In comparison, the other
two protocols are only able to decrease it by at most a
factor of 4 in the same time. Moreover, the final value of
〈Ŝ2〉 decreases with increasing atom number at a fixed
tf . Equivalently, the final fidelities obtained with the
shortcut protocol improve as we increase N . This could
be expected as we have obtained our protocol in the large
N limit, thus making the protocol closer to an exact de-
scription as N is increased. The results obtained with the
exponential and linear ramps are mostly independent of
the number of particles.

It is also interesting to see how the wave function
evolves in time, going from a state with large 〈Ŝ2〉, where
cS are centered around large S, to a state with small
〈Ŝ2〉, where the wave function takes substantial values
around S = 0 or S = 2. In Fig. 5 we compare the wave
functions at different times obtained with the shortcut
(a,b) and exponential (c,d) protocols. The calculations
correspond to the N = 100 ones reported in Fig. 4. As
can be clearly seen in all cases the wave function for the
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(a) (b)

(c) (d)
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t f
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S

FIG. 5: Time evolution of the wave function. The radii of
circles indicate the value of |cS |2 for each S at each time t/tf .
Blue circles correspond to a system evolved using the shortcut
protocol and red circles correspond to a system evolved with
an exponential ramp. Panels (a), (c) show the evolution of
a system from q0/h = 104.13 Hz to qf = 10−2q0 in tf = 0.01
s and panels (b), (d) show the evolution of a system from
q0/h = 104.13 Hz to qf = 10−3q0 in tf = 0.01 s, so this
figure can be directly compared to Fig. 4. Since only the
even solution is considered, the wave function cS at odd S is
identically 0.

shortcut is much more peaked around S = 0 than the ex-
ponential one. Also, as expected, the final wave function
is more concentrated at smaller values of S as we target
final states with smaller qf . This can be seen compar-
ing panels (a,c), computed with qfN

2/Us = 0.01N2 with
panels (b,d), computed with qfN

2/Us = 0.001N2. Fi-
nally, note that even though the shortcut performs quite
well, the final wave function is peaked at S = 2 rather
than at S = 0, which reflects the fact that we are still on
the single BEC side of the crossover reported in Fig. 2
(c).

V. SHORTCUT FROM BEC TO A
FRAGMENTED CONDENSATE

In the previous section we have shown the supe-
rior performance of the shortcut protocol in comparison
with exponential and linear ramps in the BEC regime,
qN2/Us � 1. In this section we explore the frag-
mented condensate domain, that is, QZE ramps going
from q0N

2/Us � 1 to qfN
2/Us . 1.

In Figs. 6 and 7, we provide an extensive comparison
between our shortcut protocol and linear and exponen-
tial ramps. The figures depict the final values of 〈Ŝ2〉,

(a) (b)

(c) (d)

1
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104

q
f
N

2
/
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s
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〈Ŝ
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〉/
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q
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N

2
/
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Exp.

Lin.

10-2 10-1 1 101

tf (s)

FIG. 6: Value of 〈Ŝ2〉/N after the time evolution, i.e. t =
tf , for the three different protocols considered: shortcut (a),
linear (b) and exponential (c). In all cases only the results

that give 〈Ŝ2/N〉 < 0.12 are shown. Finally, in (d), we show

the contour lines corresponding to 〈Ŝ2〉/N = 0.12 . In all
cases we have N = 500 particles and an initial value of q0/h =
0.1Us/h = 10.413 Hz.

(a) (b)

(c) (d)
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FIG. 7: ∆N0/N for the same conditions as in Fig. 6. The re-
sults obtained from the three different protocols, the shortcut,
a linear ramp and an exponential one are given in panels (a),
(b) and (c), respectively. Finally, in (d) we show the contour
lines of the three cases above for ∆N0/N = 0.15 . All these
plots have been realized using a system of N = 500 particles
and q0/h = 0.1Us/h = 10.413 Hz.

Fig. 6, and ∆N0/N , Fig. 7. In those figures we consider
N = 500 atoms, starting from the ground state corre-
sponding to a value of q0 = 0.1Us. The figures cover a
broad range of final target values of qf ranging from deep
in the BEC sector into well below the transition to the
fragmented condensate region, qfN

2/Us . 1, see Fig. 2
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(Upper panel). Results are also reported as a function of
the desired final time, tf . We take again Us/h = 104.13
Hz and final times ranging from 0.001 to 10 seconds.

