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Figure 1. Some of the organisers of the school (from left to right: Yveline Lebreton, Nicolas Nardetto,
Eric Lagadec and Guillaume Mella)

Figure 2. Yveline Lebreton et Nicolas Nardetto, enjoying the welcoming reception.



Figure 3. The EES17 participants.
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Preface

The 2017 edition of the Evry Schatzman school (EES 2017) of the French National Pro-
gram for Stellar Physics (PNPS) was held in Rosco� (France) from the 24th to the 29th of
September1. This school focused on high angular resolution imaging. High angular res-
olution is a thriving theme with many operating instruments such as SPHERE (VLT) and
ALMA, but also long-term projects, like the forthcoming JWST and ELT. It concerns mono-
lithic telescopes, but also interferometric instruments with for instance, PIONIER (VLTI),
MIRC (CHARA), VEGA (CHARA), GRAVITY (VLTI), MATISSE (VLTI) . . . , or at longer
wavelengths ALMA and NOEMA. All these instruments, with their speci�c angular resolu-
tion, their wavelength coverage and spectral resolution, are essential for studying star forming
regions, protoplanetary discs, as well as the surface and environment of stars. High angular
resolution imaging is a priority theme for the National Program for Stellar Physics (PNPS)
and is also essential for the study of extrasolar systems, a unifying theme of the French Na-
tional Program for Planetology (PNP).

The research theme of “High Angular Resolution” is today structured in France by the
ASHRA (Action Spéci�que pour la Haute Résolution Angulaire) speci�c action. Research
in the High Angular Resolution domain aims at a single objective: the control of the wave
front to reach the limit of resolution. Around this objective, the discipline has been regularly
diversi�ed by the successive apparition of several research themes during its history: optical
interferometry, adaptive optics, very high dynamics, signal processing, not to forget the study
of atmospheric turbulence, and the development of innovative optical concepts.

The impact of optical interferometry on stellar physics (but not only) is extremely diverse.
We can mention the determination of fundamental stellar and exoplanetary parameters, as-
teroseismology, the distance to Cepheids, the study of protoplanetary disks, fast rotators, the
convective structure of (super)giant stars and their circumstellar environments. Interferome-
try has produced images since about 2009. At the same time, thanks to the development of
adaptive optics, it is now possible to directly image the very close environment of giants and
red supergiants (like Betelgeuse or L2 Puppis) with monolithic telescopes (such as NACO
at the VLT, for example). These revealed the presence of asymmetric nebula due to non-
isotropic, transient mass loss. SPHERE (VLT)is currently producing similar results. In the
longer term, direct imaging of stellar surfaces will be possible with the ELT, leading to a bet-
ter understanding of stellar convection, the environment of massive or evolved stars together
with their mass loss, etc...

High angular resolution requires state-of-the-art instrumental expertise, which must take
into account a whole range of technical and scienti�c constraints. The rapid evolution of this
theme in the world of stellar and planetary physics raises the need of a good communication
between several communities: high angular resolution instrument designers on the one hand
and their users on the other, i.e. stellar-physicists and/or exo-planetologists, for instance. This
school thus aimed �rst and foremost to bring these two communities close together. There
are also strong emerging synergies between the di� erent imaging techniques: monolithic
telescopes versus interferometry, optical versus radio observations, and we can also mention,
for instance, the fruitful complementarity of interferometry and asteroseismology, in order to
determine the fundamental parameters of stars. The school aimed at clarifying these syner-
gies. It was also a matter of “democratizing” the high angular resolution techniques in order
to make this theme more accessible to the entire “stellar” and “planetary” community.

The EES 2017 school gathered 38 participants, including 1 master student, 20 doc-
toral students, 3 post-docs, 1 computer engineer, and 13 researchers, including 10 speak-
ers/organizers. The proportion of students and post-docs was therefore signi�cant (around

1https://hraetoile2017.sciencesconf.org/program



63%). Seven participants were coming from European, non-French, laboratories. The school
was organized around �ve three-hour courses, three four-hour sessions, and two thematic
seminars.

The �rst lecture, by Frantz Martinache, was dedicated to the principles of imaging to-
gether with a practical session on atmospheric disturbances and image processing techniques.
Thesecond course, by Anne-Marie-Lagrange,2 gave an overview of current imaging instru-
ments with the latest applications both in terms of planetology (protoplanetary disks, de-
tections of exoplanets) and in terms of stellar physics (environment of evolved stars . . . ).
The corresponding practical session was devoted to SPHERE/VLT data processing. The �rst
part of the school on imaging (mostly related to monolithic instruments) �nally ended with
perspectives, and a seminar on the ELT. Thethird course, by Jean Surdej, introduced the
complex principles of interferometry based on the imaging principles enunciated in the �rst
lecture. Thefourth lecture, by Denis Mourard, continued with an overview of current op-
tical interferometric instruments and the latest spectacular astrophysical results, including in
particular the determination of fundamental stellar and planetary parameters. The associated
practical session was based on the tools of the JMMC (Center Jean-Marie Mariotti, French
structure o�ering user support for all the interferometric instruments of the world), with also
an example of data processing and image reconstruction in interferometry. The session on
optical interferometry ended with a seminar on the most recent instrument, Gravity on the
VLTI. The school �nished with a�fth lecture on radio interferometry, by Anaëlle Maury,
which was an important complement to previous lectures2.

The school thus made it possible to understand that interferometry is ultimately an imag-
ing technique, and that radio interferometry, which is 30 years older than optical interferom-
etry, has bene�ted from the fact that it is easier to determine the fringe position (phase) in
this wavelength range, compared to the optical domain. This also allows for a more direct
image reconstruction. The overview of the astrophysical applications associated with these
di�erent techniques was very complete, with a good balance (and interesting links) between
proto-planetary disks, exo-planets and stellar environments. In addition, the three practical
sessions, highly appreciated, have really made it possible to give practical tools to the students
for this sometimes very complex knowledge on imaging techniques. These sessions also al-
lowed a lot of exchanges among the participants in a rather relaxed atmosphere. In addition
to classes, lectures and seminars, a discussion session around a few posters was organized to
stimulate communication and questions.

We hope that this book will be useful for the students but also engineers and researchers
who attended the school, and to anyone who wants to learn about the fundamental principles
of imaging and interferometry, as well as the latest astrophysical applications. The �eld of
Imaging and High Angular Resolution in stellar physics is a very active �eld of research,
which gives spectacular results, in the sense that they can be of interest also to the public. Let
us mention to �nish the famous star peanut which had, in its time, opened the astro-appetite
of the public, especially in the French Riviera ! This result was obtained by our colleague
Olivier Chesneau who passed away the 17th of May 2014, specialist of interferometry. We
dedicate this school and this book to him and his memory.

We warmly thank our colleagues of the Scienti�c and Local Organizing Committees, An-
thony Meilland for the design of the website of the school and the poster, Guillaume Mella
for his very careful and expert handling of the practical sessions, and Isabelle Lapassat for
managing the administrative aspects. We warmly thank Anna Surdej who made a careful
video-recording of the talks and took many photos. We are also grateful to everyone from
the sta� of the Station Biologique de Rosco�for their warm welcome and help during the

2Unfortunately, this lecture has not been reproduced in the book
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school. Last but not least, we warmly thank the lecturers Frantz Martinache, Jean Surdej,
Denis Mourard, Anne-Marie Lagrange, Annaëlle Maury, and Pierre Kervella for their com-
prehensive lectures and enthusiasm, which made the school a success.

Nicolas Nardetto, Yveline Lebreton & Eric Lagadec

- EES 2017 co-chairs

Figure 4. Artist's impression of the yellow hypergiant HR5171, a.k.a. the peanut Nebula, as mapped
by our late colleague Olivier Chesneau. Olivier was a very active member of the high angular resolution
community and the observations he obtained of this object are a perfect example of what high angular
resolution can teach us about stellar physics.
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Figure 5. Poster of the 2017 Evry Schatzman School (credit: Anthony Meilland, OCA).
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Figure 6. Low tide in Rosco� (Brittany, France), looking at the Batz Island, a few kilometers away.
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Abstract. This paper is based on the opening lecture given at the 2017 edition
of the Evry Schatzman school on high-angular resolution imaging of stars and
their direct environment. Two relevant observing techniques: long baseline in-
terferometry and adaptive optics fed high-contrast imaging produce data whose
overall aspect is dominated by the phenomenon of di� raction. The proper inter-
pretation of such data requires an understanding of the coherence properties of
astrophysical sources, that is, the ability of light to produce interferences. This
theory is used to describe high-contrast imaging in more details. The paper
introduces the rationale for ideas such as apodization and coronagraphy and de-
scribes how they interact with adaptive optics. The incredible precision brought
by the latest generation adaptive optics systems makes observations particularly
sensitive to subtle instrumental biases that must be accounted for, up until now
using post-processing techniques. The ability to directly measure the coher-
ence of the light in the focal plane of high-contrast imaging instruments using
focal-plane based wavefront control techniques will be the next step to further
enhance our ability to directly detect extrasolar planets.

1 Introduction

This edition of the Evry Schatzman school is dedicated to the high angular resolution imaging
of the surface of stars and their direct environment. Two families of observational techniques:
adaptive-optics (AO) assisted high-contrast imaging and long baseline interferometry, are
contributing to making this ambition a reality.

As di� erent as they may seem at �rst look (see Figure 7), the data produced by these
observational techniques share many characteristics. In both cases, whether it be interference
fringes or images boosted by a high-order AO system, these data are dominated by di� raction
features, that are the combined signature of the telescope and instrumentation used to perform
the observations, and include the e� ect of ever changing atmospheric conditions. The electro-
magnetic nature of the light collected by the observatory, which can oftentimes be neglected
when looking at wide-�eld images, becomes manifest with these observing techniques since
features such as di� raction rings, fringes and speckles become prominent.

For each structure present in the data, one must be able to discriminate the signature of a
genuine structure like that of a faint planetary companion, a clump in a circumstellar disk, or a
structure of a stellar surface, from a di� raction feature. The ultimate discrimination criterion
has to do with the degree of coherence of the structure in question.

Figure 7 presents two examples of di� raction dominated frames, one produced by a single
telescope, the other by an interferometer. In both cases, the question one needs to examinate
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is: is the object I am looking at a point source or did my frame capture the presence of more
complex structures?To �gure out how to answer this question, we need to take a closer look
at the process of image formation.

Figure 7. Two examples of di�raction-dominated data: On the left, a K-band AO-corrected image
of the binary star�-Ophiucus, observed from the Palomar Telescope. On the right, a set of spectrally
dispersed two-telescope fringes produced by the instrument AMBER at the focus of VLTI. Both images
are dominated by di�raction features such as fringes and rings and can also be a�ected by other artifacts
like ghosts.

2 Images in astronomy

Images are the starting point of a lot of astronomical investigations. Even to the non-expert,
because the image is a direct extension of one's intimate sense of sight, it o�ers rapid in-
sights into complex situations. The image is the place where an observer will (1) identify
new sources, (2) measure their position and brightness relative to a set of references and
(3) follow their evolution as a function of time, wavelength and polarization. From these
fundamental measurements, populating a multi-dimensional mapI(�; �; �; P; t) function of
position, wavelength, polarization and time, an astronomer will improve his/her understand-
ing (i.e. build a model) of a given object or event, that tells the story of an open star cluster,
a group of galaxies, or that of a young planetary system, forming in the vicinity of a nearby
star. The fair and e�cient interpretation of images is essential to a wide range of scienti�c
applications.

Be it in an actual imaging instrument, a spectrograph or an interferometer, the image is
�rst and foremost, a peculiar optical locus, where the photons coming from a wide number of
sources, and more or less uniformly distributed over the collecting surface (the pupil) of one
or more telescopes, �nd themselves optimally segregated by geometric optics. It is possible to
describe the result of this photon segregation process as the resultI of a convolution product
between two parts: one that is representative of the true distribution of intensities describ-
ing the source notedO; and one that describes the instrumental response, that includes the
properties of the atmosphere, the telescope and all the optics encountered by the light before
reaching the detector. This instrumental response, called point spread function is notedPSF,
such that:
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I = O 
 PSF; (1)

where
 represents the convolution operation.
Much e�ort is devoted by telescope and instrument designers to reduce the impact of the

instrumental contribution on the end product. For a great deal of astrophysical observations,
the improvement is such that one can directly identify the objectO to the imageI without
really paying attention to thePSF. The photon segregation process occuring in the image
plane is however fundamentally limited by the phenomenon of di�raction. The scaling pa-
rameter that rules this limitation is the ratio between the wavelength of observation� and the
characteristic dimension of the aperture used to perform the observation (the diameter of a
single telescope, or the length of the interferometric baseline). To quickly estimate the angu-
lar resolution provided by a telescope, the following quick formula often comes in handy:

� � 200�
�
D

; (2)

where� is the angular resolution in milli-arcseconds (mas),� the wavelength in microns and
D the diameter of the aperture in meters. One can verify that a one-meter telescope observing
in the visible (� = 0:5�m) o�ers a 100 mas (0.1”) angular resolution, and that an 8-meter
telescope observing in the near-infrared (�= 1:6�m) gets down to 40 mas.

Yet even in seemingly ideal observing conditions, the segregation of photons provided
by the image is often not su�cient in solving some important problems such as: (1) the
identi�cation of faint sources or structures in the direct neighborhood of a bright object: in
this context, the faint source one tries to detect is competing for the observer's attention
with the di�raction features of its host or (2) the discrimination of sources of comparable
brightness so close to each other that they are said non-resolved. Dealing with these two
similar situations is the object of this presentation on di�raction-dominated observational
astronomy.

3 Coherence properties of light

Electromagnetic radiation still contributes today to the great majority of the information col-
lected by astronomical observatories that forms the basis of astrophysics: the properties of im-
ages produced by astronomical instrumentation can be described using the results of an early
XIX th century physics theory laid out by James Clerck Maxwell. Electromagnetic waves
consist of synchronized oscillations of electric and magnetic �elds that propagate through a
medium at an actual velocity smaller or equal toc (the speed of light through a vacuum). The
electric and magnetic �elds are orthogonal to one another so that one can specify the wave by
keeping track of the electric �eld alone, which simpli�es the description. Note that this pre-
sentation will not discuss polarization e�ects, a re�nement that can be added later and won't
change the results and properties derived. Electromagnetic (and therefore electric) waves, are
solutions to Helmoltz's equation (also called the wave equation):

r 2E �
1
c2

Ë = 0; (3)

wherec represents the propagation speed of these waves, i.e. the speed of light. Natural
solutions to this equation are oscillating functions with the following form:

E� (t; x) = E0ei(kx�!t ) = E0ei2�( x=��� t); (4)
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Figure 8. Propagation of a spherical wave. Left: imaginary instant snapshot of the complex amplitude
of an electric �eld emitted by a point source. Directly observing this phenomenon would require a
signal commuting time a million time shorter than state of the art fast switching semi-conductors can
o�er. Right: the static, time-averaged intensity associated to this same electric �eld, that can indeed be
measured in the vicinity of a point source.

characterized by a frequency� corresponding to the number of oscillations of the �eld per
seconds (or Hertz) and the wavelength� that corresponds to the distance covered by the
propagating electric �eld over the time of one oscillation. In a vacuum, these two quantities
are related via the following inverse relation:

� = c=�: (5)

The complex exponential form of the oscillating solution of Eq. 4 allows to separate the
time and space dependencies of the electric �eld. The spatial component is awarded a special
name: the complex amplitude, notedA(x) such that:

E� (t; x) = A(x) e�i2�� t: (6)

While the complex amplitude is written as the function of a single variablex, one has to
keep in mind that this complex amplitude is tri-dimensional. Thus if for instance, the origin
of the electromagnetic �eld is a single point source, the electric �eld is a spherical function
of a radius coordinater:

E� (t; r) = (1=r) E0ei(kr�!t ): (7)

The applications covered in this text relate to what is referred-to as the optical: a regime
of wavelength that covers the visible, going from� � 0.4�m to � � 0.8�m where our human
eye is mostly sensitive and the infrared (IR) for wavelengths going up to� � 50 �m. Beyond
the infrared, it is customary to use the frequency� to describe the electromagnetic radiation.
For wavelengths shorter than� 100 nm, it is customary to use the energy associated to the
radiation. Taking� = 1�m as a wavelength representative of the optical and converting it to
a frequency:

� =
c
�

=
3 � 108

10�6
= 3 � 1014 Hz: (8)

This really large number explains the speci�city of the optical regime. The typical
read/write access time of today's fast switching semi-conductors is of the order of� 1 ns.
Which means that over the time it takes to switch at least once to take a snapshot, the electric
�eld associated to optical light has oscillated more than 105 times. Unlike what is possible in
the radio, available readout electronics are not fast enough to record the value of the electric
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Figure 9. Visualisation of the interference phenomenon. Two point sources, located on the left hand
side of the image at the same frequency, both emit a �eld propagating. Left: The two individual �elds
add up coherently and produce a rich wave pattern whose periodic properties depend on the frequency
of the emission of the sources, and the distance that separates the two sources. Right: the static, time
averaged intensity associated to this electric �eld. Unlike the single source scenario, in the far �eld
(toward the right end of the image), intensity oscillations can be measured along the transverse direction.

�eld at any instant (see Figure 8). Instead, one measures the time averaged energy carried by
the �eld and intercepted by a receiver, a quantity called the intensity:

I / hjEj2i =
Z t0+�

t0
E(t)2 dt (9)

= jAj2 (with � >> 1=�): (10)

that is proportional to the square modulus of the complex amplitude. In the absence of per-
turbations, the intensity recorded is a quantity that is only a function (see Figure 8) of the
relative spacing between the source and the observer.

While apparently invisible when considering a single point source, the oscillating nature
of the electric �eld becomes manifest when when a second source is present. The superpo-
sition principle states that the solution to this new situation is the sum of the two individual
�elds. Figure 9 shows what one such �eld looks like. We still don't have a receiver fast
enough to be able to record the oscillations of the resulting �eld. The intensity associated to
the �eld (visible in the right panel of Figure 9) however now also features some structure:
the intensity oscillates and depending on where the receiver is placed, one can either record
a maximum or a minimum of intensity. The distance between two consecutive maxima of
intensity will be a function of the ratio between the wavelength� and the distance separating
the two sources. Optical interferometry is primarily concerned with the characterization of
these structures, refered to as interference fringes.

This mathematical description of the electromagnetic nature of light would suggest that
interference phenomena such as the one that was just described should be commonplace.
There are plenty of situations of every day life where the light of two or more sources over-
laps on a surface and yet, fringes are a rare occurence. This is because our description has
idealized the sources: the purely sinusoidal wave (Eq. 4) is only suited to the description of a
laser beam.

The light emitted by thermal light sources like light bulbs or the hot gas of a star orig-
inates from a large number of semi-random spontaneous and therefore uncorrelated events
like electronic transitions. A more accurate representation of such an emission process uses
a series of wave-packets, such as the ones represented in Figure 10, which are a series of
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Figure 10. Improved, wave-packet based description of the electric �eld emitted by a thermal source
(solid blue line) compared to the idealized sinusoidal �eld (dashed green line) used earlier. Random
emission times and phase at the origin for each packet result in �uctuations in amplitude and phase of
the electric �eld that will a�ect its capability to produce interferences.

damped oscillating �eldsEk modulated by an envelope function env and characterized by a
random emission timetk and a random phase at origin� k:

Ek(r; t) = env(t� tk) � ei2�(r =��� (t�t k)+� k): (11)

The resulting electric �eld is no longer purely sinusoidal and �uctuates both in its am-
plitude and phase: Figure 10 compares this improved wave-packet model to the earlier ideal
wave and shows that these �elds are no longer synchronized, with the new electric �eld some-
times ahead of, and sometimes behind the reference. This desynchronization will a�ect the
capacity of the light to produce interferences, a property characterized by a scalar (complex)
quantity called the degree of coherence.

The degree of coherence is the result of time-averaged cross-correlation function. It can
be used to compare and quantify how look-alike two distinct electric �elds are, in which case
it will be referred-to as the mutual coherence, or to compare one �eld with itself delayed in
time, which will be referred-to as the self-coherence. This self-coherence is a normalized
complex quantity:

c(�) =
< E� (t) � E(t + �) >

< jE(t)j2 >
; (12)

whose modulusjc(�)j � 1. In the case of the ideal wave model, the degree of self-coherence
is always equal to one: regardless of the time delay, the electric �eld will always perfectly
interfere with itself delayed in time.

In the wave-packed model, the �eld is only coherent with itself over when the delay is
small. Figure 11 presents two scenarios: a small delay for which the original signal and its
copy obviously correlate (ie. look alike); and a large delay (larger than the size of one fringe
packet) for which the two �elds clearly do not correlate anymore.

Nevertheless, even ni the second scenario, over a small range of time delays bound by� 0

(the coherence time), one can measure reasonably good correlation between the two signals.
If one samples the same �eld twice, for instance by placing holes in a screen equally dis-
tant from a point source, and combines the two �elds downstream such that their respective
packets reach the same place within the coherence time, interferences can be observed.
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Figure 11. Illustration of the self-coherent properties of an electric �eld consisting of a collection of
wave-packets. Top panel: when the time delay between the two is smaller than the coherence time� 0,
the two �elds do look alike and the result of their time-averaged cross-correlation exhibits a modulus
c � 1. Bottom panel: beyond the coherence time, the two �elds quickly decorrelate and the modulus of
their self-coherence reachesc � 0.

When one considers two �eldsE1 andE2 emanating from di�erent sources, one uses the
degree of mutual coherence:

c12(�) =
hE1(t + �) E2(t)� i

p
hjE1(t)j2ihjE2(t)j2i

=
1

p
I1I2

Z

�t

E1(t + �) E�
2(t) dt (13)

to quantify their capacity to interfere with one another. At this point, the reader may have
already guessed that two electric �elds originating from two distinct series of semi-random
events have no chance of being correlated: the expected mutual degree of coherence is equal
to zero.