As found previously, the shortcut protocol performs
better than the exponential and linear ramps in the BEC
region, as can be seen looking at the qfN

2/Us & 1 re-
gion in the three figures. For instance the region in the
(qfN

2/Us, tf ) map, where small final values of 〈Ŝ2〉 are
larger for the shortcut protocol. The exponential pro-
duces also relatively low values, with a result mostly in-
dependent of the value of qf , while the linear ramp fails
to produce small final values, unless tf ' 10 s.

In situations in which the target final state is clearly in
the fragmented domain, qfN

2/Us ' 1, the only method
that produces sizeable fragmentation, as measured by
∆N0/N & 0.15, is the shortcut protocol (see Fig. 7).
The exponential ramp requires times almost two orders
of magnitude larger to obtain the same level of fragmen-
tation in the system. In line with the latter, lower final
values for 〈Ŝ2〉 are obtained for the shortcut protocol
for those cases in which the fragmentation is closer to
the singlet value ∆N0/N '

√
4/45 = 0.298 [9]. For

the parameters considered here, a shortcut ramp per-
formed in tf ∼ 1 s is able to produce a state very close
to the ground state, for N = 500. Note that, using the
notations and assumptions of Section II C, the chosen
value of Us/h ≈ 10 Hz is achieved in a trap of frequency
ω/(2π) ≈ 300 Hz for N = 500. The corresponding three-
body lifetime is Γ3 ≈ 1300 s−1, or NΓ3tf ≈ 0.4: Less
than a single three-body loss event (on average) during
the entire shortcut protocol. Losses should not be a con-
cern for N ∼ 500.

VI. COMPARISON WITH CURRENT
EXPERIMENTAL SETUPS

We have been using, throughout the full manuscript,
parameters taken from realistic proposals, most of them
from [9]. In this Section, we explore different parame-
ters taken from other experimental setups. Some experi-
ments [18] have been recently done with 87Rb Bose con-
densates composed of N = 40000 atoms with Us/h = 7.1
Hz and a q(t) around 10Us. Taking these parameters, we
have calculated the evolution of a system with N = 1000
particles and Us/h = 7.1 Hz to check whether the short-
cut protocol still gives good results under these experi-
mental conditions. Results have also been obtained for a
system with N = 40000 spins using the shortcut proto-
col for the approximate Hamiltonian in Eq. (7). In Fig. 8
both results are shown for comparison.
〈Ŝ2〉, shown in Fig. 8, has been computed for these two

systems and, although the initial values of q(t) are larger
than Us, the shortcut protocol still drives the system to
the ground state (or close) and improves the performance
of the other two ramps. Although the shortcut protocol
is, in principle, only valid for q(t) � Us, this and other
calculations (where we have driven a system from differ-

0.1

1

0 0.2 0.4 0.6 0.8 1

〈Ŝ
2
〉/
N

t/tf

Short. exact 1000
Lin. exact 1000
Exp. exact 1000

0.1

1

0 0.2 0.4 0.6 0.8 1

〈Ŝ
2
〉/
N

t/tf

Short. approx. 40000
Lin. approx. 40000
Exp. approx. 40000

FIG. 8: 〈Ŝ2〉/N as a function of time computed for systems
evolved following the shortcut protocol, a linear or an expo-
nential ramp. We compare together a system of N = 1000
spins (exact solution) and a system with N = 40000 spins
(approximate solution). The system is evolved from a state
with q0/h = 10Us/h = 71 Hz to qf = 10−3q0 in tf = 0.1 s.
The shortcut protocol also works for this set of parameters,
although it is, in principle, only valid for q(t) � Us, in the
sense that it provides a clear gain over simpler exponential or
linear ramps. For N = 1000 and N = 40000 the correspond-
ing values of N2qf/Us are 104 and 16× 106. The black solid
line is the ground state value for q = qf .

ent values of q0, all between 10 and 1000 times larger that
Us, to qf above and below Us) show that the protocol can
be successfully applied for larger q0 values.

VII. SUMMARY AND CONCLUSIONS

We have presented a method to prepare a spin-1 BEC
into a many-body spin singlet state by making use of an
approximate protocol to shortcut the adiabatic following
in the many-body system. The protocol consists in spe-
cific functions q(t) which are constructed such that the
time evolution of the system brings the many-body state
from the ground state for q0 ≡ q(t = 0) to the ground
state for qf ≡ q(t = tf ). The main aim is to produce
the very fragmented ground state of the spinor system
in absence of quadratic magnetic field, starting from a
condensate in the m = 0 manifold in a regime dominated
by the quadratic Zeeman term. The performance of the
shortcut protocol has been compared to both a linear and
an exponential ramp of the parameter q.