These two elementary observations on the self- and the mutual-coherence of the electro-
magnetic �elds emanating from thermal sources explain all the properties of the formation
of image and interference fringes in astronomical instrumentation. Figure 12 o�ers a graph-
ical summary of these two properties, and leads to the formulation of two simple but very
important facts about the light of natural light sources:

� Fact #1: the light emitted by onepoint source, collected by two or more apertures (or parts
of one aperture), and recombined in a manner that all path lengths are equal, will lead to
perfect interferences.Unresolved point sources are self-coherent.
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Figure 12. Self- and spatial-coherence properties of the light emitted by astrophysical sources. Left:
The light emitted by onepoint source, collected by two or more apertures, and recombined in a manner
that guarantees that all path lengths are equal (from the source to the detector), will lead to perfect
interferences:point sources are self-coherent. Right: The light from distinct astronomical sources,
be it two distinct objects or two parts of the surface of one object, does not interfere:astronomical
sources are spatially incoherent.

� Fact #2: the light from distinct astronomical sources, either distinct objects or two parts of
the surface of one object, does not interfere.Astronomical sources are spatially incoher-
ent.

Most of the observing scenarios we are interested in in this lecture focus on a bright,
unresolved object that, in most cases, can be treated like a bright point source, surrounded by
fainter structures, such as planetary companions, a dust shell or elements of a circumstellar
disk.

In such a situation, the e�ective resulting coherence will be dominated by the coherence
properties of the bright source, but will be reduced due to the presence of faint sources whose
light does not interfere with that of the bright source. The light of a single point source
is perfectly coherent: in the case of an interferometer, the estimator of coherence, called the
fringe visibility (or the visibility squared), is also equal to one; in the case of a single telescope
observation, the image consists of a single, crisp PSF. The presence of additional structures
around the bright point source will reduce the apparent visibility of the fringes (in the case
of the interferometer) and/or make the single telescope image look fuzzier than on the point
source alone: the e�ective coherence of one such extended source takes intermediate values
between 0 and 1.

Being able to measure the coherence of a source from an interferogram or an image
assumes that one perfectly knows what the PSF or the fringe pattern acquired on a point
source actually looks like. It turns out that several instrumental and environmental e�ects
like the spectral bandpass, atmospheric dispersion, residual aberrations or drifts can result
in an apparent loss of coherence. The task is somewhat easier when interpreting a two-
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Figure 13. Schematic representation of the phenomenon of di�raction. A diaphragm described by the
support�, on the left-hand side is uniformly lit by a point source at in�nity. The symbols and notations
present in this �gure are used to determine the distribution of complex amplitudeA(x; y) in the right
hand side plane located at a distanceZ from the diaphragm.

aperture interferogram, since the interferometer is really designed to produce unambiguous
measurements of coherence, than from an image that contains a complex mix of overlapping
spatial frequencies. The deconvolution of images, that is the inversion of Eq. 1, is in practice
di�cult when the PSF is not perfectly known as the problem is degenerate. We will get back
to this very question toward the end of this presentation and see how we can addressit and
make our coherence estimates unambiguous.

4 Diffraction-dominated imaging

Since another lecture speci�cally deals with interferometry, the discussion will from now
focus on the properties of images produced by single telescopes. Hopefully, the reader will
realize that it doesn't take long to adapt the following discussion to the case of a multi-
aperture interferometer.

Figure 13 introduces the symbols and the scenario used to describe the phenomenon of
di�raction: on the left, a diaphragm or arbitrary shape described by the surface�, uniformly
lit by a point source located so far toward the left that (under perfect observing conditions)
the complex amplitude of the associated electric �eld is constant across the aperture.� de-
scribes the aperture of the telescope used to do imaging. If one were to consider looking into
interferometry from here, one would just have to split� into a collection of sub-apertures.

The important relation to establish is one that relates the electric �eld (at least its complex
amplitude) across the aperture� to its counterpart projected on a screen located at a distance
Z from the diaphragm. One elementary surface element d�is singled out on this picture.
This elementary surface element is the origin of a new spherical wave (a principle described
by Augustin Fresnel in 1818). For a point M of coordinates (x; y) located at a distance r from
the origin of the wave, the contribution for the wavelength� to the local complex amplitude
from d� is given by:

dA(x; y) =
1
r

� K � A(X;Y) � ej2�r =� d�; (14)
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where K is a constant. Since we've established that the light associated to a single point
source is coherent, we can write that the total electric �eld in right-hand side plane of Figure
13 is the result of a sum of emissions from all elementary point sources:

A(x; y) = K
"

�

1
r

� A(X;Y) � ej2�r =� d�: (15)

If the distance Z between the two diaphragms and the backend screen is su�ciently large
in comparison to the dimension of the diaphragm, the distancer can be approximated:

r =
q

Z2 + (X � x)2 + (Y � y)2 (16)

� Z
�
1 + 0:5

� X � x
Z

� 2
+ 0:5

� Y � y
Z

� 2�
: (17)

So that the expression for the complex amplitude in the plane on the right hand side of
Figure 13 can be rewritten as the result of:

A(x; y) =
K
Z

ei2�Z =�
"

�
A(X;Y) exp

� i�
�Z

((X � x)2 + (Y � y)2)
�
d�: (18)

This form of integral is called the Fresnel Transform. It is a non-linear transform whose
computation can therefore be a bit cumbersome. It is however very general and can be used to
compute the di�raction by a diaphragm for a wide range of situations. The Fresnel Transform
of Eq. 18 can however be further simpli�ed when the distanceZ between the diaphragm and
the screen becomes very large, compared to the dimensions of the aperture:

exp
� i�
�Z

(X � x)2
�

� exp
� i�
�Z

x2
�

� exp
� �i2�

�Z
xX

�
; (19)

when X2

�Z << 1. This situation is referred-to as the far �eld or the Fraunhofer di�raction.
While it seems like an approximation, it is perfectly suited to the description of what is
happening when a powered optics (see Figure 14) is used to conjugate an object, located at
in�nity, to its image, placed at a �nite distance. In the focal plane of a telescope, the far �eld
approximation becomes perfectly valid. The Fresnel Transform of Eq. 18 can be rewritten
as:

A(x; y) = K0
"

�
A(X;Y) exp

� �i2�
� F

(xX + yY)
�
d�: (20)

where the distanceZ has been replaced by the focal lengthF of the imaging optics. It is
convenient to express the coordinates in the image in terms of angular distances relative to
the pointing axis, replacing the ratiox=F andy=F by angular coordinates�; �. One can drop
the K0 constant as well to simplify the notations and just ensure in the computation that the
total number of photons collected during an integration, is preserved by the transformation:

A(�; �) =
"

�
A(X;Y) exp

� �i2�
�

(� X + � Y)
�
dXdY: (21)

which you may recognize as the two dimensional Fourier Transform of the distribution of
the complex amplitude in the di�racting aperture. Unlike the Fresnel Transform, the Fourier
Transform (hereafter represented by the symbolF is a linear operation that can be computed
in an e�cient manner. This is the form we will mostly use for the rest of the cases described
in this lecture.
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Figure 14. The impact of geometric optics on di�raction: a powered optical element conjugates an
object located at in�nity to an image at a �nite distance in the focal plane. To compute the e�ect of
the di�raction by the telescope in the focal plane, one can safely use the Fraunhofer di�raction relying
on the computation of Fourier Transforms. To compute the e�ect of di�raction at any plane located in
between the image and the di�ractive aperture, one must use the more general Fresnel di�raction.

Equipped with this quantitative description of the di�raction and our previous observa-
tions on the coherent properties of astronomical sources, we can outline a recipe for the
formation of an image:

1. an extended source can be described as a �nite discrete collection of self-coherent point
sources. The object function can be written asO =

P
k Ok.

2. each point source uniformly illuminates the di�ractive aperture. On axis, the complex
amplitude (Ap) is constant. The complex amplitude of each o�-axis source includes a
phase slope that is proportional to how far o�-axis that source is.

3. because each point source is perfectly self-coherent, in the focal plane, the complex
amplitudeAf ;k associated to each point source is the result of the Fourier Transform of
the complex amplitude of the �eld intercepted by the aperture:Af ;k = F (Ap;k).

4. a detector only records the intensity associated to this point source:Ik = jF (Ap;k)j2.
The e�ect of the phase slope associated to the o�-axis source of indexk translates the
resulting intensity pattern.

5. due to the spatial incoherence property of astronomical sources, the intensity patterns
of all point sources add up:I =

P
k Ik.

Since the light associated to each source is intercepted by the same aperture, the shape
of the intensity pattern associated to each source (i.e. the PSF) is the same: the PSF is
translation-invariant1. It is only modulated by the brightness of individual sources that acts as
a scaling factor. The image can therefore be formally described as the weighted sum of PSFs.
Figure 15 illustrates this property, which was given as early as Eq. 1 in this presentation but
that we can now explain as the direct consequence of the coherence properties of astronomical
sources.

Given the importance of the PSF in the shaping of the �nal image (see Figure 15), we
need to see how the shape and size of the aperture, also known as the pupil, will impact

1When a single di�ractive element is present only. In practice, the atmosphere, the relay optics inside the tele-
scope and the instrument can render the PSF no-longer translation invariant. Over the small �eld of view we are
dealing with here, these subtleties can be neglected.
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Figure 15. The image-object convolution relation illustrated: it is because of the spatial incoherence
properties of astronomical sources present in the �eld (here extracted from a HST/NICMOS image of
the Trapezium), that the image can be written as the result of a convolution product between the object
functionO and the PSF of the telescope and its instrument.

the PSF. The theory of di�raction outlined earlier showed that the PSF can conveniently be
computed as the result of the square modulus of the Fourier Transform of the illumination of
the pupil:

PSF=
�����F (pupil)

�����
2

: (22)

Real telescopes unfortunately have fairly complex pupils, featuring at least a central ob-
struction induced by the presence of a secondary mirror and spider vanes that give support to
this secondary mirror. The primary mirror itself can also be made of several segments whose
edges induce further di�raction. The PSF of a circular unobstructed telescope (known as the
Airy function), only relevant for on-axis refractive telescopes or for an o�-axis re�ective one,
is a useful reference to compare a real telescope to. The circular aperture is one of the few
geometries for which the PSF has an analytical expression. Its radial pro�le is described by:

Airy(r ) = 4 �
�����
J1(�r )

�r

�����
2

; (23)

wherer is the angular distance expressed in units of the ratio between the wavelength and
the diameter of the aperture (�=D) andJ1 a Bessel function. This Airy pattern, represented
in Figure 17 (using a logarithmic scale) features di�raction rings that extend very far away
from its core. The Airy function meets its �rst zero forr = 1:22�=D, which is often used to
estimatethe order of magnitude for the angular resolution of an observing setup. Regardless
of the details of the aperture, the ratio�= D, whereD is the characteristic dimension of the
di�ractive system2, will always be the right order of magnitude to consider to characterize
the angular resolution of an optical setup. For an 8-meter diameter telescope operating in the
near infrared, the ratio�= D is of the order of� 10�7 radians. Such a small value makes the
radian a inconvenient unit to manipulate. In practice, instrument plate scales for imagers at
the focus of space-borne or ground based AO-corrected telescopes are usually expressed in
milli-arc seconds per pixel. The conversion from radians to arcseconds given by:

2It can be the diameter of a single telescope or the distance separating two sub-apertures when dealing with
interferometry.
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angle�

distanced (pc)

1 AU

Figure 16. The parsec is the distance at which a projected distance of 1 AU (astronomical unit) corre-
sponds to an angular distance of one arc second. One parsec is therefore roughly equal to 2� 105 AU
(see text).

� [00] =
180� 3600

�
� � [rad]

' 206264:8� � [rad];

gave us the short-hand formula of Eq. 2 for the angular resolution in mas. The 206,264.8
conversion factor (often rounded to 2� 105) is an order of magnitude that is good to keep in
mind. It is indeed the scaling factor between phenomena occuring inside a planetary system
(where distances are measured in astronomical units or AU) and phenomena occuring over
interstellar distances (for which distances are measured in parsecs). Since the parsec was
de�ned as the distance at which a projected distance of 1 AU corresponds to an angle of one
arc second (see Fig. 16):

tan 100� 100 = 1 AU=1 pc

� [00] = 1=d[pc]

1pc = 206264:8 AU:

5 High-contrast imaging

From the rather large sample of extrasolar planets known at the time of this writing, only a
dozen systems featuring planetary candidates have been imaged by space-borne and ground-
based telescopes. Why is this task so di�cult?

For a nearby planetary system, i.e. located�20 parsecs away from our own Solar system,
planets on orbital distances between 1 and 10 AU will appear at angular separations rang-
ing from 50 mas to 0:500which seems to be within the angular resolution reach of modern
telescopes, even when observing in the near-infrared. The di�culty in the direct imaging of
extrasolar planets lies in the very large di�erence of luminosity between a faint planet and its
bright host star. The brightness ratio, also known as the contrast ratio, of a mature Earth-like
planet in a 1 AU orbit around an equally mature Sun-like star would be characterized by an
incredibly large 10�10 contrast ratio. A more favorable scenario is that of a self-luminous
giant planet like Jupiter in orbit around a young star for which the contrast ratio could stay as
high as 10�6 for a few million years. The right panel of Figure 17 illustrates the di�culty of
the situation, by comparing these two scenarios to the ideal PSF pro�le of a circular aperture.
Even at the largest plotted angular separation (10�= D), the signal one would like to detect
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self-luminous giant planet

Earth-like planets

Figure 17. Left: 2D representation of a the perfect point spread function (PSF) of a circular aperture
(using a non-linear color scale). Right: radial pro�le of the same PSF, over a 10�= D range of angular
separation. Two horizontal lines mark the expected relative brightness (contrast) of two types of planets:
self-luminous Jupiter-like at the 10�6 level and re�ective Earth-like at the 10�10 level. Both lines lay
several orders of magnitude below the PSF.

is still orders of magnitude fainter than the photon noise of the local di�raction structures of
the on-axis bright star. When the pupil of the telescope features additional structures such as
a central obstruction and spider vanes, the situation is even less favorable.

Simply masking out the PSF in the focal plane does not contribute much: it can help
avoid saturation problems on the brightest parts of the PSF but the photon noise of the light
present in the di�raction rings will still be the dominant source of noise. To facilitate the
detection of faint structures present in the neighborhood of a bright object, one needs to
reduce overall on-axis transmission so as to reduce the bright object's photon noise. The
need for high-contrast imaging gave birth to a wide number of techniques amongst which
two major families emerge: apodization and coronagraphy. Since the early 2000s, this still
active area of research has generated a lot of enthusiasm and become extremely sophisticated.
The goal of this presentation is not to give the readers a detailed description of the state of the
art, but rather to introduce the important ideas that will help understand how the challenge
can be addressed. This will require the application of the di�raction theory that was described
earlier.

5.1 Pupil apodization

We know that the properties of the PSF of a di�ractive aperture are directly related to the
Fourier transform of the illumination of that aperture. The di�raction rings observed in the
PSF of a circular telescope can be attributed to the sharp transmission edge of the pupil.
By tuning the transmission pro�le of the aperture, one can expect to be able to alter the
PSF and its di�raction features. This procedure is referred-to as an apodization3 and it can
result in a PSF featuring no di�raction rings. Figure 18 shows how this apodization e�ect

3apodization litterally refers to the process of removing something's (or someone's!) foot
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Figure 18. Pupil apodization: the di�raction features of the unobstructed circular aperture (top row) are
compared to those produced by two apodization techniques, using either a variable transmission radial
mask (middle row) or a binary wave-shaped mask (bottom row). The throughput is reduced from 100
% to �25 % for the continuous apodization presented in the middle row and to�56 % for the binary
apodization presented in the bottom row. In both cases, the original PSF (top row) is replaced by a PSF
better suited to the detection of high-contrast companions. The PSF pro�les visible in the right-hand
column of panels, using a logarithmic scale, reveal that both apodization approaches can produce PSFs
with di�raction features with a contrast that rapidly drops below 10�5 o�ering a high-contrast detection
advantage over the full aperture for angular separations as low as three resolution elements (�3 �= D).

can be achieved using a fairly simple shaped-pupil mask placed over the original aperture
of the telescope. At the cost of some throughput (corresponding to the original aperture
surface now covered by the apodization mask), and some angular resolution (the e�ective
aperture size shrinks because of the mask), the PSF features two symmetric dark regions
at an orientation that can be adjusted by rotating the apodization mask. The comparison
of the PSF pro�les represented along the horizontal axis for both apertures shows that the
apodization contributes to reducing the brightness of the di�raction by more than two orders
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Figure 19. Schematic representation of a coronagraph. The light enters from the left hand side of the
diagram and the �nal (high-contrast) image plane is on the right hand side. The important components
of the coronagraph are highlighted in red. From left to right: the apodizer, the focal plane and the Lyot-
stop, placed in a relayed pupil. The relay optics (represented by lenses in this diagram) located after the
�rst focus (where the focal plane mask is inserted) are required to form a conjugate pupil plane. The
�nal lense is an imaging optics that produces the �nal high-contrast image with the appropriate f ratio.

of magnitude. The energy previously present in the di�raction rings now contributes to a
wider PSF core, of radius� 3�=D. The size of the new PSF core de�nes what is now often
referred-toas the inner working angle (IWA) of the high-contrast imaging system.

The solution presented here is by no means optimal: the apodization pro�le chosen to
produce these �gures follow more or less gaussian shapes. In the litterature, a special class of
functions called spheroidal prolates [1, 2] features properties that make them ideal for high-
contrast imaging, able to deliver theoretical contrast ratios �ve orders of magnitude better
than those presented in Figure 18. Because the properties of the apodized PSF only depend
on the modi�ed pupil shape, the apodized PSF is not more wavelength dependent that its
non-apodized counterpart (see the 1=�scaling factor in Eq. 21), and will be weakly sensitive
to pointing errors. Implemented as it was just described, it however results in throughput and
angular resolution loss as it reduces both the e�ective collective surface area and the e�ective
diameter of the aperture.

Apodization can be achieved using as suggested above, with an aperture mask that sup-
presses part of the original aperture, or by redistribution of the light which preserves preserves
both throughput and resolution [3]. The price to pay for one such remapping of the aperture
is a PSF that is no longer position invariant (for which the image - object convolution relation
of Eq. 1 is no longer valid), at least until that remapping can be undone [4].

To bring its full bene�t, the apodization must be adapted to the features of the aperture
[5]: the presence of a central obstruction and spider vanes in the pupil would render the
simple solutions provided in Fig. 18 useless. The high-performance apodization of real life
telescopes is in practice a complex optimization problem requiring a trade-o�between IWA,
overall transmission, and extinction.

5.2 Coronagraphy

Whereas apodization aims at shaping the PSF so as to reduce the impact of the di�raction
rings and spikes, coronagraphy aims at suppressing the light of a bright source from the focal
plane. The technique is slightly more complex than straightforward apodization as it requires
intervention in at least two optical planes. Figure 19 provides a schematic representation of
the elements constituing a coronagraph. Three elements are highlighted in red. Going from
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left to right, we have: the apodizer that was described earlier, the focal plane mask, located
as its name aptly suggests, in the image plane and the so-called Lyot-stop, located in a optical
plane that is conjugated with the entrance pupil, after the focal plane mask. While not a part
of the original design of the coronagraph, the bene�t of apodization described earlier also
contributes to improving the coronagraph and both techniques are now used simultaneously
[6].

The bulk of the light associated to the on-axis bright source (represented in Figure 19
by the left-hand side red dot) encounters the focal plane mask that can either occult it (by
absorption or re�ection), or dephase it. It was pointed out earlier that masking out the central
part of the PSF alone does not result in a suppression of the di�raction features outside of
this mask. But if one uses optics to relay the pupil (which is the role of the second lens in the
diagram), the use of a second mask, the so called Lyot-stop, completes the e�ect of the focal
plane mask and increases the contrast in the �nal focal plane. Since it misses the focal plane,
the light of an o�-axis source (represented by the green dot located next to the star) is almost
entirely transmitted by the coronagraph and becomes visible in the �nal focal plane.

5.3 Coronagraphic formalism

Using our recently acquired di�raction computation skills, we can complete the schematic
representation of the coronagraph with a formal description of what is happening at its di�er-
ent stages. Above the di�erent elements represented in Figure 19, a few labels are provided
that will be used and referred-to, to describe the complex amplitude of the electric �eld of
starlight going through the coronagraph.

To better distinguish what is taking place in the pupil from what is happening in the focal
plane, two sets of coordinates are used: linear (x; y) position coordinates in the aperture and
angular (�; �) coordinates in the image. The impact of the three elements of the coronagraph
is described by the apodizing functionA(x; y), the focal plane mask functionM(�; �) and the
Lyot-stop functionL(x; y). We now know (see Eq. 21) that a Fourier transformF ) relates
the complex amplitude in the pupil to the one in the focus: each time the optical system goes
back and forth between pupil and image, a Fourier transform is at work. While cumulating
the e�ect of consecutive Fourier transform may sound like a terrible idea at �rst, it turns out
to be fairly simple since:

F (F ( f (x; y))) = f (� x; �y) = R( f (x; y));4 (24)

whereR represents the coordinate �ip (or reverse) operator. As long as we don't land on a
detector that records the square modulus of the complex amplitude (see Eq. 10), the elements
of the coronagraph directly interact with the local complex amplitude. This interaction is
modeled by a multiplication by a complex amplitude gaing, with a modulus 0< jgj � 1 (these
elements do not amplify the signal) and possibly a phasorei� term if the component introduces
a phase delay�. Another nice property of the Fourier transform that helps understand how the
di�erent components a�ect the �nal focal plane electric �eld (and ultimately the intensity),
is the convolution property:

F ( f (x; y) � g(x; y)) = F ( f (x; y)) 
 F (g(x; y)); (25)

that says that the Fourier transform of a product is equal to the convolution product of indi-
vidual Fourier transforms. Thus since the impact of an element of the coronagraph is locally
modeled by a multiplication, in the next plane, it results in a convolution.

4The �ip of the (x; y) coordinates observed after going from pupil to focus and then back to focus, reproduces
the e�ect of a lens that produces an inverted image.
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With these elements in mind, we can �nally describe formally what is taking place in the
coronagraph, using the following sequence of operations:

� P1 = A (A andP1 have the same support)

� F1 = F (P1) (going to focus! Fourier transform)

� F2 = M � F1 (focal plane mask multiplies the complex amplitude)

� P2 = F (F2) (going back to pupil plane! Fourier transform)

P2 = F (M � F1) (explicit F2)

P2 = F (M) 
 F (F1) (convolution property)

P2 = F (M) 
 R (P1) (P2 = input pupil convolved by the mask Fourier-transformed)

� P3 = P2 � L (the Lyot-stop blocks parts of the pupil)

� F3 = F (P3) (going to �nal focal plane! Fourier Transform)

F3 = F (P2) 
 F (L) (convolution property)

F3 = R(M � F (P1)) 
 F (L) (explicitation of terms)

� I = jF3j2 (intensity is square modulus of complex amplitude)

Figure 20 illustrates these di�erent steps by representing the light of an on-axis (top row)
and an o�-axis (bottom row) source as it goes through the di�erent planes of a coronagraph,
using no apodization and a simple focal plane mask occulting the core of the PSF along with
its �rst Airy ring (radius � 2�=D). The most important property to observe is the transition
from the second to the third column: in the pupil plane that follows the focal plane mask, the
light of the on-axis source is no longer uniformly distributed but tends to concentrate near the
contours (sharp edges) of the input pupil that features here a central obstruction and spider
vanes. To �lter this light that would otherwise �nd its way back to the �nal focal plane,
the Lyot-stop masks out these regions, resulting in a slightly undersized output pupil, with a
larger central obstruction and thicker spider vanes. In the �nal focal plane, the light of this
on-axis source is considerably attenuated.

The same operations can be applied to the electric �eld associated to an o�-axis source.
The o�-axis position will result in a phase slope across the aperture. It it is su�ciently far
o�-axis (here �� 2�=D), the bulk of this electric �eld o�-axis misses the focal plane. In the
outputpupil, the light of this source remains mostly uniformly distributed and the Lyot-stop
only induces a reduction of the throughput. In the �nal focal plane, the light of this o�-axis
source is almost integrally transmitted: the on-axis attenuation combined with a good o�-axis
transmission results in images revealing faint structures in the bright star's neighborhood, that
would otherwise remain invisible.

The coronagraph used to produce the images of Figure 20 uses an occulting mask, a
con�guration known as the classical Lyot-coronagraph [7] as it replicates (with a smaller
occulting mask) the elements that enabled Bernard Lyot to reveal the corona of the Sun in
the early 1930s. A review of the litterature will reveal the existence of a wide variety of
coronagraphs that use di�erent types of masks that can also induce phase di�erences [8, 9],
include subwavelength gratings [10] and feature geometries that split the focus into quadrants
[11, 12]. The combination of the coronagraph with an apodizer [13] increases the number of
possibilities.

6 Atmospheric turbulence and Adaptive Optics

The purpose of high-contrast imaging devices is to suppress from an image the on-axis static
di�raction signature of an optical system that includes the telescope, the beam transfer and
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the instrument optics. The higher the design performance of the retained solution (often
quanti�ed by a level of contrast at a given separation), the more sensitive that solution ends
up being to changes in the expected system con�guration. One important optical element
has however thus far not been taken into consideration: for ground based observations, the
atmosphere ends up being a very important element that can quickly wreak havoc on the
e�ective coronagraphic performance. One of the �rst descriptions of the e�ect of what we
now call atmospheric turbulence can be found as early as 1704 in Isaac Newton'sOpticks:

“If the Theory of making Telescopes could at length be fully brought into Practice, yet there
would be certain Bounds beyond which Telescopes could not perform. For the Air through
which we look upon the Stars, is in a perpetual Tremor [...] The only Remedy is a most serene
and quiet Air, such as may perhaps be found on the tops of the highest Mountains above the
grosser Clouds.”Book I, Prop. VIII, Prob. II.

The formation of images through a turbulent atmosphere is a complex process, so much
that atmospheric optics is a research topic on its own. The three dimensional nature of the
atmosphere results in multiple types of degradations: agitation of the image, spreading of the
point spread function due to high-order wavefront aberrations and scintillation induced by
high altitude turbulence resulting in intensity �uctuations. Figure 21 illustrates the typical
e�ect of turbulence for a 1-meter diameter telescope observing in the visible: the original
PSF on the left, with most of the light (�84 %) concentrated over a� 2�=D disk is replaced
by a random speckle pattern that extends over a much larger area, suggesting the existence of
smaller di�ractive structures (the atmospheric turbulence cells) [14]. The typical dimension
r0 of these cells is called the Fried parameter [15] and the turbulence characteristic evolution
time t0 depends on the ratio betweenr0 and the velocityv of the turbulent layers. A good
observing site is characterized by a larger0, meaning that the turbulence is weak and a large
t0, meaning that it moves slowly. Typical turbulence properties for an average site in the
visible (� = 500 nm) are:

� r0 � 10 cm

� v � 10 m/s

� t0 � 3 ms

What this means is that the high angular resolution potential is no longer just set by the
size of the aperture, but also by the properties of that turbulence. In the di�raction scenarios
discussed so far, the distribution of complex amplitude for an on-axis source was assumed
to be constant across the di�ractive aperture: the wavefront was assumed to be perfectly
�at. The atmospheric turbulence drastically alters this situation and introduces random phase
delays that corrugate the wavefront (see the middle panel of Figure 21 for an example of
phase screen).

The structure of the wavefront is not entirely random and is driven by thermodynamics
[14]. One example of Kolmogorov phase screen is represented in the middle panel of Fig.
21. The variance between two parts of the wavefront separated by the distance� :

D� (�) =
D
j� a(r) � � a(r + �)j 2

E
r

(26)

is a 2nd order structure function characterized by one single parameterr0 introduced earlier
as Fried's parameter, so that:

D� (�) = 6:88
 
j�j
r0

!5=3

: (27)

The power spectrum of the phase deduced for a Kolmogorov phase screen [16, 17]:
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Figure 21. Left: theoretical Airy pattern produced by an unobstructed telescope. Middle: example
of Kolmogorov phase screen induced by atmospheric turbulence. Right: instantaneous seeing-limited
point spread function experienced when observing through one such atmospheric phase screen.

W� ( f ) =< jF (�(�))j 2 >= 0:0228r �5=3
0 f �11=3 ; (28)

shows that the distribution of phase follows a power law with a negative coe�cient, which
means that the atmosphere introduces more low order aberrations (associated to a lowf ) such
as tip-tilt (pointing), focus, astigmatism and coma, than high spatial frequencies. The compu-
tation of the di�raction by the aperture (see Eq. 21) is still possible in the presence of turbu-
lence, but the complex amplitude in the apertureA(X;Y) must now include the atmospheric-
induced phase delay�, so that: A(X;Y) = ei�( X;Y).

The impact of the Kolmogorov phase screen is visible on the right hand side panel of
Figure 21 that features a short exposure image that keeps changing with a characteristic time
t0. One can see that while the PSF spreads out, it is still made of small structures called
speckles whose characteristic size remains of the order of�= D, suggesting that some high-
orderspatial frequency content can be recovered from the images if one is able to acquire
them with an exposure time of the order oft0. This is the object of speckle interferometry
[18, 19] which won't be discussed here. A long exposure image through turbulence would
wash out these speckles and result in an extended smooth PSF, characterized by a full width
half-max of the order of�=r 0.

Under such observing conditions, a high-contrast imaging device like a coronagraph,
originally designed to take out the static component of the aberration, has very little chance
of contributing to a contrast improvement in the image. The energy associated to the �ux
of the bright star, previously concentrated in the central di�raction feature (�84 %) is now
spread out over a wide number of fainter speckles. The same thing is also happening to the
image of any other source in the �eld, resulting in an even lower chance of detecting any faint
structure near the bright target. Corrective measures have to be taken to restore the wavefront
entering the coronagraph and make it as �at as possible again.

This real-time compensation of the wavefront is the goal of the technique known as adap-
tive optics (AO). First described in the 1950s [20], and deployed by civilian astronomers in
the early 1980s [21], AO is now a tool available at all major ground based observing facilities
that exists in a wide variety of �avors: single or multi-conjugated, involving natural guide
stars (NGS) or arti�cial (laser) guide stars (LGS). For the applications discussed here, AO
is used in its simplest possible form: NGS - SCAO. Indeed, because it is focused on a very
small �eld of view (of the order of one arc-second), high-contrast imaging requires single-
conjugated adaptive optics (SCAO) and its targets, which are nearby stars, are bright enough
to serve as the guide star for the adaptive optics.
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Figure 22. Schematic representation of the di�erent elements of a closed-loop adaptive optics-fed
imaging system. Starlight enters from the left-hand side of the diagram via the telescope, represented
by a single lens. The impact of the atmospheric turbulence is represented by the W-shaped wavefront,
that propagates through the system. Relay optics make it possible to project the pupil of the telescope
onto a deformable mirror (DM) whose shape can be adjusted to compensate the atmospheric e�ect on
the current wavefront before it feeds the imaging instrument. To determine the shape the DM should
take, some light is sampled before the imaging instrument and fed to the wavefront sensor (on the right-
hand side of the diagram). The analysis of the information collected by the wavefront sensor will drive
a feedback loop that acts on the DM and results in an improved image.

An AO system requires two basic functionalities. The �rst is wavefront control, that
is the ability to act on the wavefront of sources present inside the �eld of view, typically
(but not only, as we will see later), to �atten it so as to improve image quality. The second
is wavefront sensing, that is the ability to diagnose what is wrong with the current input
wavefront, and to determine what can be done in order to correct for it. Figure 22 provides a
schematic representation of how these two elements are combined to make up an AO system.
It should be pointed out that wavefront sensing can take a wide variety of �avors such as the
Shack-Hartmann, the curvature sensor [22] or the pyramid sensor [23]. The ideal wavefront
sensor simultaneously combines good sensitivity, ie. the ability to operate on faint guide
stars; linearity, ie. the ability to run an unambiguous diagnosis of the wavefront; and a large
capture range, ie. the ability to operate in the presence of large or small wavefront errors.
Real life sensors all seem to be able to only simultaneously gather two of these qualities at
a time [24], which means that the choice of the wavefront sensor will have consequences on
the �nal outcome. This topic will not be further discussed here and readers interested in this
topic are invited to refer to textbooks dedicated to the topic of adaptive optics [25, 26]. We
however need to take a closer look at the wavefront control to be able to understand some
important features of AO-corrected images.

It was shown earlier, that the atmospheric turbulence is characterized by a power spectrum
with a -11/3 power law coe�cient (see Eq. 28). While the negative sign ensures that less
power is contained in the high-spatial frequencies, there is no limit to how �ne the turbulence
structures get in this description: to correct for everything would require a deformable mirror
with an in�nite number of active elements, which is not a realistic solution. In practice, a DM
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Figure 23. Schematic representation of the layout of a row of actuators pushing or pulling on a con-
tinuous re�ective membrane. The combined e�ect of the motion of all actuators gives the ability to
generate complex shapes to the deformable surface to compensate the e�ect of upstream aberrations.

Figure 24. Long exposure acquired through the atmosphere. Left: long exposure acquired in the
absence of adaptive optics. Unlike the sharp speckle pattern presented in Fig. 21, the features of this
image are washed out by the many turbulence realisations forming a wide halo. Right: long exposure
at the focus of an XAO system. The circular region surrounding the now clearly de�ned and well
corrected PSF core at the center of the image marks the domain of spatial frequencies that the DM is
able to compensate.

is made of a �nite number of actuators used either to deform a thin re�ective membrane or to
push and orient non-deformable mirror segments. For the DMs we are concerned with here,
the actuators are laid out on a regular grid. Figure 23 proposes a schematic representation for
the implementation of a row of actuators. The total number of actuators distributed across
the pupil of the instrument will determine the �nesse of the correction one can expect to
produce: the DM will act like a �lter that can attenuate the atmospheric phase screen up
until a cut-o� spatial frequencyfc imposed by the number of actuators across aperture. For
the high-contrast imaging application, the wavefront quality requirement drives the need for
a large number of actuators, of the order of a few thousand for an 8-meter aperture. With
such a large number of actuators, one sometimes talk about extreme adaptive optics or XAO.
The e�ect of this cut-o� spatial frequency is visible in the right panel of Figure 24: a clean
circular area surrounds the well corrected PSF core around which one can distinguish the
di�raction rings. The DM used to produce this simulated image featuresN = 50 actuators
across the aperture, pushing the correction radius torc = N=2 = 25�=D. For an 8-meter
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aperture observing in the H-band, this translates into a control region that is�1 arc second.
Beyond this correction radius, the power contained in the high-spatial frequency content of
the PSF is no-longer compensated and contributes to the formation of another halo.

7 Extreme adaptive optics

The high quality wavefront correction required for high-contrast imaging pushes for AO sys-
tems with a large number of actuators, tightly integrated with the coronagraph: the integration
of the high contrast imaging constraint to the wavefront control loop marks the speci�city of
what is now known as extreme adaptive optics. When deforming the mirror, the distribution
of complex amplitudeA across the aperture of the instrument is given by:

A(x; y) = P(x; y) � ei�( x;y) (29)

whereP(x; y) describes the shape of the telescope aperture and�( x; y) the distribution of
phase from the combined e�ect of the atmosphere and the correction by the DM. In the XAO
regime, the amplitude of the residual phase is small enough to justify linearizing the complex
amplitude:

A(x; y) � P(x; y) � (1 + i�( x; y)): (30)

Perfect control of the aberrations would mean�( x; y) = 0 over the entire aperture, leaving
only the unity factor resulting in the static di�raction pattern. This linearized form makes it
possible to separate the static and the dynamic components of the di�raction, respectively
corresponding to the real and imaginary parts of Eq. 30. This form can in turn be used to
compute an approximation for the PSF in the low-aberration regime:

PSF(�; �) = jjF (P(x; y))jj2 + jjF (P(x; y) � �( x; y))jj2: (31)

Figure 20 showed how the Lyot-coronagraph manages to attenuate the static di�raction
of an on-axis source, but nevertheless leaves a residual: this coronagraph is not perfect. How-
ever, other more recent coronagraphic solutions like the vortex [27] and the PIAA [3] coron-
agraphs are closer to being able to completely get rid of this di�raction term [28]. With such
designs, the post-coronagraphic residuals for the on-axis source are dominated by the wave-
front errors. Coronagraph designs can therefore be benchmarked against the so-calledperfect
coronagraph, a theoretical design producing the following on-axis coronagraphic image:

I(�; �) = jj F (P(x; y) � �( x; y)) jj2; (32)

for which the static di�raction term originally present (see Eq. 31) has deliberately been
removed. In the absence of aberrations, the perfect coronagraph provides a perfect extinction
of the on-axis source. In the presence of aberrations, the perfect coronagraph leaks and
some residual starlight �nds its way to the �nal focal plane. Figure 25 shows one example of
application of this perfect coronagraph formula, for an AO-corrected wavefront residual of 50
nm. The details of this computation will depend on the statistics of the residual aberrations. In
Eq. 32, we see the phase� squared appearing as a scaling factor for the wavefront aberration
residual light in the post-coronagraphic focal plane. A close look at the well-corrected area
of the coronagraphic image shown in Fig. 25 shows that the coronagraphic leak does look
like a scaled-down copy of the original PSF. For a given RMS level of residuals� (expressed
in nanometers) one can therefore predict a focal contrast improvement factorcb (for contrast
boost) at any place in the focal plane:
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Figure 25. Example of image computation using the perfect coronagraph formula. Left panel: a non-
coronagraphic PSF, a�ected by 50 nm RMS residual wavefront errors. Right panel: a coronagraphic
image computed for the same instrument pupil aberration. Both images share the same logarithmic
stretch and colorbar.

Figure 26. Contrast curves for the perfect coronagraph, in the presence of 50 nm RMS residual wave-
front aberration. Three curves are represented, corresponding to radial pro�les of the images provided
in Fig. 25: the reference (non-coronagraphic) PSF in blue and the corresponding coronagraphic equiv-
alent in red. The green dashed line is a copy of the blue curve, scaled down by the factorcb. Over the
�rst � 500 mas of the plot, the match between the red and the dashed green curves is quite good.

cb =
1
p

2

� 2��
�

� 2
: (33)

For the simulated 50 nm RMS residual wavefront error shown in Fig. 25, one therefore
expects acb � 0:027 contrast improvement over the original non-coronagraphic PSF. On Fig.
26, one can verify that over the �rst�500 mas of the corrected area, this approximation does
match reasonably well the simulated image.
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This model can be further re�ned [29] and used to derive the statistics of the wave ampli-
tude at each point in the focal plane [30], and evaluate the relevance of high-contrast devices
in general. What this kind of study shows is that it is not useful to design a coronagraph
that attenuates the on-axis PSF of a bright star further than the amount of residual speckles
expected for a given amount of residual wavefront aberrations. It is the performance of the
AO that will drive how far a coronagraph can help you go, and we will now look into ways
the AO performance can unfortunately throw you o�target.

8 Calibration of biases

So far, the description has been assuming that the AO system was doing the right thing: to �at-
ten the wavefront so as to help the coronagraph e�ectively erase the on-axis static component
of the di�raction of a bright star. This turns out to be a somewhat naive assumption, due to a
simple but fundamental limitation. The wavefront sensor (refer back to Fig. 22) can indeed
only sense the aberrations introduced by the instrument optics all the way down to the optics
that splits the light between the sensor and the downstream instrument. The AO is therefore
understandably oblivious to anything a�ecting the light on the instrument path after this split
which results in practice in a non-common path error. Much care is obviously taken while
initially setting up instruments, to minimize any non-common path error however, ground
based instruments are not immune to minute temperature changes and mechanical �exures.
Given the very strong dependence of the coronagraphic rejection on input wavefront quality,
the least amount of non-common path error will considerably reduce the discovery potential
of any high-contrast imaging instrument.

These techniques are victims of their own success: before the generalized use of AO, the
overall quality of astronomical images produced by a well built instrument was dominated by
random atmospheric induced errors. The progressive deployment of AO and the improvement
of its performance has reduced the contribution of random errors, resulting in animproved
precision. But when the amplitude of random errors is reduced, the e�ect of small but sys-
tematic biases a�ecting ouraccuracybecome more apparent (see Fig. 27). XAO-fed high
contrast imaging and long baseline interferometry make it possible to enter the realm of very
high-precision observations: the search and compensation of instrumental biases is becoming
more important than ever.

Despite the very high quality wavefront control (50 nm RMS only) used to produce the
simulated coronagraphic image in Fig. 25, the control region features a large number of
speckles amongst which a faint genuine companion to the bright star could hide. If induced
by random AO residual errors, the amplitude noise induced by these structures can be re-
duced simply by accumulating enough data. However if some static or quasi-static speckle
structures induced by an aberration that is not seen by the wavefront sensor persist over long
time-scales, the detection of faint planetary companions is compromised. We are going back
to the important question highlighted in the introduction of this paper: any speckle-like fea-
ture present in the image can either be a di�raction induced artefact or a genuine structure of
the target being observed.

The non-common path error turns out to be one of the dominant limitations of high-
contrast imaging instruments as faint systematic structures are reported to survive in images
over timescales stretching as far as�1 hour. The simplest calibration procedure employed in
astronomy consists in using images acquired on a reference object of known characteristics
(ideally a featureless single star), observed under conditions as identical as possible to those
used for the object of interest, and to subtract the calibration image from the image of the
target of interest. Using the shooting analogy used in Fig. 27, we would use a series of shots
aiming at the center of the target to �gure out how o�our aim really is, before going for the
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Figure 27. Precision and accuracy are two important statistical concepts that characterize all mea-
surements. As we improve the quality of our instrumentation, usually reducing the precision of the
measurements they produce, the impact of systematic bias a�ecting the accuracy of our conclusions be-
comes an essential element to take into consideration. Much energy should be spent on understanding
the origin of biases and �guring out how to calibrate them out.

big game. This strategy is common for the interpretation of AO-corrected images as well
as for optical interferometry for which it is often advised to observe more calibrators than
targets of interest.

While reasonably e�ective the calibrating potential of this method remains limited: it is
di�cult to guarantee that observing conditions are indeed strictly identical when going from
a science target to a calibrator. The repointing of the telescope, the small di�erences in ele-
vation, spectral type and evolutions of the atmospheric seeing will eventually translate into
biases of their own. For high-contrast imaging, other approaches are available that do not
require to alternate observations on a target interest with those of one or more calibration
stars: it is indeed possible to take advantage of the �eld rotation experienced when an in-
strument is installed at the focus of an alt-azimuthal telescope. When following a target as it
transits across the local meridian with one such instrument, the target appears to rotate while
the residual di�raction induced by the instrument corrected by the AO but still a�ected by the
non-common path error, remains stable. The relative rotation between the observed scene and
the residual di�raction pattern can be used to distinguish spurious di�raction features from
genuine structures in a series of images. This approach is referred-to as angular di�erential
imaging or ADI [33] and has led to a wide variety of algorithms such as LOCI [34]. Any
type of observation that include some form of diversity such simultaneous imaging in two
spectral bands (spectral di�erential imaging or SDI) or in two polarization states (polarized
di�erential imaging or PDI), theoretically makes it possible to calibrate out systematic e�ects
that bias observations. One must however remain attentive to the implementation details, as
these techniques end up relying on further splits of the light path, which can become a source
of non-common path. To account for all possible biases during such observations requires a
multiple tier calibration procedure, that includes the ability to swap light paths, an example
of which is given in [35].
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Figure 28. Illustration of the impact of post-processing (from [31]) on high-contrast observations with
a vortex-coronagraph by the SCExAO instrument [32]. The left hand side panel features shows a raw
15 second exposure of� -And and the right hand side panel shows the impact of the ADI quasi-static
speckle pattern subtraction. The highlighted companion, that could be mistaken for a speckle visible in
the raw image, is clearly above the noise level after the post processing has been applied.