Even though the protocol is only approximate, it is
shown to provide a much better performance than the ex-
ponential and linear ones almost in all situations. In the
BEC side, that is, for qN2/Us � 1, the method works al-
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most perfectly for time intervals of the order of 1/Us and
larger. The method works also better for cases in which
the BEC-Fragmented transition is targeted. In particular
it works with similar accuracy as the exponential ramp
up to times one order of magnitude smaller. To quantify
the performance we have computed the achieved final
value of 〈Ŝ2〉 and the value of ∆N0/N .

We have obtained results for systems with different
sizes and final and initial setups and we have seen that
the protocol achieves better results for larger systems.
Results have also been obtained from approximate solu-
tions of the Schrödinger equation [using Eq. (7) and (8)].
Based on these results we have been able to extrapolate
the method to larger systems and find that, with this
protocol, a many-body spin singlet state can be obtained
for many different systems sizes. We have also shown the
success of our method when applied to systems prepared
with parameters taken from current experimental setups.
We believe that our method for preparing a BEC into a
singlet state with short times is experimentally realiz-
able and efficient. Further improvements to the shortcut

protocol profiting from the available freedom inherent to
the presented procedure will be the object of forthcoming
investigations.
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[15] B. Juliá-Dı́az, E. Torrontegui, J. Martorell, J. G. Muga,
and A. Polls, Phys. Rev. A 86, 063623 (2012).
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Bloch, Phys. Rev. A 73, 041602(R) (2006).

[20] S. Knoop, T. Schuster, R. Scelle, A. Trautmann, J. App-
meier, M. K. Oberthaler, E. Tiesinga, and E. Tiemann,
Phys. Rev. A 83, 042704 (2011).

[21] A. Görlitz, T. L. Gustavson, A. E. Leanhardt, R. Löw,
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Appendix A: Zeeman energy in spinor condensates

For a single alkali atom, the Zeeman energy in a weak
applied magnetic field B is given by the expansion of the
exact Breit-Rabi formula in powers of µBB/~ωhf � 1,

Ĥmag = −pŝz + q
(
ŝ2
z − 4

)
, (A1)

with ŝz the z−projection of the spin of the atom. The
quantities p = µBB/2 and q = (µBB)2/(4~ωhf) are the
linear and quadratic Zeeman shifts, respectively, ~ωhf is
the hyperfine energy splitting in the electronic ground
state, and µB the Bohr magneton [For Sodium atoms,
ωhf/(2π) ≈ 1.772 GHz, µB/2 ≈ h × 0.696 MHz/G and

q/hB2 ≈ 277 Hz/G
2
]. For many atoms, we have in

second-quantized notation

ĤZeeman = pŜz − q
(
N̂0 + 3N

)
. (A2)

Importantly, in many experiments the linear Zeeman
shift ∝ p is irrelevant. The reason is that binary s-wave
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collisions that are responsible for establishing kinetic
equilibrium enjoy spin rotational symmetry, and there-
fore cannot change the value of the magnetization [11]:

For short enough time scales Ŝz is effectively a conserved
quantity. For long times, there are decay mechanisms
that act as relaxation channels for Ŝz, for instance inelas-
tic losses such as dipolar relaxation or three-body colli-
sions. There processes typically degrade the spin correla-
tions as well (see discussion in Sect. II C), and we assume
that they occur with time scales much longer than the dy-
namics studied throughout the paper. We do not expect
our results to be substantially modified by a slow and
weak relaxation of the magnetization during the ramp of
q.

Appendix B: Eigenstates of the Hamiltonian in the
|N,S,M〉 basis

The Hamiltonian in Eq. (1) is diagonalized by the total
spin eigenstates |N,S,M〉, where S is the total spin and
M the total projection of S in the z-axis direction. A gen-

eral state φM is written as, |φM 〉 =
∑N
S=|M | cS |N,S,M〉.