More recent approaches give a new spin to the idea of using calibrators, by relying on the
principal component analysis of a library of reference PSFs [36], which provides performance
comparable to ADI-inspired approaches. Finally, it is also possible to take the information
contained in AO-corrected images (albeit not coronagraphic ones), and to project it onto a
sub-space (called the Kernel) that �lters out aberrations [37]. The approach is reminiscent
of the closure-phase technique used in interferometry [38, 39], but is now applicable to AO-
corrected images [40], and is particularly relevant for detection near the di�raction limit
(around�1-2 �= D). Regardless of the algorithmic details at work, Figure 28 shows the impact
thepost-processing has on high-contrast imaging by comparing a single raw coronagraphic
image to the result of post-processing of a 10-minute series of images: the impact of the
speckle subtraction is spectacular and sometimes contribute as much if not more than the
coronagraph itself.

9 Focal-plane based wavefront control?

Unless high-contrast imaging solutions that are intrinsically robust to weak amounts of aber-
rations do emerge, better calibration stategies must be employed if a performance improve-
ment is desired. The importance for a good calibration of systematic e�ects in coronagraphic
images will grow as the quality of the upstream AO correction keeps on improving. One
needs to �nd, at the level of the focal plane, a discrimination criterion that will make it pos-
sible to distinguish a genuine struture in the focal plane from a spurious di�raction induced
speckle. The introduction to this paper already hinted at one possibility, relying on the ability
to measure the degree of coherence of the structure in question. Section 2 introduced the idea
of coherence as the ability of light to interfere. Given the two important coherence proper-
ties of astronomical sources: the fact that the light of an unresolved point source is perfectly
coherent while the light of distinct point sources is incoherent, can be used to discriminate
speckles from planets in an image.
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Figure 29. Left: sinusoidal modulation of the wavefront across the instrument pupil by the high-order
deformable mirror. Right: the resulting point spread function. The original on-axis di�raction pattern
is �anked by two high-contrast replicas at a distance of�18 �= D, given by the number of cycles across
the aperture.

Deliberate modulation of the starlight synchronized with acquisitions by the focal plane
camera form the basis for an ideal coherence test that will discriminate the true nature of the
high-contrast features present in an image. The deformable mirror can indeed be used to send
additional light atop of whatever is currently in the focal plane and the camera can be used to
diagnose the degree of coherence of the light recorded in the live image.

The grid structure of the DM actuators (see Figure 23) used in XAO systems makes them
particularly suited to the generation of sinusoidal modulation patterns. When one such modu-
lation is applied, the DM behaves like a di�raction pattern and displaces some of the starlight
that would otherwise be transmitted on-axis (and possibly attenuated by the coronagraph) at
a distance that is proportional to the number of cycles across the aperture.

With N actuators across one aperture diameter, the highest spatial frequency one can
reach corresponds to a state where every other actuator is pushed up with the others pushed
down: the sinusoidal wave thus generated containsnc = N=2 cycles across the aperture. This
is what sets the cut-o�spatial frequency of AO introduced in Section 6. A deformation� of
respectivelykx andky cycles (both� nc) along thex andy directions of the image is equal to:

�( x; y) = a � sin(2�(kxx + kyy)=D + �) (34)

wherea is the amplitude of the modulation (typically expressed in microns or nanometers)
and� the phase of that modulation. For a small modulation amplitude�, the complex ampli-
tudeA(x; y) induced by this deformation can be linearized (like for Eq. 30)5:

A(x; y) = P(x; y) � exp
�
i4�=� � �( x; y)

�
(35)

� P(x; y) �
�
1 + i4�a=� � sin

�
2�(k xx + kyy)=D + �

� �
(36)

5The global scaling factor is here 4�=�and not 2�=� as one might have expected. This�2 factor is there to take
into account the fact that we are dealing with a re�ection o�a mirror: a� mechanical deformation of the surface
induces a 2�deformation of the wavefront.
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We know that a Fourier transform relates the distribution of complex amplitude in the
pupil to that in the focal plane, and can relate values ofa and� to the properties of speckles
in the focal plane. If one knows the Fourier transform of the sine function:

F
�
sin (2�kx)

�
=

1
2i

�
�(u � k) � �(u + k)

�
; (37)

where�(u) is the Dirac distribution, then the Fourier transform of Eq. 36 will write as:

Â(�; �) = P̂(�; �) 

�
�(�; �) +

2�a
�

�
ei� �(� � kx; � � ky) � e�i� �(� + kx; � + ky)

��
; (38)

using angular coordinates� and� expressed in units of�= D. A detector located in the focal
planewill record the square modulus of this expression. Each� function (convolved by the
Fourier transform of the aperturêP) marks the location of one PSF. Eq. 38 therefore allows
you to predict that the focal plane will feature two replicas of the original on-axis PSF, at
positions given by the number of cycleskx andky. The two replicas are characterized by
reference complex amplitudes:� 1 = (2�a=�) � ei� and� 2 = (2�a=�) � ei(���) . An example
of image showing this is shown in Fig. 29 for�18 cycles, resulting in a pair of symmetrical
replicas of the on-axis PSF at�18 �= D. Whereas the number of cycles imposes the location
of the replicas, the amplitude of the modulationa sets the contrast relative to the original PSF,
which is given by:

c = (2�a=�) 2: (39)

Plugging in a sinusoidal phase modulation of amplitudea = 50 nm therefore produces
in the H-band (� �1.6 �m) a pair of replicas of contrastc � 4 � 10�2 which may seem
surprisingly bright to the reader. Figure 26 indeed presented for the perfect coronagraph in
the presence of a similar level of RMS error, considerably more favorable contrasts. The
di�erence between the two scenarios lies in the structure of the residual phase noise: near
random in the case presented in Fig. 26 which distributes the total amount of light associated
to the RMS over the control region, or highly structured in the sinusoidal modulation scenario,
that focuses the di�racted light onto two speci�c locations. In addition to the residual RMS
given by an AO or XAO system, it is therefore also important to understand how the residuals
are distributed across the aperture.

So far, we've accounted for the number of cycleskx;y and the modulation amplitudea but
not for the� and� � � phase of the replicas remains: if one were to ignore the convolution
operation byP̂, taking the square modulus of second term of Eq. 38 would make those phase
terms disappear as theei� factor disappears, suggesting that the phase of the replicas does
not matter. The convolution will however bring di�racted light over the area covered by the
replica. We have starlight landing atop of starlight: the two contributions will interfere with
one another. If the light of an incoherent source is present (ie. a planet or one local disk struc-
ture), then the added light will not interfere with this structure: the two intensitise will simply
add. Depending on the phase di�erence between the replica and the speckles or di�raction
features already present in the focal plane, the interference can either be constructive or de-
structive, which leads to an interesting prospect: the possibility of improving the raw contrast
of images by tweaking the shape of the deformable mirror. Earlier, it was pointed out that the
job of AO feeding a classical imaging system is to �atten the wavefront so as to improve the
overall image quality: for a high-contrast imager, the optimal strategy is no longer to �atten
the wavefront but to improve the contrast in the focal plane, which can drive the DM to shape
the DM quite far from �at. This idea was �rst envisioned for space [41] and has led to a
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series of sophisticated algorithms such as speckle-nulling [42], electric �eld conjugation [43]
or stroke minimization [44]. If the wavefront sensing systems used in modern AO systems
tolerate the idea of being driven away from a �at reference wavefront, then this approach
becomes implementable on ground based high-contrast imaging instruments.

To produce a fully destructive interference that would result in a local reduction of the
local intensity in the image, the complex amplitude of the added replica must match that of
the already present structure, with the same amplitude but with opposite phase.

In practice, one does not direcly measure the contrast of speckles: one will primarily
access to a local intensityI0 which we know will be proportional to the square modulus of
the speckle complex amplitude:

I0 = 
 � jja 0ei� 0 jj2 = 
 � jja 0jj2; (40)

where the proportionality constant
 will depend on the brightness of the target and the expo-
sure time and will therefore have to be regularly estimated and controlled. While the intensity
associated to speckle gives us a proxy for its amplitudea0, its phase� 0 remains unknown.
To determine it, one can use a probing approach, which consists in following the evolution of
the local intensity as the speckle interferes with a probe speckle of known, stable amplitude
a and variable phase�. The intensity of the coherent sum of these two complex amplitudes
is the result of a classical two-wave interference equation:

I (�) = 
 �
�����

�����a0ei� 0 + aei�
�����

�����
2

(41)

= 
 �
�
a2

0 + a2 + 2a0 acos (� 0 � �)
�
: (42)

This interference function is evaluated for an adaptable number of probes with a phase
� uniformly sampled between 0 and 2�radians and at least three distinct values of� are
required to constrain the values ofa0 and� 0. In practice, a �ner sampling minimizes the
sensitivity to high temporal frequency phase noise (overall jitter and AO dynamic residuals).
An example of modulation is represented in Figure 30. It compares the original intensity
level marked by the horizontal red line to the blue curve recording the evolution of the phase
modulation. When the probe is in phase with the original speckle (� = �0), the local intensity
is quadrupled. When the probe is in phase opposition with the original speckle (� = �0 + �),
the local intensity can be brought to zero.

With four probes, with phases 0,�=2, � and 3�=2, an analytical solution exists to directly
measure the complex amplitude of the speckle: this is the so-called ABCD-method. A more
general solution is however possible, that is compatible with an arbitrary numberN of phases
(with N � 3). It boils down to a parametric model �t of the modulation curve. In addition
to IS the vector ofN intensities recorded during the probing sequence, one can precompute a
separate vectorW that contains the consecutive powers of theNth root of unitywN = ei2�=N.
The value of the phase� 0 is directly given by the argument of the dot product between these
two vectors:

� 0 = arg
�
I>
S � W

�
; (43)

while the visibility modulus� (0 < � < 1) characterizing the modulation described by Eq.
30 is related to the modulus of the dot product:

� =
2a a0

a2 + a2
0

=
2
N

���jI>
S � W

���j: (44)
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Figure 30. Modulation of the speckle intensity (expressed in units of detector counts) as a function
of speckle probe phase. The red curve marks the intensity of the original speckle for which the phase
is unknown. The blue curve is the result of the addition of a probe speckle of variable phase�. The
observed modulation con�rms that the speckle is a coherent (ie. contains starlight) structure: one phase
of the added speckle (� � 4.5 radians) attenuates the local intensity, resulting in an improved local raw
contrast.

The amplitudea0 of the original speckle is one of the two roots of the following quadratic
equation:

a2
0 �

2a
�

a0 + a2 = 0; (45)

which are given by:

a0 =
a
�

�
1 �

p
1 � � 2�

: (46)

The amplitudea of the probe is selected to be as close as possible to the amplitude of
the specklea0, so as to maximize the visibility modulus�, which results in an improved
sensitivity to the properties of the speckle. Because we can't a�ord to make a mistake that will
amplify the speckle present if we pick the wrong amplitude, one solution is to systematically
bu� up the probe (for instance by 5 %): some sensitivity is lost but we can be sure that the
solution (from Eq. 46) with the minus sign will always be the right one.

Using this algorithm, it is possible to create a closed-loop focal-plane based wavefront
control loop that modi�es the reference position of the DM to create a higher contrast area
within the control region. Note that while the description of this technique looked at a single
speckle, the algorithm can be multiplexed and simultaneously probe dozens or even hundreds
of speckles (the exact number depends on the number of actuators available), making it much
more e�cient. Note that instead of a temporal modulation of the coronagraphic speckle �eld
inside the control region, spatial modulation is possible: the self-coherent camera (SCC) [45]
relies on this idea. Instead of acquiring a sequence of images before applying a correction,
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Figure 31. Result of two speckle nulling experiments carried out on the SCExAO instrument on an
internal calibration source without a coronagraph. For each image, one can see a high-contrast region
was created by the speckle nulling loop on one side of the �eld of view only. Although it is less obvious
on these images, on the opposite side, the speckles and di�raction features of the PSF are ampli�ed as
a result of the speckle nulling.

the focal plane must be oversampled while a reference beam of starlight is uniformly pro-
jected over the control region: the speckles feature fringes that directly encode the complex
amplitude properties of the speckles.

Speckles in the focal plane have two origins: they can either be induced by pupil phase
aberrations, or can be induced by the geometry of the aperture itself if the coronagraph is
absent or if it is imperfect: one can always think of di�raction rings and spikes as being made
up of a coherent sum of individual speckles: we can refer to these as induced by pupil am-
plitude aberrations. It sounds fair game to try and compensate for phase aberration induced
speckles by phase modulations, but what of pupil amplitude induced ones? By bending the
wavefront, the DM can only redistribute the energy in the focal plane and not make it disap-
pear: when it corrects phase induced speckles, the energy associated to these speckles gets
injected back into the original PSF; when it corrects an amplitude induced speckle on one
side of the �eld, it ampli�es the speckle on the opposite side. Figure 31 shows the result
of two speckle nulling experiments done on the SCExAO instrument in a non-coronagraphic
mode. The high-contrast region created by the successive attenuation of speckles covers half
of the control region. The appropriate DM modulation produces a high-contrast region in the
focal plane, an e�ect that is similar to what apodization achieves (see Sec. 5.1). The use of
static apodizing phase plates achieving a similar e�ect [46] has been successfully exploited
on-sky. These phase plates bene�t from advantages that render them fairly achromatic [47].
But like all static high-contrast imaging devices, they are not immune to biases and a focal
plane feedback loop remains essential.

If the same deformable mirror is simultaneously driven by the upstream AO that tends
to �atten the wavefront and this focal plane based control that deliberately pushes it away
from the �at, to improve the raw contrast in the image, con�icts may occur. One (easy but
expensive!) solution may be, in future implementations, to rely on two distinct mirrors for the
AO and the high-contrast. The other (cheaper but more di�cult) requires the upstream AO
system to agree with the idea of stabilizing the wavefront away from �at. This is the object



Figure 32. Example of on-sky speckle nulling experiment with the SCExAO instrument without a
coronagraph (from [32]). Left: the starting point of the algorithm, after the initial lock of the upstream
AO system. Right: after a few minutes of speckle nulling closed loop operation, the left hand side of the
�eld is e�ectively darker. The D-shaped control region over which the loop is operating is highlighted.

of ongoing work: an exemple of partial speckle nulling correction obtained on sky also with
the SCExAO instrument is presented in Figure 32.

10 Conclusion

One of the goals of this lecture was to highlight the formalism and properties that optical
interferometry and high-contrast imaging have in common: we �rst focused on the notion
of coherence, most often invoked in the sole context of interferometry, since this technique
directly aims at measuring it. The fundamental coherence properties of astronomical sources
however also make it possible to explain how images acquired by telescopes form. They also
explain what information can be extracted from images dominated by di�raction features.
The link between the two techniques runs strong: the Van Cittert Zernike theorem, used at
the very heart of interferometry to relate the measurements of complex visibilities to the
properties of astrophysical sources (refer to the lecture by Prof. Jean Surdej in this book) can
be understood as a Fourier-centric equivalent of the image - object convolution relation.

Equipped with this formal background, we took a closer look at high-contrast imaging
and the principles behind the optical techniques of pupil apodization and coronagraphy that
attempt to beat down the photon noise of the bright star and improve the detectability of
high-contrast sources in their vicinity. We now know that these solutions can only reduce the
photon noise associated to the static di�raction �gure of the instrumental chain. In the pres-
ence of residual aberrations, their performance rapidly degrades and their bene�t becomes
marginal. State of the art extreme adaptive optics systems, manage to bring the wavefront
residual errors down to a few tens of nanometers, but systematic biases, mostly associated to
non-common path errors do survive over long time-scales and limit the discovery potential
of high-contrast imaging instruments. Sophisticated post-processing techniques do manage
to calibrate some of these systematics and have considerably contributed to the direct imag-
ing of a few planetary systems featuring bright planets. There are still orders of magnitude
to overcome to directly image the large number of mature planets theoretically within the
grasp of ground based telescopes. Before having to resort to post-processing, closed-loop
feedback from the focal plane while carrying out the observations seems like a reasonable
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way to compensate for biases, and design systems that better answer the question: speckle
or planet? Going full circle back to the notion of coherence, the example of iterative speckle
nulling was described in higher details. Other techniques and algorithms are also possible
and may prove more e�cient to implement as they mature and adapt to the tough telescope
environment. The robustness of the speckle nulling approach however makes it an attractive
next step in the elimination of biases for high-contrast imaging.
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Figure 33. Frantz Martinache, relaxing after his excellent lecture.



Figure 34. Lonely boat at low tide by the school's hotel.

Figure 35. View of the picturesque town of Rosco�, traditional departure point for FrenchJohnnies,
selling onions in England: the origin of the cliché for English people, the Frenchmen with onions around
their neck.
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Abstract. The present notes refer to a 3-hour lecture delivered on 27 September
2017 in Rosco� during the 2017 Evry Schatzman School. It concerns a general
introduction to optical/IR interferometry, including a brief history, a presenta-
tion of the basic principles, some important theorems and relevant applications.
The layout of these lecture notes is as follows. After a short introduction, we
proceed with some reminders concerning the representation of a �eld of elec-
tromagnetic radiation. We then present a short history of interferometry, from
the �rst experiment of Fizeau and Stefan to modern optical interferometers. We
then discuss the notions of light coherence, including the theorem of Zernicke-
van Cittert and describe the principle of interferometry using two telescopes.
We present some examples of modern interferometers and typical results ob-
tained with these. Finally, we address three important theorems: the fundamen-
tal theorem, the convolution theorem and the Wiener-Khinchin theorem which
enable to get a better insight into the �eld of optical/IR interferometry.

1 Introduction

In the absence of the Earth atmosphere above a ground-based telescope equipped with a mir-
ror having a diameterD1, Figure 36 illustrates the image one would observe from a point-like
star recorded in the focal plane in monochromatic light at a wavelength� . It is a dot of light,
the well-known Airy disk, which angular radius measured in radian is simply given by 1.22
�= D1. Unfortunately, the Airy disk does not contain any information relative to the star be-
ing imaged, irrespective of its size, shape, e� ective temperature, luminosity, distance, etc. A
larger telescope with a diameterD2 > D1, would similarly lead to a smaller Airy disk (1.22
�= D2) of light for the star being imaged (see Fig. 37), providing a slightly better angular res-
olution image but with no more speci�c information related to the star. While observing an
extended celestial source (cf. a distant resolved Earth-like planet as shown in Fig. 38), more
details are seen with the telescope having a larger diameter. The dream of astronomers is
therefore to construct always larger telescopes but presently there is a limit (D� 40m) over
which it is technologically di� cult to construct a single mirror telescope (cf. the ELT, TMT,
GMT projects).
Fortunately, in 1868 Fizeau and Stephan just realized that ”In terms of angular resolution,
two small apertures distant ofB are equivalent to a single large aperture of diameterB.” (see
Fig. 39). This is actually the subject of the present lecture: to understand how it is possible
to reconstruct high angular resolution images of a distant celestial source using modern op-
tical/IR interferometers such as VLTI, CHARA, etc. In fact, the image of a distant star that
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one would see in the focal plane of a Fizeau-type interferometer is no longer just an Airy
disk due to each single telescope aperture but a brighter Airy disk superimposed with a series
of interference fringes, alternately bright and dark, perpendicularly oriented with respect to
the line joining the two telescopes and with an inter-fringe angular separation equal to�= B,
whereB is the baseline of the interferometer (see Fig. 40). This naturally leads to the hope
that it will be possible to retrieve along the direction of the baseline having a lengthB an
angular resolution that is equivalent to that of a single dish telescope having a diameterB.
As a summary, �gure 41 illustrates the improvement expected in angular resolution while
observing an extended celestial source with telescopes of increasing size (D2 > D1) and with
an interferometer composed of two telescopes separated by a distanceB > D.

Figure 36. Airy disk of a
point-like star recorded in
the focal plane of a
telescope with diameterD1.
The angular diameter of the
Airy disk is 2.44�= D1.

Figure 37. As the diameter
of a telescope increases
(D2 > D1), the Airy disk of
a point-like star gets smaller.

In mathematical terms, the convolution theorem states that the image I(�; �) we observe
in the focal plane of an instrument (single dish telescope or interferometer) from a distant
extended source as a function of its angular coordinates�; � is the convolution product of the
real source image (cf. the extended Earth-like planet), O(�; �) by the point spread function
PSF(�; �) of the telescope (i.e. the Airy disk, see Fig. 42) or of the interferometer (i.e. the
Airy disk crossed by the interference fringes).

While taking the Fourier transform (FT) of the �rst expression given in Fig. 42, we
�nd that FT[I (�; �)](u; v) is simply equal to the natural product ofFT[PS F(�; �)](u; v) and
FT[O(�; �)](u; v) where u; vrepresent the angular space frequencies de�ned asu = Bu=� and
v = Bv=�, respectively, whereBu andBv correspond to the projected baselines of the interfer-
ometer along the directions parallel to the angles�; �. One can then expect that by just taking
the inverse Fourier transformFT �1 of FT[O(�; �)](u; v), it will become possible to retrieve
high angular resolution information about the extended source with an angular resolution



Figure 38. While observing
an extended celestial object
(cf. an Earth-like planet)
above the atmosphere, we
see more details as the
diameter of the telescope
increases.

Figure 39. Fizeau and
Stephan proposed to
recombine the light from
two independent telescopes
separated by a baselineB to
recover the same angular
resolution as that given by a
single dish telescope having
a diameterB.

equivalent to 1=u= �= Bu and 1=v= �= Bv, respectively:

O(�; �) = FT �1 [FT[O(�; �)](u; v)](�; �) = FT �1 [
FT[I (�; �)](u; v)

FT[PS F(�; �)](u; v)
](�; �): (47)

The quantityFT[I (�; �)](u; v) can be directly derived from the observation of the extended
source with the optical/IR interferometer while the other quantityFT[PS F(�; �)](u; v) can
be obtained from the observation of a point-like (unresolved) star. During this lecture, we
shall see that the Wiener-Khinchin theorem states that the latter quantity is also merely given
by the auto-correlation function of the distribution of the complex amplitude of the radia-
tion �eld in the pupil plane of the observing instrument being used (single dish telescope or
interferometer). The goal of the present lecture is to establish relations such as Eq. (47).

2 Some reminders

With a few exceptions (cf. the Moon, the Sun, the Andromeda Galaxy, etc.), all the celestial
objects that we see in the sky appear to us, with the naked eye, as point-like objects. Apart
from their apparent motion with respect to the �xed stars on the celestial sphere, we are not
even able to distinguish between the images of Jupiter, Saturn or even Venus from those of
ordinary stars. We describe in this course an observation method based on the principle of a
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Figure 40. When
recombining the
monochromatic light of two
independent telescopes,
there results the formation of
a pattern of bright and dark
fringes superimposed over
the combined Airy disk. The
angular inter-fringe
separation is equal to�= B.

Figure 41. Improvement
expected in angular
resolution while observing
an extended celestial source
(cf. an Earth-like planet)
with telescopes of increasing
size (D2 > D1) and with an
interferometer composed of
two telescopes separated by
a baselineB > D.

Fizeau-type interferometer, which allows with just some basic cooking equipment to resolve
angularly a planet such as Venus, when it is at its maximum apparent brightness (V� �4:4).

If we assimilate for a moment the disc of a star, or even that of Venus, to the �lament
of a light bulb, the object of the present lecture can still be formulated as follows: given a
common electric light bulb inside which is a �lament, having a certain thicknessT (measured
perpendicularly to the line-of-sight) and which is incandescent (cf. a star), how to measure
the thicknessT of this �lament (diameter of the star) not only without breaking the bulb but
also assuming that it is so far away from us, at a distancez, that it is not possible for us to
angularly resolve the �lament with the naked eye (see Fig. 43a)?

Let us now recall that knowledge of the angular radius (�= R=z) of a star located at a
distancez(z >> R) and having a linear radiusRallows the direct determination of its �uxF at
the stellar surface from the �uxf observed on Earth (as a reminderF = f =�2, see Fig. 43b).
If we can measure the absolute distancez of the star, we can also determine its linear radius
R from its angular radius� (R = � z). Moreover, knowledge of the intrinsic �uxF of the star
allows an immediate determination of its e�ective temperatureTe f f, thanks to the application
of the Stefan-Boltzmann law (F = �T 4

e f f). It then results thatTe f f = ( f =�� 2)1=4. The
measurements of the angular radius and of the �ux of a star measured on Earth thus lead to the



Figure 42. The image I(�; �)
we observe in the focal
plane of an instrument (cf.
single dish telescope) from a
distant extended source as a
function of its angular
coordinates�; � is the
convolution product of the
real source image (cf. the
extended Earth-like planet,
O(�; �)) by the point spread
function PSF(�; �) of the
telescope.

Figure 43. Resolving the
angular diameter of a star
(b) is alike trying to estimate
the angular size of the
�lament of a light bulb (a).

determination of the e�ective temperatureTe f f of that star. As a reminder, this temperature
is directly involved in the construction of stellar atmosphere models and stellar evolution.
We will also show that Fizeau-type stellar interferometry literally allows direct imaging with
very high angular resolution of distant bodies by the method of aperture synthesis. Let us now
proceed with a few theoretical reminders about the description of a �eld of electromagnetic
light radiation.

2.1 Complex representation of an electromagnetic wave

Let us �rst remind that a beam of light radiation can be assimilated to the propagation of a
multitude of electromagnetic waves at the speed of 299,792km s�1 in the vacuum. If, for
the sake of simplicity, we assume that we deal with a plane monochromatic wave, linearly
polarized, propagating along the direction of abscissaz, the electric �eldE at any point in
space and at timet, can be represented by a sinusoidal type function taking for example the
shape

E = a cos(2�(� t � z=�)) (48)

where
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� = c T = c=� (49)

c, �, � , T anda representing the speed of light, the wavelength, the frequency, the period
and the amplitude of the electromagnetic vibrations, respectively (see Figure 44).

Figure 44. Representation of an electromagnetic
wave.

We know how convenient it is to rewrite the previous equation in complex notation:

E = Refaexp[i2�(� t � z=�)]g (50)

whereRerepresents the real part of the expression between the two curly braces. This
complex representation of an electromagnetic wave has the great advantage that the exponen-
tial function can now be expressed as the product of two functions depending separately on
the spatial and temporal coordinates

E = a exp(�i�) exp(i2�� t) (51)

where
� = 2�z=�: (52)

If we suppose that all the operations that we carry out on the electric �eldE are linear, it is
of course very convenient to use in our calculations its complex representation (see Eq.(51))
and to take at the end the real part of the result obtained.

We can then rewrite the previous equation as follows:

E = A exp(i2�� t); (53)

where
A = a exp(�i�) (54)

with A representing the complex amplitude of the vibration.
Because of the extremely high frequencies of electromagnetic waves corresponding to

visible radiations (� � 6 1014Hz for � = 5000 Å), we recall that it is not normally possible to
make direct observations of the electric �eldE (the situation is di�erent in the radio domain).
The only measurable quantity is the intensityI , which is the time average of the amount
of energy passing through a unit surface element, per unit of time and solid angle, placed
perpendicularly to the direction of propagation of the light beam.

The intensityI is therefore proportional to the temporal average of the square of the
electric �eld:

D
E2

E
= limT!1

1
2T

Z +T

�T
E2dt; (55)



which is reduced to (e.g. replace in the previous relationE by Eq.(48))

D
E2

E
=

a2

2
; (56)

wherea is the real amplitude of the electric �eld.
By convention, the intensity of the radiation is de�ned by the following relation:

I = A A� = jAj2 = a2: (57)

2.2 Principle of Huygens-Fresnel

We recall that, according to Huygens, each point of a wavefront can be considered as being
the centre of a secondary wave leading to the formation of spherical wavelets, and that the
main wavefront, at any subsequent moment can be considered as the envelope of all these
wavelets (see Fig. 45).

Figure 45. Illustration of the
Huygens-Fresnel principle
during the propagation of a
plane or circular wavefront
and di�raction of light
which encounters a
converging lens.

Using this model, Fresnel was the �rst to account for the observed e�ects of light di�rac-
tion, assuming that secondary wavelets interfere with each other. This combination of the
Huygens construction method and the Fresnel interference principle is called the Huygens-
Fresnel principle. This is the basis of the concept of the Fourier transform. Let us remind
a direct application of this principle when studying the formation of the image of a distant
object at the focus of a telescope having a linear diameterd. Following the di�raction of the
waves at the passage of the opening of the telescope (as if the waves were trying to spread and
bypass the obstacles), we observe a phenomenon of redistribution of the energy of the light
wave: the image of a point-like source produced by a converging circular objective (lens or
mirror) is not a point but spreads in a di�raction pattern called the "Airy disk" (see Fig. 45).
The angular diameter of the central spot is (in radian):

� = 2:44�=d (58)

where� is the wavelength of light andd is the linear diameter of the aperture.
We can resolve an extended source by direct imaging, if and only if, its angular diameter�

(= 2� ) is somewhat larger than� . For example, our pupil whose approximate diameter varies
between 1 and 5 mm, allows us to angularly resolve nearby objects separated by more than
138” and 28”, respectively. In the visible range, a telescope, with a diameter of 14 cm, will
allow us to resolve objects with an angular dimension larger than 1”, and for diameters larger
than 14 cm, their collecting area will naturally be enhanced but their angular resolution will
remain limited to (more or less) 1” because of the atmospheric agitation (see Fig. 46). In fact,
under the in�uence of temperature and pressure gradients, a regime of eddies establish itself
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in the Earth atmosphere which, at low altitude (�10 km), have dimensions of the order of 20
cm (sometimes only a few cm, sometimes 30 or 40 cm) and evolution periods of the order of
a few milliseconds. Optically, these changes manifest themselves by an inhomogeneity in the
refractive index distribution. The amplitude and the relative phase shift of the electromagnetic
�eld in the pupil plane thus get disturbed in a random manner.

Figure 46. Atmospheric agitation above the
objective of a large telescope causing the
seeing e�ects seen in its focal plane.

It follows that if we observe the Moon, Jupiter, etc. either with the largest telescope in the
world with a diameter of 10m (�= 0.014”) or with an amateur telescope with a diameter of
14 cm (� = 1”), we will see the same details under good seeing conditions. The brightness
will of course be larger with the 10m telescope ... but probably too bright for the eye not to
be blinded by the image of the Moon or Jupiter.

The di�usion indicator of the atmosphere is de�ned as being the average inclination per-
turbation of the wave surfaces. This tilt disturbance reaches values that vary between 1” and
10”, depending on the site and the moment. This phenomenon is detected di�erently accord-
ing to the dimensions of the instrument used. The eye, which has an angular resolution close
to the minute of arc, will be sensitive only to variations of amplitude: we then see stars �ick-
ering. An instrument of 10 to 20 cm in diameter will detect tilt variations and the focal image
will oscillate around an average position. For larger instruments, a large number of eddies
will, at the same time, be involved in the formation of the focal image. This will therefore
have the dimensions of the di�usion indicator of the atmosphere. The spatial coherence of
the entrance pupil will allow, for a point-like source, the realization of interference phenom-
ena between the radiations passing through di�erent points of the pupil. A statistical study
makes it possible to show that the resulting focal image, delimited by the di�usion indicator,
consists of a set of granules (called 'speckles') which have the size of the Airy disk of the
instrument (see Fig. 46). These granules swarm in the di�usion spot at the rhythm of the
change of the atmospheric eddies. The stability of the focal image is therefore also of the
order of the millisecond. The technique of speckle interferometry, developed by the French
astronomer Antoine Labeyrie, allows to re-construct the images of the stars observed with
the angular resolution given by the true diameter of the telescope.



3 Brief history about the measurements of stellar diameters

In the past, there have been numerous attempts to measure angular diameters of stars, and we
will �rst recall three of these approaches that clearly show the di�culties encountered.

3.1 Galileo

A �rst experimental attempt to measure the angular diameter of stars was made by Galileo
(1632). He proceeded as follows: placing himself behind a rigid wire (whose thicknessD
was known, see Fig. 47) suspended vertically, he determined the distancez to which he had
to move in so that the image of the star Vega (�Lyrae) of magnitude zero got completely
obscured by the wire. Galileo deduced that the angular diameter of Vega, equal to that of the
wire, was about 5”, which was in itself a rather revolutionary result, since the value adopted at
that epoch for the angular diameter of the stars was close to 2'. As we saw earlier, the value of
2' is certainly the result of the low angular resolution of our eye, while the 5” angular diameter
measured by Galileo was the result of the e�ects of the atmospheric agitation (seeing e�ects)
at the time of his observations.

Figure 47. Experimental
measurement by Galileo of the
angular diameter of a star (see text).

3.2 Newton

A theoretical estimate of the angular dimension of a star of magnitude zero was performed by
Newton. His approach was as follows: if we suppose that the Sun is a star similar to the stars
situated on the celestial sphere and if we place our star of the day at a distancez such that
its apparent brightnessV� becomes comparable to that of a star of magnitude equal to zero,
then its angular diameter� should be of the order of 2 10�3 ” (with the current value of the
visual apparent magnitude of the Sun,V� = -26.7, we �nd� 8 10�3”). It should be noted that
the value currently established for the star Vega with modern interferometers is 3 10�3 ”. The
formula to be used to establish this result can be obtained as follows: the angular diameter
of the Sun� placed at the distance of Vega (V= 0) is given by the product of the apparent
angular diameter of the Sun� � times the factor 10V� =5. As a reminder, the apparent diameter
of the Sun is about 30'.

3.3 Fizeau-type interferometry

The third experimental attempt of measuring stellar diameters, based on Fizeau-type interfer-
ometry, is in fact the work of prominent scientists such as Young, Fizeau, Stephan, Michelson
and Pease. These last two having measured the �rst angular diameter of a star in 1920. Al-
though other methods of interferometric measurements of stellar angular diameters appeared
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later (cf. the interferometry in intensity of Brown and Twiss in 1957, speckle interferometry
by Antoine Labeyrie in 1970, etc.), we will only describe in detail the Fizeau-type interfer-
ometry, which is still the most powerful technique used and the most promising measurement
of angular diameters of stars and imagery at very high angular resolution of distant bodies by
the aperture synthesis method.

Let us �rst remind the results obtained in the Young double hole experiment (1803, see
Fig. 48).

Figure 48. The double hole
experiment of Young (see
text).

A monochromatic plane wave coming from a distant point-like source is falling on a
screen drilled with two holes (P1 and P2) separated along thex axis by a baselineB. In
accordance with the Huygens-Fresnel principle, the two holes will emit spherical waves that
will interfere constructively whenever the di�erence in their propagation lengths is a multi-
ple of � (see Eq. (59) below), and destructively if it corresponds to an odd number of half
wavelengths.

The locus of pointsP(x; y;z) with cartesian coordinatesx, y, z (see Fig. 48) where there
will be a constructive interference is thus given by

jP1Pj � j P2Pj = n� (59)

with n = 0;�1; �2; etc.
Let the pointsPi(xi ; yi ; 0) in the screen plane andP(x; y;z) in the observer plane be such

thatjxi j; jyi j; jxj; jyj << jzj. We then �nd that

jPiPj =
q

(x � xi)2 + (y � yi)2 + z2 (60)

which can be simpli�ed at �rst order (given the above conditions) as follows:

jPiPj = zf1+
(x � xi)2 + (y � yi)2

2z2
g: (61)

Considering the two pointsP1 andP2 in the Young's screen, Eq. (59) reduces to

zf1+
(x + B=2)2 + y2)

2z2
g � zf1+

(x � B=2)2 + y2

2z2
g= n� (62)

and �nally
xB
z

= n� (63)

or else
� =

x
z

= n
�
B

: (64)

Since the angular separation� between two successive maxima (or minima) does not depend
on the coordinatey, there results a pattern of bright and dark fringes, oriented perpendicularly



with respect to the line joining the two holes, and with an inter-fringe angular separation
� = �= B. In case the two holes are not in�nitely small, the observed interference pattern will
naturally overlap the combined Airy disks produced by each single hole. For� = 5500 Å
and B = 1 mm, we �nd that� = 113”, just at the limit of our eye visual resolution. In
1868, the French optician Hyppolite Fizeau realized that in the Young's hole experiment
presented above, the contrast of the interference fringes decreased as the diameter of the
light source widened. Similarly, it decreased when the distanceB between the two holes
was extended. Was there a simple relation between the angular diameter� of the source
and the spacingB between the two holes corresponding to the disappearance of the fringes?
Before establishing such a rigorous relationship, let us try to understand this observation
intuitively on the basis of simple geometrical considerations (see Fig. 49). Indeed, if instead
of considering the di�raction pattern given by Young's holes for a single point-like source,
we consider a composite source made of two incoherent point-like sources separated by an
angle�, that is to say between which there is no interference between their light, it will result
in the plane of the observer a superposition of two systems of Young fringes, separated by an
angle�. If � � �=2, there will result a total scrambling of the fringes. The bright fringes
of one source will overlap the dark fringes of the second one and their contrast will totally
vanish.

Figure 49. Fizeau experiment: for the case of a single star (left drawing) and for the case of a double
star with an angular separation� (right drawing, see text).

From Fig. 49, it is clear that the visibility of the fringes will signi�cantly decrease when-
ever the following condition takes place

� >
�
2

=
�

2B
: (65)

A quantity that objectively measures the contrast of the fringes is called the visibility. It
is de�ned by the following expression:

v =
 
Imax � Imin

Imax + Imin

!
: (66)

Whenever a star is not resolved, we haveImin = 0, and thus the visibilityv = 1. If the star is
being resolved,Imax = Imin and thus the resulting visibilityv = 0.

Fizeau proposed in 1868 to apply this method to stellar sources. He found su�cient to
place a screen drilled with two elongated apertures at the entrance of a telescope pointed
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towards a star and to look in the focal plane by means of a very powerful eyepiece the Airy
disk crossed by the Young's fringes and to increase the distance between the two apertures
until the visibility of the fringes vanishes.

This experiment is attempted in 1873 by Stephan with the 80cm telescope of the Marseille
Observatory. All the bright stars visible in the sky are observed. The two openings at the
entrance were actually in the form of crescents but one may demonstrate that the contrast
of the fringes is independent of the shape of the two openings if they are identical. The
result was disappointing: with a maximum base separation of 65cm between the openings,
no attenuation of the contrast of the fringes was observed for any star. This proved that no
star could be resolved using that instrument. Stephan concluded that the angular diameter of
the stars is much smaller than 0.16” (see Fig. 50). From these observations, it is of course
possible to set a lower limit on the e�ective temperatureTe f f of all those stars (see Section
2). Figure 51 illustrates the 80 cm Marseille telescope used by Stephan and Fizeau.

Figure 50. Diagram illustrating the way Fizeau and Stephan
proceeded in order to measure the angular diameters of stars
with the interferometric technique.

Figure 51. The 80cm Marseille telescope used by Fizeau
and Stephan.c
 Michel Marcelin.



3.4 Home experiments: visualization of the Airy disk and the Young interference
fringes

We propose hereafter two simple experiments that can be carried out at home in order to
visualize with our own eyes the Airy disk and the interference fringe patterns. To do this,
take a rectangular piece of cartoon (�5 cm x 10 cm) and fold it in the middle (see Fig. 52).
Perforate through the two sides of this piece of cartoon two well separated circular holes
having an approximate diameter of 1/2 cm. Cut a thin sheet of aluminium paper into two
small squares (cf. 1cm x 1cm). In one of the two squares, drill with a thin metallic pin a�
0.5 mm (or smaller) diameter circular hole near its centre. Glue inside the folded cartoon the
�rst aluminium piece in such a way that the very small hole is centered with respect to one of
the big holes (cf. the lower one) of the cartoon.

Figure 52. The one hole screen experiment:
the small circular hole drilled in the
aluminium paper is visible inside the lower
bigger hole perforated in the cartoon screen.
When looking through this hole at a distant
light bulb, you perceive a nice Airy disk (cf.
right image).

Figure 53. The two hole screen experiment:
the two small circular holes drilled in the
aluminium paper are visible inside the upper
bigger hole perforated in the cartoon screen.
When looking through these two holes at a
distant light bulb, you perceive a nice Airy
disk superimposed by a pattern of bright and
dark fringes (cf. right image).

Take the second square of aluminium and drill with the thin metallic pin two 0.5 mm
(or smaller) circular holes near its centre separated by about 0.5-1 mm (see Fig. 53). Glue
now near the second circular hole (cf. the upper one) inside the folded cartoon this second
aluminium square. After, you should glue the two sides of the cartoon in such a way that
you can hold it with ease in one hand. Of course you can do this on a single cartoon or
on two separate ones. Place at a distance of about 10 m a small light bulb (cf. the light of
a cell phone) and look at it through the single hole drilled in the aluminium. You should
see a nice Airy disk which angular diameter is 2:44�= D, with D beingabout 0.5 mm and
� the wavelength of the ambient light (�5000 Å). Now looking at the distant light source
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through the double hole drilled in the other square of aluminium, you should see an Airy disk
superimposed by a series of white and dark fringes, oriented perpendicularly with respect
to the line joining the two holes, with an angular inter-fringe separation�= D, whereD �
0.5-1mm. If you rotate azimuthally the screen, you will observe that the fringes also rotate
since they constantly remain perpendicular to the line joining the two small holes of the milli-
interferometer. While getting closer to the small light bulb, you will notice that the visibility
of the fringes decreases. LetDist be the distance around which the latter totally vanishes.
The product ofDist by �= D corresponds to the linear diameter of the light bulb. Instead of
changing the distance between the light bulb and the milli-interferometer, one could change
the separation between the two holes and determine the separation for which the interference
fringes disappear. Adopting the same approach as Stephan, Abraham Michelson used in 1890
the Lick 30cm telescope to resolve the four Galilean satellites of Jupiter. Their angular sizes
were of the order of 0.8” - 1.4” while the resolving power provided by the largest baseline
he used was about 0.5”. An excellent agreement was found for the angular diameters of
the satellites with the classical measurements made at the same time. To resolve the biggest
stars, much longer baselines are needed. Michelson and Pease built a 7m metal beam carrying
four 15cm �at mirrors that they installed at the top of the Mount Wilson telescope, having a
diameter of 2.5m (see Fig. 54).

Figure 54. The stellar
interferometer of Michelson
and Pease set on top of the
2.5m Mount Wilson
telescope.c
 The
Observatories of the
Carnegie Institution.

The two mobile exterior mirrors formed the basis of the interferometer and the two �xed
interior mirrors returned the star's light into the telescope. With a maximum baseline of 7m,
the smallest measurable angular diameter was 0.02”. Use of this �rst stellar interferometer
was very delicate because the visualization of the Young fringes was only possible if the
two optical paths from the star passing through the two exterior mirrors and reaching the
observer eyes were equal to an accuracy of about 2 microns (see discussion below). Michel-
son and Pease �nally obtained the �rst measurement of a stellar diameter during the winter
of 1920, that of Betelgeuse (�Orionis), a red supergiant. They found an angular diameter
of 0.047”, that is a linear diameter 400 times larger than that of the Sun, given the distance
of Betelgeuse (650 light years). Five more bright stars were also resolved. Anderson used
the same observing technique with the 2.5m telescope at Mount Wilson to resolve very tight
spectroscopic binaries (cf. Capella). Michelson and Pease did not stop there: they undertook
the construction of a 15m optical beam based on the same principle, and began to use it in
1929. Unfortunately, the mechanical vibrations and deformations were such that this instru-



ment was too delicate. It was abandoned in 1930, without having reached its limiting angular
resolution of 0.01”. It was not until 1956 that optical stellar interferometry was reborn and
again, according to a principle di�erent from that of Fizeau. Fizeau-type interferometry had
indeed acquired a reputation of great operational di�culty. The intensity interferometry by
the two radar manufacturers Hanbury Brown and Twiss (Australia) was then set up, based on
an entirely new approach: the measurement of the space correlation of the stellar intensity
�uctuations. Their interferometer made it possible to measure the diameter of 32 blue stars
with a very high precision (<0.0005”) and to detect a few very tight binaries. But it is in the
�eld of radio astronomy that the development of interferometry with independent telescopes
became the most spectacular in the 1950s. At optical wavelengths, we had to wait until 1975
when Prof. Antoine Labeyrie and his close collaborators succeeded in combining the light
from two independent telescopes. A boost then took place in the successful development of
optical/IR interferometry.