The construction of the angular momentum eigenstates
is not trivial and these are built as follows [3–6, 9],

|N,S,M〉 =
1

Z(N,S,M)1/2

(
Ŝ−

)P (
Â†
)Q (

â†+1

)S
|vac〉 ,
(B1)

where P = S − M , 2Q = N − S, â†i and âi are the
creation and annihilation operators of the state i respec-

tively, Ŝ− =
√

2(â†−1â0 + â†0â+1) is the lowering total spin

operator and Â† = (â†0)2−2â†+1â
†
−1 is the singlet creation

operator.
The expression of these states involves three operators.

The first one, â†+1 is the creation operator of a spin 1
particle with m = +1. This operator acting S times over
the vacuum leads to the many-particle state ∝ |S, S, S〉.
The following acting operators Â† and Ŝ− commute with
the total spin momentum operator and therefore do not
modify S. The singlet creator operator creates pairs with
total spin 0, so it only changes the number of particles.
Then, Q repeated actions of this operator add singlet
pairs until the state ∝ |N,S, S〉 is obtained. Finally, the
lowering angular momentum operator S− acts P = S−M
times without affecting N or S, leading to the final state
∝ |N,S,M〉. The normalization factor is obtained after
tedious calculations,

Z(N,S,M) = S!
(N − S)!!(N + S + 1)!!

(2S + 1)!!

(S −M)!(2S)!

(S +M)!
.

(B2)
The complete Hamiltonian in Eq. (1) can be computed

in the N,S,M basis. The interaction term is diagonal,

but the operator N̂0 = â†0â0 has matrix elements between
states with S and S ± 2. The total Hamiltonian is thus
tridiagonal and therefore easy to solve numerically. The

action of N̂0 is explicitly given by [9],

qN̂0|N S M〉 =

= q
√
A−(N,S + 2,M)A+(N,S,M)|N S + 2 M〉+

+ q
√
A+(N,S − 2,M)A−(N,S,M)|N S − 2 M〉+

+ q [A−(N,S,M) +A+(N,S,M)] |N S M〉 , (B3)

where

A+(N,S,M) =
(S +M + 1)(S −M + 1)(N − S)

(2S + 1)(2S + 3)
,

A−(N,S,M) =
(S +M)(S −M)(N + S + 1)

(2S + 1)(2S − 1)
. (B4)

The resulting Hamiltonian, given also in Eq. (4), reads,

hS,S+2 cS+2 + hS,S−2 cS−2 + hS,S cS = E cS . (B5)

with

hS,S+2 = −q
√

(N + S + 3)(N − S)

× (S + 1)(S + 2)

(2S + 3)
√

(2S + 1)(2S + 5)
,

hS,S−2 = −q
√

(N + S + 1)(N − S + 2) (B6)

× S(S − 1)

(2S − 1)
√

(2S + 1)(2S − 3)
,

hS,S =
Us
2N

S(S + 1)

− q

[
S2(N + S + 1)

(2S − 1)(2S + 1)
+

(S + 1)2(N − S)

(2S + 1)(2S + 3)

]
.

Appendix C: Continuum approximation of the
Hamiltonian

A continuum approximation of Eq. (4) can be obtained
by considering 1 � S � N . The wave function cS can,
thus, be approximated by a continuous function c(x),
where x ≡ S/N and varies from 0 to 1. Then, ε = 2/N
can be taken as a small parameter and a Taylor expansion
can be made,

cS±2 = c(x)± εc′(x) +
ε2

2
c′′(x) +O(ε3) . (C1)

By substituting this expression into Eq. (4) the following
continuum Schrödinger equation is obtained

α(x)c′′(x) + β(x)c′(x) + (γ(x)− E) c(x) = 0 , (C2)

where

α(x) =
ε2

2
(hS,S+2 + hS,S−2) ,

β(x) = ε(hS,S+2 − hS,S−2) , (C3)

γ(x) = hS,S + hS,S+2 + hS,S−2 .
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Taking into account that 1 � S � N , we can set the
order until which we want to approximate. Performing a
Taylor expansion in S/N , 1/S and 1/N , and substituting
the resulting expressions in Eqs. (C3), one finds

α(x) ≈ − q

N

(
1− x2

2
+

3

2N

)
,

β(x) ≈ −q
4N2x2

(
1− x2

2
+

3

2N

)
, (C4)

γ(x) ≈ N

2
Usx

2 − qN
(

1− x2

4
+

1

2N
+

1

8N2x2

)
.

Keeping terms to leading order in 1/N, x we arrive at the
Schrödinger-like equation (7).
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