4 Light coherence

When we previously established the relationship between the angular diameter� of a source
and the separationB between the two apertures of the interferometer for which the inter-
ference fringes disappear, we made two approximations that do not really apply to usual
conditions of observation. We �rst assumed that the waves falling on Young's screen were
planes, that is to say coming from a very distant point-like source and also that they were
purely monochromatic. In addition, the holes through which light is being scattered should
have �nite dimensions. Therefore, we shall later take into account the �nite dimensions of
the apertures (see Section 6) but let us �rst consider the e�ects due to the �nite dimension
of the source, also considering a spectral range having a certain width and to do so, we shall
make use of some elements of the theory of light coherence. This theory consists essentially
in a statistical description of the properties of the radiation �eld in terms of the correlation
between electromagnetic vibrations at di�erent points in the �eld.

4.1 Quasi-monochromatic light

The light emitted by a real source (see Fig. 55) is of course not monochromatic. As in the
case of a monochromatic wave, the intensity of such a radiation �eld at any point in space is
de�ned by

I = hV(t)V(t)� i : (67)

Figure 55. Stars do not emit
monochromatic light. Quasi
monochromatic light is assumed to
be emitted at the wavelength� (resp.
the frequency� ) within the
bandwidth��� (resp.��� ).

In order to determine the electric �eld created by such a source, emitting within a certain
frequency range��� , we must sum up the �elds due to all the individual monochromatic
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components such that the resulting electric �eldV(z;t) is given by the real part of the follow-
ing expression:

V(z;t) =
Z � +��

� ���
a(� 0) exp[i2�(� 0t � z=�0)]d� 0: (68)

While a monochromatic beam of radiation corresponds to an in�nitely long wave train,
it can easily be shown that the superposition of multiple in�nitely long wave trains, with
nearly similar frequencies, results in the formation of wave groups. Indeed, the expression
of the electric �eld established in Eq. (68) can be reduced as follows. Insert in the integral
of Eq. (68) the following factors: exp(i2�(�t � z=�)) exp(�i2�(� t � z=�)). We then �nd that
Eq. (68) may be rewritten as

V(z;t) = A(z;t) exp[i2�(� t � z=�)] (69)

where

A(z;t) =
Z � +��

� ���
a(� 0) expfi2�[(� 0 � � )t � z(1=�0 � 1=�)]gd� 0: (70)

Expression (69) represents that of a monochromatic wave of frequency� whose amplitude
A(z;t) varies periodically with a much smaller frequency�� (cf. beat phenomenon). As an
exercise, it is instructive to seta(� 0) constant in Eq. (70) and establish that indeedA(z;t) varies
as a function of time with a frequency�� . This modulation therefore e�ectively splits the
monochromatic wave trains having di�erent but nearly similar frequencies into wave groups
whose length is of the order of� 2=��, with �� = �c��=� 2 and the frequency of the order��
(see Figure 56).

Figure 56. Superposition of
long wave trains having
quite similar frequencies� 0

in the range� � �� (resp.
wavelengths� 0 in the range
� � ��) results in the
propagation of long wave
trains with the frequency�
(resp. wavelength�) but
which amplitudeA(z;t) is
varying with a lower
frequency�� (resp. longer
wavelength� 2=��).

4.2 Visibility of the interference fringes

What becomes the visibility of the interference fringes in the Young's hole experiment for the
case of a quasi-monochromatic source having a �nite dimension?

We can re-write the expression of the intensityIq at point q as indicated below (see
Eqs. (71)-(74)). It is assumed that the holes placed at the pointsP1, P2 in the Young plane
have the same aperture size (i.e.V1(t) = V2(t)) and that the propagation times of the light
betweenP1 (resp.P2) andq aret1q (resp.t2q, see Fig. 57) :

Iq =
D
V�

q(t)Vq(t)
E

; (71)



Figure 57. Assuming an
extended source S which
quasi monochromatic light
passes through the two holes
P1 andP2, Iq represents the
intensity distribution at the
pointq which accounts for
the formation of the
interference fringes.

Vq(t) = V1(t � t1q) + V2(t � t2q) (72)

and after a mere change of the time origin

Vq(t) = V1(t) + V2(t � �) (73)

where we have de�ned

� = t2q � t1q: (74)

It follows that Eq. (71) can be easily transformed into (75) where (76) represents the com-
plex degree of mutual coherence, and the intensityI = < V1V�

1 > = < V2V�
2 >. Equation (75)

is used to �nd what is the intensity distribution of the interference fringes in the observation
plane. The complex degree of mutual coherence
 12(�) (see Eq. (76)) is a fundamental quan-
tity whose signi�cance will be highlighted when calculating the visibility of the interference
fringes. By means of (69), this function
 12(�) can still be expressed as (77), and if� << 1=��
(i.e. the di�erence between the arrival times of the two light rays is less than the beat period
1=�� of the quasi-monochromatic radiation), we can give it the form (78):

Iq = I + I + 2I Re[
 12(�)]; (75)


 12(�) =


V�

1(t)V2(t � �)
�

=I ; (76)


 12(�) =


A�

1(z;t)A2(z;t � �)
�

exp(�i2���)= I ; (77)

and if � << 1=��


 12(�) = j
 12(� = 0)j exp(i� 12 � i2���): (78)

Equation (75) can then be rewritten as (79) and in this case the visibilityv of the interfer-
ence fringes isj
 12(� = 0)j (see Eq. (80)),Imax andImin representing the brightest and weakest
fringe intensities.

Iq = I + I + 2I j
 12(� = 0)jcos(�12 � 2���) (79)

and

v =
 
Imax � Imin

Imax + Imin

!
= j
 12(� = 0)j: (80)

We will see in the next section that the module of
 12(� = 0) is directly related to the
structure of the source that we are observing.
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We propose hereafter to the reader to answer the two following questions. What is the
value ofj
 12(� = 0)j in the Young's holes experiment for the case of a monochromatic wave,
two point-like holes and an in�nitely small point-like source? And what can we say about
the source whenj
 12(� = 0)j = 0?

Let us now evaluate what
 12(� = 0) is for the case we are interested in, namely an
extended source emitting quasi-monochromatic light. This leads us directly to study the
notion of the spatial coherence of light.

4.3 Spatial coherence

Let us thus evaluate Eq. (76) for the case� = 0. We �nd


 12(� = 0) =


V�

1(t)V2(t)
�

=I : (81)

If Vi1(t) andVi2(t) represent the electric �elds atP1 andP2 due to a small surface element
dSi on the sourceS (see Fig. 58), we �nd that the �eldsV1(t) andV2(t) can be expressed as

V1(t) =
NX

i=1

Vi1(t);

V2(t) =
NX

i=1

Vi2(t): (82)

Figure 58. The extended
sourceS is assumed to be
composed of a large number
of in�nitesimal surface
elementsdSi .

It is assumed that the distinct pointsi of the source are separated by small distances com-
pared to the wavelength� of the light they emit in a mutually incoherent manner. Obtaining
the expression (83) for
 12(0) is then immediate


 12(0) =

2
6666664

NX

i=1

D
V�

i1Vi2

E
+

NX

i, j

hV�
i1V j2i

3
7777775=I : (83)

For an incoherent light source, the second summation appearing in (83) is obviously equal
to zero. As a reminder, the contributionsVi j (t) can be expressed as

Vi1(t) =
ai(t � r i1=c)

r i1
exp[i2�� (t � r i1=c)];

Vi2(t) =
ai(t � r i2=c)

r i2
exp[i2�� (t � r i2=c)] (84)

wherer i1 andr i2 respectively represent the distances between the elementi of the source
and the pointsP1 andP2. The productsV�

i1(t)Vi2(t) simplify themselves as



V�
i1(t)Vi2(t) =

jai(t � r i1=c)j2

r i1r i2
exp[�i2�� (r i2 � r i1)=c)]; (85)

as long as the following condition is veri�ed

jr i1 � r i2j � c=�� = � 2=�� = `: (86)

We thus see how to naturally introduce the coherence length` which characterizes the
precision with which we must obtain the equality between the optical paths in order to be
able to observe interference fringes (typically 2.5 microns in the visible for�� = 1000 Å).

4.4 Zernicke-van Cittert theorem

To obtain the mutual intensity due to the whole source, it su�ces to insert in the expression
(83), the relation (85) using (87). The result is Eq. (88), also known as the Zernicke-van
Cittert Theorem

I(s)ds= jai(t � r=c)j2; (87)


 12(0) =
Z

S

I (s)
r1r2

exp[�i2�(r 2 � r1)=�)]ds=I : (88)

When the distance between the source and the screen is very large, the expression of this
theorem can be simpli�ed as follows. Let us adopt the orthonormal coordinate system (x, y, z)
shown in Fig. 59 such that the coordinates of the two elementsP1 andP2 of the interferometer
are respectively (X, Y, 0) and (0, 0, 0) and those of an in�nitesimal elementdSi of the source
(X0, Y0 , Z0). It is then easy to �nd, by means of a relation analogous to (61), that

jr2 � r1j = jP2Pi � P1Pi j = j �
(X2 + Y2)

2Z0 + (X� + Y�)j (89)

where

� =
X0

Z0; � =
Y0

Z0 (90)

represent the angular coordinates of the source measured from the interferometer. Using
the two last relations, one can easily transform the expression (88) into (91). TheX, Y
coordinates in the �rst member of
 12(0;X=�; Y=�) represent the position of one element of
the interferometer relative to the other. One often de�nesu = X=� andv = Y=� which are
quantities having the dimensions of the inverse of an angle, thus of angular space frequencies.

Figure 59. Positions of the
two elementsP1 andP2 of
the interferometer and of the
in�nitesimal elementPi of
the source assuming that the
distanceZ0 >> jX0j; jY0j; jXj
or jYj.

Apart from a multiplicative factor, we thus �nd that the visibility of the fringes (the func-
tion j
 12(� = 0)j) is simply the modulus of the Fourier transform of the normalized surface
brightnessI0 of the source (Eq. (92)).
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 12(0;X=�; Y=�) = exp(�i� X;Y)
Z Z

S
I0(�; �) exp[�i2�( X� + Y�)=�]d � d� (91)

with

I0(�; �) =
I (�; �)

R R
S

I (� 0; � 0)d� 0d� 0
: (92)

In terms of the angular space frequenciesu = X=�, v = Y=�, Eq. (91) becomes


 12(0;u; v)= exp(�i� u;v)
Z Z

S
I0(�; �) exp[�i2�(u� + v�)]d � d�: (93)

By a simple inverse Fourier transform, it is then possible to recover the (normalized)
surface brightness of the source with an angular resolution equivalent to that of a telescope
whose e�ective diameter would be equal to the baseline of the interferometer consisting of
two independent telescopes

I0(�; �) =
Z Z


 12(0;u; v) exp(i�u;v) exp[i2�(� u + �v)]dudv: (94)

Equations (93) and (94) thus clearly highlight the power of the complex degree of mu-
tual coherence since they make it possible to link the visibility and the normalized intensity
distribution of the source by means of the Fourier transformv = j
 12(0)j = jFT[I0]j, and its
inverse. Aperture synthesis consists in observing a maximum number of visibilities of the
source, thus trying to cover as well as possible the (u; v) plane from which we shall try, some-
times with some additional assumptions, to determine the structure of the source from the
inverse Fourier transform (94) in which the integrant is not the visibility (i.e. the module of
the complex degree of mutual coherence) but the complex degree of mutual coherence itself,
within the factorexp(i� x;y). It is now good to remind some speci�c properties of the Fourier
transform.

4.5 Some remarkable properties of the Fourier transform and applications

Let us remind that the Fourier transform of the functionf (x), denotedFT[ f (x)](s), where
x 2 <, is the function

FT[ f (x)](s) =
Z 1

�1
f (x) exp(�2i� sx)dx (95)

where s 2 <. The functions f and FT[ f ] form a Fourier pair. The functionFT[ f ]
exists if the functionf (x) is bounded, summable and has a �nite number of extrema and
discontinuities. This does not necessarily imply that the inverse Fourier transform, denoted
FT �1 [FT[ f ]] transform is f . For the Fourier transformation to be reciprocal,

f (x) =
Z 1

�1
FT[ f ](s) exp(2i�xs)ds; (96)

it su�ces f to be of summable square, i.e. that the following integral exists

Z 1

�1
j f (x)j2dx: (97)



The de�nition of FT can be extended to the distributions. TheFT of a distribution is not
necessarily of summable square. Let us also note that the functionsf andFT[ f ] can be real
or complex.

We can generalize theFT to several dimensions, by de�ningf on the space< n. Let r,
w 2 < n, we then have

FT[ f ](w) =
Z 1

�1
f (r) exp(�2i�wr)d r: (98)

As a reminder, iff (t) designates a function of time,FT[ f ](s) represents its content as a
function of time frequencies. Similarly, iff (r) is de�ned on< 2, where< 2 represents a two-
dimensional space, the functionFT[ f ](w) represents the space frequency content off (r),
wherew 2 < 2.

Among the interesting properties of the Fourier transform, let us remind:

4.5.1 Linearity:

FT[a f ] = a FT[ f ]; (99)

with the constanta 2 <,

FT[ f + g] = FT[ f ] + FT[g]: (100)

4.5.2 Symmetry and parity:

The considerations of symmetry are very useful during the study of the Fourier transform.
Let P(x) andI(x) be the even and odd parts off (x) such that

f (x) = P(x) + I(x); (101)

we �nd that

FT[ f ](s) = 2
Z 1

0
P(x) cos(2�xs)dx� 2i

Z 1

0
I (x) sin(2� xs)dx: (102)

From this result, we can deduce for instance that iff (x) is real, the real part ofFT[ f ](s)
will be even and its imaginary part will be odd whereas iff (x) is complex, the imaginary part
of FT[ f ](s) will be even and its real part will be odd.

4.5.3 Similarity:

The relationship of similarity is the following one

FT[ f (x=a)](s) = jajFT[ f (x)](as) (103)

wherea 2 <, is a constant. The dilation of a function causes a contraction of its Fourier
transform. This very visual property is very useful to understand that a function whose sup-
port is very compact, has a very spread transform. In the analysis of temporal frequencies,
one would state that a pulse of very short duration results in a very broad frequency spectrum,
that is to say, contains frequencies all the higher as the pulse is brief. This is the classical re-
lation of the spectrum of a wave packet, according to which the knowledge of the properties
of a signal cannot be arbitrarily precise both in time and in frequency.
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4.5.4 Translation:

The translation relation is written as

FT[ f (x � a)](s) = exp(�2i�as) FT[ f (x)](s): (104)

A translation of the function in its original space corresponds to a phase rotation of its
Fourier transform in the transformed space.

4.5.5 Door function:

The door function, denoted� (x), is de�ned by (see Fig. 60)

�( x) = 1 if x 2 [�0:5; 0:5]; and �( x) = 0 otherwise: (105)

It is easy to �nd that

FT[�( x)](s) = sinc(s) =
sin(� s)

� s
: (106)

Applying the similarity relation, we also �nd that

FT[�( x=a)](s) = jajsinc(as)= jaj
sin(�as)

�as
: (107)

The door function is also sometimes called the window function or simply window.

Figure 60. The door
function and its Fourier
transform (cardinal sine).

4.5.6 Distribution of Dirac:

The Dirac distribution, also called Dirac peak, is noted�( x). It is de�ned by the following
integral, which exists only in the sense of the distributions

�( x) =
Z 1

�1
exp(2i� xs)ds: (108)

Its Fourier transform is therefore 1 in the interval]�1; +1 [ since�( x) appears above as
the inverse Fourier transform of 1.



4.5.7 Applications:

We propose hereafter several astrophysical applications that make use of the previous remark-
able properties of the Fourier transform.

Let us �rst consider the case of a double star which two point-like components are equally
bright and separated by an angle 2�0. Making use of Eqs. (80), (92) and (93), one may easily
establish using the properties (104) and (108) that the normalized intensityI0(� ) takes the
simple form

I0(� ) =
�(� � � 0) + �(� + � 0)

2
(109)

and that the visibilityv measured with an interferometer composed of 2 telescopes sepa-
rated by the baselineX is given by the expression

v = j
 12(0)j = jcos(2�� 0u)j (110)

whereu = X=�.
A second nice application consists in deriving the visibility of the interference fringes

measured with the same interferometer of a 1�D Gaussian star which intensityI (� ) distribu-
tion is given by the following expression

I(� ) = exp(
�4 ln(2)� 2

FWHM2
) (111)

whereFWHM represents the angular full width at half maximum of the 1�D Gaussian
star. The expression of the corresponding visibility is then easily found to be

v = j
 12(0;u)j = exp
 
�� 2u2 FWHM2

4 ln(2)

!
; (112)

and we notice that narrower is the angular size of the star, broader is its visibility content
in angular space frequencies.

In the third proposed application, we ask to establish the expression of the visibil-
ity of a 2� D uniformly bright square star which each angular side is� 0, i.e. I (� ) =
Cte� (�=� 0) �(�=� 0).

Theexpression to be derived is the following one

v = j
 12(0;u; v)j= j
sin(�� 0u)

�� 0u
sin(�� 0v)

�� 0v
j: (113)

Finally, a generalization of the previous application consists in deriving the visibility of a
star which is seen as a projected 2�D uniform circular disk which angular radius is� UD and
its angular diameter� UD.

Due to the circular symmetry of the problem, it is convenient to make use of polar coor-
dinates in Eq. (91) as follows:

u = X=� = Rcos( )=�

v = Y=� = Rsin( )=�; (114)

whereRdenotes the baseline between the two telescopes of the interferometer, and

� = � cos(�)

� = � sin(�): (115)
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Eq. (91) then transforms into

j
 12(0;R=�;  )j = j
1

�� 2
UD

Z � UD

0
�

Z 2�

0
exp [�i2�� R=�(cos(�) cos( ) + sin(�) sin( ))]d �d � j:

(116)
Making use of the additional changes of variables

z = 2�� R=�

� = �=2 � � +  ; (117)

Eq. (116) becomes

j
 12(0;R=�;  )j = j(
�

2�R
)
2 1
�� 2

UD

Z 2�� UDR=�

0
�

Z �=2+ 

�3�=2+ 
cos(zsin(�))d �d � j: (118)

Reminding the de�nition of the zero order Bessel functionJ0(x)

J0(x) =
1
�

Z �

0
cos[xsin(�)]d�; (119)

and the relation existing betweenJ0(x) and the �rst order Bessel functionJ1(x), namely

xJ1(x) =
Z

x0J0(x0)dx0; (120)

Eq. (118) successively reduces to

j
 12(0;R=�)j = j(
�

2�R
)
2 1
�� 2

UD

2�
Z 2�� UDR=�

0
zJ0(z)dzj (121)

and

j
 12(0;R=�)j = j2
J1(2�� UDR=�)

2�� UDR=�
j: (122)

We thus �nd that the expression (80) of the fringe visibility for the case of a star seen as a
projected 2�D uniform circular disk with an angular dimater� UD = 2� UD is

v =
 
Imax � Imin

Imax + Imin

!
= j
 12(0;u)j =

�����
2J1(�� UDu)

�� UDu

����� ; (123)

where we have setu = R=�. As a reminder, the Bessel function has the following proper-
ties

J1(x = 3:8317:::)= 0

lim
x!0

J1(x)
x

= 1=2; (124)

which allow us to easily understand the behavior of the visibility function illustrated in
Fig. 61.

One could then wonder whether it is possible to observe interferometric fringes from our
nearest star, i.e. the Sun? Figure 62 illustrates such fringes in while light obtained on 9th



Figure 61. Visibility
function expected for a star
consisting of a uniformly
bright circular disk with an
angular diameter� UD.

of April 2010 using a micro interferometer consisting of 2 holes with a diameter of 11.8
� separated by a baseline of 29.4�. This micro-interferometer was placed in front of the
objective of an EOS 5D Canon camera. Since the picture was taken in white light, it is
possible to see the e�ects due to color dispersion. It is then easy to get an estimate of the
fringe visibility, using Eq. (123), assuming that the Sun is a uniform disk with an angular
diameter of 30'.

Figure 62. Solar fringes
photographed with an EOS
5D Canon camera in front of
which was set a
micro-interferometer
consisting of two holes
having a diameter of 11.8�
separated by a baseline of
29.4�.

5 Some examples of interferometers

One of the most respected sanctuaries of optical interferometry is located on the plateau of
Caussols, north of Grasse, in the south of France. The I2T (in French, ”Interféromètre à 2
Télescopes”), made of 2 telescopes with an aperture of 26cm each and separated by a baseline
of up to 144m was characterized by an angular resolution� � 0:00100attainable for objects
with an apparent magnitude brighter thanVlim � 6 (see Figure 63, left). First interference
fringes were obtained on Vega in 1975 (Fig. 63, right). About twenty angular diameters
of stars have been measured using the same I2T by Prof. Antoine Labeyrie and his close
collaborators. In order to equalize the light paths collected from the stars passing through the
two telescopes, optical delay lines are mandatory. These have been successfully used for the
�rst time in 1975 (see Fig. 64 for an illustration of how delay lines work and Figs. 65 and 66
for views on modern optical delay lines in use at the VLTI, ESO, Chile).
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Figure 63. First fringes obtained with the I2T on Vega (Labeyrie et al. 1975,c
 Observatoire de la Côte
d'Azur ).

Figure 64. Use of optical
delay lines to compensate
for the continuous change in
the lengths of the two light
paths as the Earth rotates.

The GI2T (in French, ”Grand Interféromètre à 2 Télescopes”) composed of two 1.5m
telescopes was subsequently used by the same team. The two big telescopes could in principle
be set 2 km apart, corresponding to an angular resolution� � 0:000100(see Fig. 67).

Since the beginning of the 21st century, the modern sanctuary of stellar interferometry
and aperture synthesis is undoubtedly the Very Large Telescope Interferometer (VLTI) of
ESO (Southern European Observatory), located in Chile on Mount Paranal (see Fig. 68). The
VLTI is a European interferometer that can re-combine the signal from 2, 3 or 4 telescopes



Figure 65. View inside the optical
delay line tunnel of the VLTI at
ESO, Paranal, Chile.c
 ESO.

Figure 66. Zoom on one of the
optical delay lines used in the tunnel
of the VLTI at ESO, Paranal, Chile.
c
 ESO.

depending on the instrument used. It has 4 telescopes of 8.2m and 4 mobile telescopes of
1.8m. Only telescopes of the same size can be re-combined together. The auxiliary telescopes
of 1.8m can be easily moved allowing a better coverage of theu; vplane. The maximum base
length of this interferometer is about 200m.

CHARA is another very performing interferometer located on the heights of Los Angeles,
California (see Fig. 69). It is installed on the historic observatory of Mount Wilson. Remem-
ber that it was with the 2.5m telescope of this observatory that the �rst measurement of a
stellar diameter was made by Michelson and Pease by installing a beam of 7m at the top of
the telescope. The CHARA interferometric array, operational since 1999 is composed of 6
telescopes of 1m in diameter. These 6 telescopes can be either re-combined by 2, by 3 since
2008 and recently the 6 together. The maximum base length of this interferometer is 330m
allowing to achieve an angular resolution of 200�arcsec.

It is mainly used for angular diameter measurements but also for the detection and char-
acterization of tight binary stars as well as for the detection of exo-zodiacal clouds (clouds
of dust gravitating around the stars). Another famous optical/IR interferometer is the Keck
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Figure 67. The GI2T
constructed by Antoine
Labeyrie and his close
collaborators on the plateau
of Caussols, north of Grasse,
near Nice (France,
c
 Observatoire de la Côte
d'Azur

).

Figure 68. The Very Large
Telescope Interferometer
(VLTI) at the top of Paranal
(Chile, c
 ESO).

Interferometer made of two 10m telescopes separated by a �xed baseline of 85m (see Fig. 70)
on top of Mauna Kea (Hawaii, USA).

6 Three important theorems and some applications

When we previously established the relation existing between the structure of a celestial
source and the visibility of the fringes observed with an interferometer (Sections 3.3 and
4.4), we implicitly assumed that the size of the apertures was in�nitely small (pinhole aper-
tures). Use of the fundamental theorem allows one to calculate the response function of
an interferometer equipped with �nite size apertures. This theorem actually formalizes, in
mathematical terms, the physical connection existing between the focal plane and the pupil
plane of an optical instrument (telescope, interferometer, grating, etc.). Use of the convo-
lution theorem will then enable us to establish the relation between a celestial source that
is extended and its observed image in the focal plane of an optical instrument. Finally, the



Figure 69. The CHARA
interferometer composed of
six 1m telescopes at Mount
Wilson Observatory
(California, USA). c
 The
Observatories of the
Carnegie Institution.

Figure 70. The Keck
interferometer on top of
Mauna Kea (Hawaii, USA).
c
 Ethan Tweedie.

Wiener-Khinchin theorem establishes the relation between the frequency content of the point
spread function of an optical instrument and its pupil plane characteristics.

6.1 The fundamental theorem: relation between the pupil and focal planes

The fundamental theorem that we shall demonstrate here merely stipulates that given a con-
verging optical system which can be assimilated to the lens or to the mirror of a telescope,
or of an optical interferometer, the complex amplitude distributiona(p;q) of the electromag-
netic �eld of radiation in the focal plane is the Fourier transform of the complex amplitude
distributionA(x; y) of the electromagnetic �eld in the pupil plane, i.e.

a(p;q) =
Z

R2
A(x; y) exp [�i2�( px+ qy)]dxdy; (125)

or in a more compact form

a(p;q) = FT[A(x; y)](p;q); (126)

with
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p =
x0

� f
and q =

y0

� f
; (127)

wherex0, y0 refer to the Cartesian coordinates in the focal plane,� to the wavelength
of the monochromatic light under consideration andf to the e�ective focal length of the
converging system.

Figure 71 represents a convergent optical system, its focal pointF0, its principal planes
P, P0 and its principal pointsH andH0. The latter degenerate with the optical center in the
case of a thin lens or with the bottom of the dish in the case of a single mirror. The two
orthonormal coordinate systems (O,x, y, z) and (F0, x0, y0, z0) make it possible to locate the
input pupil plane and the image focal plane of the optical system. The term 'pupil plane'
serves as the support for the de�nition of the vibration state at the entrance of the collector
while the 'focal plane' serves as the support for the de�nition of the image that the collector
gives of the source located at in�nity. De�ning the action of the collector is thus to establish
the transformation that it operates on the radiation between these two planes.

Figure 71. Fourier transform by a focusing optical system represented by its main planesP andP0. For
the case of a thin lens, the latter would be degenerated into a single plane passing through its center.

Thehypothesesunderlying this theorem are:
H1. The optical system is free from any geometric aberration.
H2. The edges of the diaphragm do not disturb the electromagnetic �eld of radiation, that is
to say that the diaphragm behaves as an ”all (1) or nothing (0)” function with respect to this
�eld. This is equivalent to assume that the dimensions of the collecting aperture(s) are large
with respect to the wavelength of the light.
H3. No disturbance, other than those imposed by the optical system, intervenes between the
pupil and the focal planes. The optical elements are thus assumed to be perfectly transparent
or re�ective.
H4. The light source is located at an in�nite distance from the optical system and can thus
be considered to be point-like.
H5. The disturbances occurring between the source and the pupil plane are weak and have
very long evolution times relative to the period (i.e.T = 1=� = �=c) of the radiation.



H6. The radiation is monochromatic and has a �xed polarization plane.

Theorem statement:
Within a multiplicative coe�cient of the variables, the amplitude distribution in the focal
plane is the Fourier transform of the amplitude distribution in the pupil plane.

Demonstration:
Consider the di�erent points (x, y) of the pupil plane. H6 (i.e. the previous hypothesis 6)
makes it possible to represent the electrical component of the electromagnetic �eld by the
real part of the vibration distribution

A(x; y) exp (i2�� t); (128)

with the very general representation of the expression of the complex amplitudeA(x; y)

A(x; y) = A( x; y) exp (i�( x; y))P0(x; y); (129)

whereA( x; y) and�( x; y) represent the amplitude and phase of the electric �eld andP0(x; y)
the input pupil function which is 1 inside the pupil and 0 outside (in agreement with H2 and
H3).

In agreement with the Huygens-Fresnel principle, we will consider in the following that
every point reached by a wave can be considered as a secondary source re-emitting a vibration
with the same amplitude, the same frequency� , the same polarization and the same phase
(within a constant phase shift of�=2) as those of the incident vibration at this point. The
point N(x0,y0) of the focal plane will thus receive vibrations emitted by all the points of the
pupil plane. The laws of geometrical optics, deduced from the Fermat principle, make it
possible to write that the rays which, after the optical system, converge at the pointN of the
image focal plane, were, before the optical system, parallel toH0N. Having assumed that
the source is at in�nity (in agreement with H4), the amplitude will be preserved between the
pupil plane and the focal plane. From the pointM(x,y) of the pupil plane, the pointN(x0,y0)
of the focal plane will thus receive the vibration

A(x; y) exp (i2�� t + i	): (130)

Let us take as the zero phase shift reference that of the ray passing through the pointO along
the directionOJN. The phase shift	 can then be expressed using the di�erence between the
optical paths

� = d(MIN) � d(OJN); (131)

whered() refers to the distance along the speci�ed path, and the relation

	 = 2��=�: (132)

If the pointK corresponds to the orthogonal projection ofM ontoOJ, M andK belong to
the same wave plane which, after the optical system, will converge at theN point of the focal
plane.
The Fermat principle, according to which the optical path between a point and its image is
constant (rigorous stigmatism) or extremum (approximate stigmatism) makes it possible to
write that the di�erence in optical path (MIN)�( KJN) behaves in the neighborhood of zero
as an in�nitely small second order with respect to thed(I ,J) and thus also with respect to
d(O,M) andd(O,K), which are of the same order asd(I ,J). As a result (see Fig. 71),

� = �d (O;K) = �j(OM u)j; (133)
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u designating the unit vector along the directionH0N and (OM u) the scalar product
between the vectorsOM andu. If the angle thatH0N makes with the optical axis is small,
the vector of components (x0=f , y0=f , 1) is the vector director ofH0N and has a norm close
to 1 (at �rst order becausef >> jx0j; jy0j). Moreover,OM has for components (x, y, 0). Using
Eq. (133) in (132), the expression (130) becomes

A(x; y) exp (i2�� t � xx0=� f � yy0=� f ): (134)

Choosing as new variables in the focal plane those de�ned in (127), we get

A(x; y) exp (�i2�( xp+ yq) exp (i2�� t): (135)

The resulting vibration at the pointN will be the resultant of the vibrations transmitted
towardsN by all the points of the pupil plane.
The equi-phase wave surfaces which reach the pupil plane are not planes if the radiation has
been disturbed between the source and the entrance pupil. But the hypothesesH4 andH5
make it possible to a�rm that the pupil plane is spatially coherent, that is to say that at the
time scale of the vibration periods, the relative phase shift of its di�erent points is constant.
Consequently, to calculate the resulting vibration at the pointN(p,q) of the focal plane, it is
necessary to sum the amplitudes thatN receives from the di�erent points of the pupil plane.
The amplitude distributiona(p;q) in the focal plane then becomes

a(p;q) =
Z

R2
A(x; y) exp (�i2�( xp+ yq)dxdy; (136)

that is, the complex amplitude distribution in the focal planea(p;q) is the Fourier trans-
form of the complex amplitude distributionA(x; y) in the pupil plane, i.e.

a(p;q) = FT[A(x; y)](p;q): (137)

6.1.1 Applications of the fundamental theorem: the case of a single square aperture

Considering �rst the case of a single square aperture as depicted in Fig. 72 (left) and a point-
like source perfectly located at zenith, i.e. the plane wavefronts arrive parallel to the aperture
with a constant and real amplitudeA(x; y) = A0, we �nd that the calculation of the amplitude
in the focal plane is very simple

a(p;q) = A0 FT[�( x=a)� (y=a)](p; q): (138)

Making use of the separation of the variablesx; y and of the relation (107), Eq. (126)
successively transforms into

a(p;q) = A0 FT[�( x=a)](p) FT[�(y=a)](q); (139)

a(p;q) = A0 a2 sin(�ap)
�ap

sin(�aq)
�aq

: (140)

This is the impulse response, in amplitude, for a square pupil and in the absence of any
external disturbance. Adopting the de�nition (57) for the intensity of the vibrations, we �nd
that (see Fig. 72, at right)

i( p;q) = a(p;q)a� (p;q) = ja(p;q)j2 = i0 a4 [
sin(�ap)

�ap
]
2

[
sin(�aq)

�aq
]
2

: (141)



Figure 72. Complex amplitude distributionA(x; y) in the plane of a single square aperture (left) and
resulting response function in intensityi(p;q) (right).

De�ning the angular resolution� of an optical system as being the angular width of the
response function in intensity inside the �rst minima, we obtain for the values of� pa = ��
(resp.�qa = ��), i.e. p = �1=a (resp.q = �1=a) and with the de�nition (127) forp;q

x0

� f
= �

1
a

(resp:
y0

� f
= �

1
a

); (142)

� =
� x0

f
=

�y 0

f
=

2�
a

: (143)

The angular resolution is thus inversely proportional to the size a of the square aperture,
and proportional to the wavelength�. Working at short wavelength with a big size aperture
thus confers a better angular resolution.

Up to now, we have considered that the sourceS, assumed to be point-like and located
at an in�nite distance from the optical system, was on the optical axis of the instrument.
Suppose now that it is slightly moved away from the zenith direction by a small angle. Let
(b=f , c=f , 1) be the unit vector representing the new direction of the source, the previous one
being (0, 0, 1). The plane wavefront falling on the square aperture will not have anymore
a constant amplitudeA0 because each point of the pupil touched by such a wavefront will
experience a phase shift given by the angle

	 =
2��
�

=
2�( xb=f + yc=f )

�
(144)

and consequently the correct expression of the complex amplitudeA(x; y) to be inserted
in Eq. (126) becomes

A(x; y) = A0 � (x=a)�(y=a) exp[
i2�( xb=f + yc=f )

�
]: (145)

Proceeding as previously, we easily �nd that

a(p;q) = A0 FT[�(
x
a

)](p �
b

� f
) FT[�(

y
a

)](q �
c

� f
) (146)
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and �nally

i(p;q) = a(p;q)a� (p;q) = ja(p;q)j2 = i0 a4

2
6666664
sin(�a( p � b

� f ))

�a( p � b
� f )

3
7777775

22
666664
sin(�a(q � c

� f ))

�a(q � c
� f )

3
777775

2

: (147)

The resulting intensity response function in the focal plane is nearly the same as the one
previously calculated for the caseb = 0;c = 0. It is being merely translated by a linear
o�set (b; c) in thex0; y0 focal plane and implies the invariance of the response function for a
reference star that is being slightly o�set from the optical axis of the system.

6.1.2 Applications of the fundamental theorem: the case of a circular aperture

Considering now a circular aperture with radiusR, the complex amplitudeA(x; y) in the
pupil plane may be represented as a circular symmetric distribution, i.e.A(�; ') = A0 for
� < R; ' 2 [0;2�] and A(�; ') = 0 for � > R (see Figure 73, at left). We naturally expect the
distribution of the complex amplitude in the focal plane to be also circular symmetric, i.e.

a(� 0) = FT[A(�; ')](� 0): (148)

It is here interesting to note that performing the above Fourier transform is quite alike
deriving the expression of the visibility of a 2�D uniform circular disk star which angular
diameter is� UD (see the last application in Section 4.5). We may just make use of the result
(123) with appropriate changes of the corresponding variables. We easily �nd that

a(� 0) = A0�R 2[2J1(
2�R� 0=(� f )
2�R� 0=(� f )

)]: (149)

The resulting intensity response function is thus given by

i(� 0) = a(� 0)2 = A2
0(�R 2)2[2J1(

2�R� 0=(� f )
2�R� 0=(� f )

)]2: (150)

This is the very expression of the famous Airy disk (see Fig. 73, at right).

Figure 73. The Airy disk: complex amplitude distributionA(�; ') = A0 in the plane of a circular
aperture (left) and the resulting response function in intensityi(� 0) (right).



Knowing that the �rst order Bessel functionJ1(x) = 0 for x � 3:96, it is easy to deduce
that the angular resolution� of a telescope equipped with a circular objective which diameter
is D = 2Ris given by

� =
�� 0

f
=

2:44�
D

: (151)

6.1.3 Applications of the fundamental theorem: the two telescope interferometer

Figure 74 (upper left) illustrates the principle of optically coupling two telescopes. Such a
system is equivalent to a huge telescope in front of which would have been placed a screen
pierced with two openings corresponding to the entrance pupils of the two telescopes. The
pupil functionA(x; y) of this system is shown in that same Figure for the case of two square
apertures.

Figure 74. The two telescope interferometer: distribution of the complex amplitude for the case of two
square apertures (upper left) and the corresponding impulse response function (lower right).

Let us now calculate the impulse response functiona(p;q) of such a system. Representing
the distribution of the complex amplitude over each of the individual square apertures by
means of the functionA0(x; y) and assuming that the distance between their optical axes is D,
we �nd that

a(p;q) = FT[A0(x + D=2; y)+ A0(x � D=2; y)](p; q): (152)

Making use of the relation (104), the previous equation reduces to

a(p;q) = [exp(i� pD) + exp(�i� pD)] FT[A0(x; y)](p;q); (153)

a(p;q) = 2cos(�pD)FT[A0(x; y)](p;q) (154)

and �nally
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i( p;q) = a(p;q)a� (p;q) = ja(p;q)j2 = 4cos2(� pD) fFT[A0(x; y)](p;q)g2: (155)

Particularizing this intensity distribution to the case of two square apertures, or circular
apertures, and making use of relations (141) or (150) leads to the respective results

i(p;q) = A2
0 (2a2)2 [

sin(� pa)
� pa

]2 [
sin(�qa)

�qa
]2 cos2(� pD) (156)

or

i(p; � 0) = A2
0(2 �R 2)2[

2J1(2�R� 0=(� f ))
2�R� 0=(� f )

]2 cos2(� pD): (157)

Figure 74 (lower right) illustrates the response function for the former case. We see that
the impulse response of each individual telescope is modulated by the cos(2�pD) function
and that the resulting impulse response function shows consequently a more detailed structure
along thep axis, leading to a signi�cantly improved angular resolution� along that direction.
The angular width� of the bright central fringe is equal to the angular width separating the
two minima located on its two sides. We thus �nd successively

� pD = �
�
2

; (158)

p = �
1

2D
; (159)

� p =
1
D

(160)

and making use of relation (127)

� =
� x0

f
=

�
D

: (161)

The angular resolution of the interferometer along the direction joining the two telescopes
is approximately equivalent to that of a single dish telescope which diameter is equal to the
baselineD separating them, and not any longer to the diameter of each single telescope (see
Eqs. (143) or (151)).

6.1.4 Other types of beam recombination

When establishing the expression for the response function of an interferometer composed
of two single square or circular apertures (see Section 6.1.3, Eqs. (156-157)), we implicitly
assumed that the exit pupil perfectly matched the entrance pupil (see Figs. 49, 50, 53 and 75).
The baselineB between the two entrance pupil apertures was indeed equal to the baselineB0

between the two exit pupil apertures.
This type of recombination of the two beams is referred to as the Fizeau-type or homo-

thetic one. As we have seen in Section 3.4, Michelson and Pease have used another type
of beam recombination, known as the Michelson Stellar Interferometer or still, the densi�ed
recombination type (see Fig. 76).

When the two exit beams are being superimposed, resulting in the baselineB0 = 0, the
recombination is referred to as being co-axial, or the Michelson Interferometer type (see
Fig. 77).



Figure 75. The two beams of light rays, represented with blue dashed lines, collected by the two
entrance pupil apertures are separated by a baselineB which is identical to the baselineB0 between the
two apertures in the exit pupil plane of the main converging lens.

Figure 76. Sketch of the Michelson Stellar Interferometer. The baselineB between the two entrance
pupil apertures is much larger than the baselineB0 between the two apertures in front of the recombining
lens. The 45� inclined black lines symbolize re�ective plane mirrors. In the case of the Michelson-Pease
experiment, these four mirrors were set on a 7m beam just above the 2.5m Wilson telescope (see Fig.
54).

A more general model of beam recombination, that includes the three previously de-
scribed ones, is illustrated in Fig. 78. Two main collectors receive the light beams from a
distant celestial source. While passing through the beam reducers, the beams are compressed
by a magni�cation factor M, corresponding to the ratio between the focal lengths of the two
lenses of the focal reducers. The two compressed beams are then relayed by means of a set
of 4 mirrors, just like in the Michelson Stellar Interferometer. Before entering the exit pupil
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Figure 77. The Michelson Interferometer. In this case, the beam recombination is co-axial correspond-
ing to the exit pupil baselineB0 = 0.

of the recombining lens, their separation or baseline isB0 < B. To calculate the response
function of such an interferometer, we just need to apply the fundamental theorem to this
secondary Fizeau-type interferometer with a baselineB0, taking into account the correct ex-
pression for the distribution of the complex amplitude of the electric �eld over the two exit
pupil apertures.

Figure 78. General case of beam recombination. The two beams of parallel light rays from a distant
celestial source are �rst collected by two unit telescopes having a diameterD. The beams are then
compressed by a magni�cation factor M. They are subsequently relayed by a system of plane mirrors
to the exit pupil of the recombining lens. At that stage, their separation (baseline) isB0 < B.



Considering a point-like celestial source emitting a plane wave making an angle� 0 with
respect to the line joining the two telescopes, the angle between the outcoming beam - com-
pressed in size by the magni�cation factorM(= fin=fout) - and the main axis of the optical
system isM� 0 (since sin[�0] ' � 0, given that� 0 << 1, see Fig. 79). The resulting complex
amplitude in the focal plane of the recombining lens is along thep direction, i.e. along the
line joining the two exit pupil apertures (see Fig. 80 and Eq. (125))

a(p) = FT[A1(x)](p) + FT[A2(x)](p) (162)

whereA1(x) andA2(x) represent the distribution of the complex amplitude in the two exit
pupil apertures along thex axis.

Figure 79. Propagation of an incoming plane wave from a distant celestial object with an inclination
angle� 0 through a beam reducer. The beam size is being reduced by the magni�cation factorM =
fin=fout while the outcoming direction of the beam has changed intoM� 0.

We subsequently �nd that

FT[A1(x)](p) =
Z �( B0� D=M)=2

�( B0+D=M)=2
M exp[�2i�( px)] exp[2i� M sin[� 0](x � (B=M � B0)=2)=�]dx;

FT[A2(x)](p) = exp[2i�(d=�)]
Z (B0+D=M)=2

(B0� D=M)=2
M exp[�2i�( px)] exp[2i� M sin[� 0](x + (B=M � B0)=2)=�]dx:

(163)

In this expression, we have taken into account the fact that most of existing interferome-
ters are equipped with a delay line and we have assumed here that an extra lengthd a�ects the
path of the second beam. This explains the origin of the factor exp[2i�(d =�)] in the expres-
sion ofFT[A2(x)](p). The limits of integration are straightforward to establish (see Fig. 80,
Level 3). The presence of the factorM merely accounts for the fact that when a beam is com-
pressed, its constant amplitude is being multiplied by M (and the intensityi(p) by M2 in order
to preserve energy conservation). The factor exp[�2i�(px)] merely accounts for the pupil-to-
image relationship from Fourier optics (cf. the fundamental theorem). Since for the case of
a co-phased array, the path di�erences a�ecting the arrival of the plane waves at the centres
of the two apertures at Level 1 in Fig. 80 are+� and�� (= �( B=2) sin[�0] ' �( B=2)�0), the
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Figure 80. Propagation of an incoming plane wave from a distant celestial object with an inclination
angle� 0 through two beam reducers (Level 1 - Level 2). When arriving in the exit pupil plane (Level 3),
the delays�� of the plane waves near the centres of the two apertures are the same but their inclination
is nowM� 0.

latter remain una�ected when reaching the centres of the two apertures in the exit pupil plane
(Level 3). Nevertheless, their relative inclination has changed from� 0 to M� 0. Therefore,
we easily understand the origin of the two factors exp[2i�M sin[� 0](x � (B=M � B0)=2)=�]
and exp[2i� M sin[� 0](x + (B=M � B0)=2)=�] appearing in the two previous equations. After
several successful changes of variables (see Appendix), Eq. (162) reduces to

a(p) = 2D exp[i�(d =�)]
sin[(� D=M)(p � M sin[� 0]=�)]

(� D=M)(p � M sin[� 0]=�)
cos[�( B0p + (d � Bsin[� 0])=�)]:

(164)
The corresponding expression for the intensityi(p) = ja(p)j2 becomes

i(p) = 4D2 [
sin[(� D=M)(p � M sin[� 0]=�)]

(� D=M)(p � M sin[� 0]=�)
]2 [cos[�( B0p + (d � Bsin[� 0])=�)]] 2: (165)

The previous equations describe the response function of any interferometer having its
entrance and exit baselines such as 0� B0 � B.

In the absence of an internal delayd, the previous expression fori(p) can be rewritten as

i(p) = 4D2 [
sin[(� D=M)(p � M sin[� 0]=�)]

(� D=M)(p � M sin[� 0]=�)
]2 [cos[� B0(p � Bsin[� 0]=(B0�)]] 2: (166)

Some nice features become outstanding: we �rst notice that the width of the envelope
function is governed by the factor� D=M which is related to the size of the beam after com-



pression. The angular separation of the fringes (�=B0) is essentially determined by the exit
pupil baselineB0. It does neither depend on the main baselineB nor on the magni�cation (or
beam compression)M. This last equation also reveals that for the response function to be
�eld invariant, we must haveM = B=B0. In that case, the centre of the main envelope (cf.
Airy disk for the case of a circular aperture) will always coincide with the central fringe peak,
whatever the position (�0) of the source in the �eld of view.

Let us now consider the case of Fizeau-type interferometry for which we haved = 0 (no
delay line is being used) and in additionM = 1, B0 = B, also sin[�0] ' � 0, Eq. (166) then
reduces to

i(p) = 4D2 [
sin[(� D)(p � � 0=� )]

(� D)(p � � 0=� )
]2 [cos[�( B(p � � 0=�))]] 2: (167)

Posing� 0 = b=f in the latter equation, we simply recover the result previously established
for the case of Fizeau interferometry (see Eqs. (147) and (156)). We also note here that the
response function of a Fizeau-type interferometer is �eld invariant.

Finally, the response function of a co-axial interferometer is easily derived by inserting
the valueB0 = 0 in Eq. (165):

i( p) = 4D2 [
sin[(� D=M)(p � M� 0=� )]

(� D=M)(p � M� 0=� )
]2 [cos[�(d � B� 0)=�]] 2: (168)

We note here that thecosfactor is only a function ofd and� 0, and not any longer ofp.
In conclusion, we have established in this section a very general expression (see Eq. (165))

for the response function of an interferometer composed of two similar apertures separated
by a baselineB and which beams have been compressed by a magni�cation factorM. In the
exit pupil plane, the new baseline between the two beams isB0 (0 < B0 < B) such that the
fringe separation is essentially governed by the latter term.

6.2 The convolution theorem

The fundamental theorem has allowed us to take into account the �nite size of the apertures
of an optical system instead of considering that the apertures are made of pinholes. However,
we have considered that the source is point-like. To treat the case of an extended source, we
shall make use of the convolution theorem.

The convolution theorem states that the convolution of two functionsf (x) and g(x) is
given by the following expression

f (x) � g(x) = ( f � g)(x) =
Z

R
f (x � t)g(t)dt: (169)

Figure 81 illustrates such a convolution product for the case of two rectangular functions
f (x) = �( x=a) andg(x) = �( x=b) having the widthsa andb, respectively.

Every day when the Sun is shining, it is possible to see nice illustrations of the convolution
product while looking at the projected images of the Sun on the ground which are actually
produced through small holes in the foliage of the trees (see the illustration in Fig. 82). It is
a good exercise to establish the relation existing between the observed surface brightness of
those Sun images, the shape of the holes in the foliage of the trees, their distance from the
ground and the intrinsic surface brightness distribution of the Sun.
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Figure 81. Convolution product of two 1-D rectangular functions. (a)f (x), (b) g(x), (c) g(t) and
f (x� t). The dashed area represents the integral of the product off (x� t) andg(t) for the givenx o�set,
(d) f (x) � g(x) = ( f � g)(x) represents the previous integral as a function ofx.

Figure 82. Projected images
of the Sun on the ground
actually produced through
small holes in the foliage of
trees (bamboo trees at
IUCAA, Pune, India, June
2016). These images
actually result from the
convolution of the intrinsic
Sun intensity distribution
and the shapes of the holes
in the trees.

6.2.1 Application to the case of the two telescope interferometer

We have previously seen that for the case of a point-like source having an intrinsic surface
brightness distributionO(p;q) = �( p)�(q), there results the formation of an imagee(p;q) in
the focal plane which is the impulse responsee(p;q) = i(p;q) = ja(p;q)j2 of the optical in-
strument (see Eqs. (141), (150), (156), (157) for the case of a single square aperture, a single
circular aperture, an interferometer composed of two square or circular apertures, respec-
tively). Considering now an extended source represented by its intrinsic surface brightness
distributionO(p;q), application of the convolution theorem in two dimensions directly leads
to the expression of its brightness distributione(p;q) in the focal plane of the optical system

e(p;q) = O(p;q) � ja( p;q)j2 (170)

or more explicitly

e(p;q) =
Z

R2
O(r; s)ja(p � r; q � s)j2drds: (171)

Since the Fourier transform of the convolution product of two functions is equal to the
product of their Fourier transforms, we �nd that



FT[e(p;q)] = FT[O(p;q)] FT[ja(p;q)j2] (172)

and also that the inverse Fourier transform ofFT[O(p;q)] leads to the result

O(p;q) = FT �1 [FT[O(p;q)]] = FT �1 [
FT[e(p;q)]

FT[ja(p;q)j2]
]; (173)

namely, that it should be possible to recover interesting information on the intrinsic sur-
face brightness distribution of the sourceO(p;q) at high angular resolution provided that we
get su�cient information at high frequencies in theu; vplane on the objectFT[e(p;q)] itself
as well as on a reference point-like objectFT[ja(p;q)j2].

6.2.2 Interferometric observations of a circular symmetric source

Considering the case of a symmetric source around theY axis observed by means of an
interferometer composed of two square apertures which size of their sides isd separated
along theX axis by the baselineD, we �nd by means of Eqs. (141), (156) and (170) that

e(p) = 2d2
 
sin(� pd)

� pd

!2 h
O(p) � cos2(� pD)

i
: (174)

Making use of the relation cos(2x) = 2 cos2(x) � 1, Eq. (174) reduces to

e(p) = 2d2
 
sin(� pd)

� pd

!2 "
1
2

Z

R
O(p)dp+

1
2

O(p) � cos(2�pD)
#
: (175)

Since the functionO(p) is real, the previous relation may rewritten in the form

e(p) = A
"
B +

1
2

Re[O(p) � exp(i2� pD)]
#

(176)

where

A = 2d2
 
sin(� pd)

� pd

!2

and B =
1
2

Z

R
O(p)dp: (177)

Given the de�nition of the convolution product (cf. Eq. (169)), relation (176) can be
rewritten as

e(p) = A
"
B +

1
2

Re[
Z

R
O(r) exp(i2�( p � r)D)dr]

#
; (178)

or

e(p) = A
"
B +

1
2

cos(2�pD)FT[O(r)](D)
#
; (179)

becauseO(p) being real and even, its Fourier transform is also real. The visibility of the
fringes being de�ned by (see Eq. (66))

v = j
 12(D)j =
 
emax � emin

emax + emin

!
; (180)

we obtain
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v = j
 12(D)j = FT[
O(r)
2B

](D) = FT[
O(r)

R
O(p)dp

](D): (181)

We have thus recovered the important result (see Eq. (93), i.e. the Zernicke-van Cittert
Theorem), �rst established for the case of two point-like apertures, according to which the
visibility of the fringes is the Fourier transform of the normalized intensity distribution of the
source. This result can be generalized to the case of a source that is not symmetric.

6.3 The Wiener-Khinchin theorem

Finally, the Wiener-Khinchin theorem allows one to easily �gure out what is the space fre-
quency content of the point spread function for a given entrance pupil of an optical instrument.
We may then directly �nd out which information is recoverable in terms of space frequency
when observing an extended source.

The Wiener-Khinchin theorem merely states that the Fourier transform of the response
function of an optical system, i.e. the Fourier transform of the Point Spread Function in our
case, is given by the auto-correlation of the distribution of the complex amplitude in the pupil
plane. In mathematical terms, the theorem can be expressed as follows

FT[ja(p;q)j2](x; y) = FT[i( p;q)](x; y) =
Z +1

�1

Z +1

�1
A� (x0+ x; y0+ y)A(x0; y0)dx0dy0: (182)

When establishing the expression (173), we wrote that the quantityFT[ja(p;q)j2] ap-
pearing in its denominator could be retrieved from the observation of a point-like star. The
Wiener-Khinchin theorem states that it can also be retrieved from the auto-correlation of the
distribution of the complex amplitudeA(x; y) in the pupil plane. Figure 83 illustrates the ap-
plication of this theorem to the case of an interferometer composed of two circular apertures
having a diametera and separated by the baselineb. We see that the autocorrelation of an
interferometer gives access to high space frequencies.

Figure 83. Diagram
representing the
autocorrelation function
versus the space frequency,
for a two telescope
interferometer, each having
a diametera, separated by
the baselineb.

A simple demonstration of the Wiener-Khinchin theorem (182) is given below.
We may successively establish that

FT[i( p;q)](x; y) = FT[ja(p;q)j2](x; y) = FT[a� (p;q)a(p;q)](x; y); (183)



FT[i( p;q)](x; y) =
Z Z

exp[�2i�( px+ qy)]
Z Z

A� (x00; y00) exp[2i�( px00+ qy00)] dx00dy00

Z Z
A(x0; y0) exp[�2i�( px0 + qy0)] dx0dy0dpdq;

(184)

FT[i( p;q)](x; y) =
Z Z

exp[(2i�f p[x00� (x0 + x)] + q[y00� (y0 + y)]g)]
Z Z

A� (x00; y00) dx00dy00
Z Z

A(x0; y0) dx0dy0dpdq (185)

and taking into account the de�nition (108) of the Dirac distribution

FT[i( p;q)](x; y) =
Z Z Z Z

�[ x00�( x0+x)] �[y 00�(y 0+y)] A� (x00; y00) A(x0; y0) dx0dy0dx00dy00:

(186)
We �nally �nd that

FT[i( p;q)](x; y) =
Z Z

A� (x0 + x; y0 + y) A(x0; y0) dx0dy0dx00dy00=
Z +1

�1

Z +1

�1
A� (x0 + x; y0 + y) A(x0; y0) dx0dy0dx00dy00; (187)

i.e. the quoted result, namely that the Fourier transform of the impulse response function of
an optical system can be represented by the autocorrelation of the distribution of the complex
amplitudeA(x; y) in the pupil plane.

These lecture notes are based upon lectures on the same subject delivered by the author
in French at the Liège University during the past ten years (see [1]). To get deeper into the
�eld of interferometry, we highly recommend the following books: [2], [3], [4], [5].

Finally, I wish to thank the organizers of the 2017 Evry Schatzman School (Dr. N.
Nardetto, Prof. Y. Lebreton, Dr. E. Lagadec and Dr. A. Meilland) for their invitation to
give these lectures and for the warm hospitality and nice atmosphere in Rosco�during that
event.

6.4 Appendix

In this appendix, we detail the calculations leading from Eqs. (162)-(163) to Eq. (164).
First of all, we proceed with the following change of variables in the expression of

FT[A1(x)](p): y = � x; dy = �dx . We then replacey by x anddy by dx. Putting the factor
exp[i�d =�] in evidence, the summation ofFT[A1(x)](p) andFT[A2(x)](p) leads to
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a(p) = exp[i�(d =�)]fexp[�i�(d =�)] M exp[�i� M sin[� 0](B=M � B0)=�]�
Z (B0+D=M)=2

(B0� D=M)=2
exp[2i� x(p � M sin[� 0]=�)]dx+

exp[i�(d =�)] M exp[i� M sin[� 0](B=M � B0)=�]�
Z (B0+D=M)=2

(B0� D=M)=2
exp[�2i� x(p � M sin[� 0]=�)]dxg (188)

and subsequently

a(p) = M exp[i�(d =�)]
Z (B0+D=M)=2

(B0� D=M)=2
fexp[i�[2 x(p � M sin[� 0]=�) � (d + M sin[� 0](B=M � B0)]+

exp[�i�[2 x(p � M sin[� 0]=�) � (d + M sin[� 0](B=M � B0)]dxg;
(189)

a(p) = 2M exp[i�(d =�)]
Z (B0+D=M)=2

(B0� D=M)=2
cos[�[2 x(p � M sin[� 0]=�) � (d + M sin[� 0](B=M � B0)]dx:

(190)

Let us now make use of the change of variables
z = �[2 x(p� M sin[� 0]=�) � (d+ M sin[� 0](B=M� B0)] such thatdx = dz=[2�(p� M sin[� 0]=�)],
Eq. (190) then transforms into

a(p) =
2M exp[i�(d =�)]

2�( p � M sin[� 0]=�)
fsin[�f( B0 + D=M)(p � M sin[� 0]=�) � (d + M sin[� 0](B=M � B0))=�g]

� sin[�f( B0 � D=M)(p � M sin[� 0]=�) � (d + M sin[� 0](B=M � B0))=�g]g;
(191)

and still

a(p) =
D exp[i�(d =�)]

� D[p � M sin[� 0]=�]=M
fsin[�f B0(p � M sin[� 0]=�) � (d + M sin[� 0](B=M � B0))=�g+

� D(p � M sin[� 0]=�)=M]�

sin[�f B0(p � M sin[� 0]=�) � (d + M sin[� 0](B=M � B0))=�g � � D(p � M sin[� 0]=�)=M]g:
(192)

Making use of the well known relation sin(A + B) � sin(A � B) = 2 cos(A) sin(B), the
previous equation reduces to

a(p) = 2D exp[i�(d =�)]
sin[� D[(p � M sin[� 0]=�)]=M]

� D[(p � M sin[� 0]=�)]=M
�

cos[�f B0(p � M sin[� 0]=�) � (d + M sin[� 0](B=M � B0))=�g] (193)

and since�f B0(p� M sin[� 0]=�) � (d+ M sin[� 0](B=M� B0))=�g = �f B0p+(d� Bsin[� 0])=�g
we �nally obtain



a(p) = 2D exp[i�(d =�)]
sin[� D[(p � M sin[� 0]=�)]=M]

� D[(p � M sin[� 0]=�)]=M
�

cos[�f B0p + (d � Bsin[� 0])=�g] (194)

which is the same result as that quoted in Eq. (164).
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Figure 84. Jean Surdej, enlightning and entertaining us with interferometry.
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Abstract. The principles of optical long baseline interferometry are presented
�rstly from the point of view of the coherence of the stellar wavefront and sec-
ondly from the point of view of the Object-Image relationship. These two com-
plementary approaches permit to extract some important considerations for the
actual implementation of this imaging technique. We also present a panorama
of the currently operational optical interferometers and their most recent science
programs. We conclude by a short prospective on the future steps.

1 Introduction

Researches in stellar physics have been, for a long time, dominated by well-established ob-
servational techniques like astrometry, photometry, polarimetry, and spectroscopy. But in all
these techniques, except probably Doppler-imaging, the star is seen as a point-like source
and the information on the spatial brightness distribution onto the sky is integrated. The star
is considered as a source of light and the di� erent properties of this light are sampled and
analyzed. After the pioneering works at the beginning of the twentieth century by Michelson
[1] and the original ideas by H. Fizeau [2], the rebirth of optical interferometry in 1974 by
Antoine Labeyrie [3] has opened a completely new �eld of investigation: the high angular
resolution permitting to reveal details at the surface or in the close environment of stars. As
an imaging technique, optical interferometry requires a strict control of the quality of the
optical transfer function and of the �eld of view. Moreover, the physical processes at work
in stars dictate to combine the high spatial resolution with temporal or spectral resolution.
Today, images of stellar's surface or detailed studies of the kinematic in atmospheres or disks
are well established. Combined with the recent advent of exoplanet researches, and the in-
strumental progresses for asteroseismology or astrometry, stellar physics is clearly a central
question among the top-priorities of today Astrophysics.

In this article, we will �rst present two complementary description of optical interferom-
etry, either through the principles of coherence (Section 2) and those of imaging (Section 3).
We then discuss, in Section 4, an important aspect of this observational technique that should
be understood �rstly as a direct imaging technique. Of course important practical limitations
occur in reality, they will be presented in Section 5 and in Section 6. The paper will end
with a panorama of the modern facilities in Section 7 and the most recent science programs
in Section 8. We conclude by a few words on the future of this observational technique in
Section 9.

� e-mail: denis.mourard@oca.eu



2 Angular diameter and coherence of the wavefront

Optical interferometry is often described through the concept of interference fringes. It was
indeed the driving principles expressed by H. Fizeau [2]1 and was described on the basis
of the coherence of the wavefront. The excellent book of Goodman [4] is probably one of
the reference work for optical interferometry. I'm presenting �rst this principle with a very
simple demonstration.

Figure 85. Schematic representation of an interferometer, from the point of view of the coherence of
the wavefront.

In Fig. 85, I consider a star located at in�nity and presenting an angular diameter� . This
object de�nes a solid angle
 de�ned by:


 = �
� �
2

� 2

: (195)

A screen of radiusr and surfaceS = �r 2 intercepts the stellar wave. This de�nes a beam
etendue� that can be written as:

� = S
 = � 2r2
� �
2

� 2

: (196)

The principle of coherence, as de�ned by Goodman in his book, indicates that we can
consider the wave as coherent if� < � 2. This de�nes the so-called radius of coherencerc:

rc =
�

�( �
2)

: (197)

One can note that in the case of a star with an angular diameter� = 10masand at a wave-
length� = 1�m, this leads to a value ofrc ' 13m. We thus understand that it exists a relation
betweenthe coherence of the wave and the angular diameter of the star. The coherence of the
electromagnetic wave could be determined by the computation of the complex degree of

1Although the recognized reference for this discovery is dated from 1868, it exists a note of H. Fizeau at the
French Academy of Sciences, dated from 1851, and showing that it could be possible to measure by interferometry,
the apparent diameter of a source, and in particular of a star.
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mutual coherence (�12) between two points of the collecting screen separated by a distance
B.

� 12 =
j 1 2

� j
q

j 1j2j 2j2
: (198)

By using the Van-Cittert Zernike theorem and the notation Õ for the Fourier Transform
of the star brightness distribution, we can write the following relation:

� 12 =
Õ( B

� )

Õ(0)
: (199)

Consideringthe star as a uniform disk, we �nally obtain:

� 12 = j
2J1(� B�=�)

� B�=�
j: (200)

The de�nition of coherence by Goodman corresponds to the case where� 12 = 0:5 which
corresponds to� B�=� = 2 and thus toB = rc = �

�( �
2 )

, which is an other way of de�ning the

coherence (� < �2).

This simple calculation shows that the coherence of the electromagnetic wave of stellar
sources could be measured through a spatial sampling if one can access to very long baselines
(B larger than 100m typically). The simplest instrumental setup dedicated to the measurement
of the complex degree of mutual coherence is thus to consider the coherent addition of the
two complex waves collected at point 1 and 2 with a phase shift on the second one dedicated
to the necessary adjustment of the optical path between the two wave collectors. Thus we
obtain the total intensityI as:

I = j 1 +  2ei� j; (201)

I =  1
2 +  2

2 + 2 1 2 � cos(�): (202)

DenotingI i the intensity of the wave at point i, we �nally obtain:

I = (I1 + I2)(1 +
2

p
I1I2

I1 + I2
�

 1 2
�

q
j 1j2j 2j2

� cos(�)): (203)

The term with the cosinus function represents, if one introduces variations of� either by
temporal or spatial sampling, a modulation in the measured intensity, which is also called
interference fringes. The amplitude of the modulation is de�ned by the factor in front of the
cosinus. It contains two parts: the photometric one (2

p
I1I2

I1+I2
) and the coherence one ( 1 2

�
p

j 1j2j 2j2
)

where we recognize� 12 the complex degree of mutual coherence of the two collected waves.

These principles are mainly valid whatever the wavelengths. But many other aspects have
to be taken into account, such as the spectral and temporal coherence of the electromagnetic
waves. Again at� = 1�m, considering a spectral width�� = 0:1�m leads to a coherence
time tc = 3:10�14 s using the relation between the coherence time and the frequency domain
(tc � � f = 1). At larger wavelengths and with very fast detectors, it is possible to directly
record the electromagnetic waves at two di�erent locations and to correlate them, later, into a
computer. This is usually done un radio-astronomy at millimeter and centimeter wavelengths



for Very Long Baseline Interferometry or, by reducing the spectral width and generating
beating waves with a local oscillator, through what is called heterodyne interferometry. It
could also be shown that the coherence of the electromagnetic wave could be extracted from
the correlation between the �uctuation of intensities at the two di�erent locations [5]. In
this paper we only consider the case of direct interferometry in the optical domain, which
means that we use detectors sensitive to the intensity of the electromagnetic wave recording
the intensity resulting from the coherent addition of the complex waves.

As a conclusion of this section, we see that we have indeed a way to measure complex
degrees of mutual coherence of stellar waves allowing us to sample the Fourier transform of
brightness distributions at very high spatial frequencies. We will see in Section 6 how this
method is now implemented in reality but before coming into the instrumental part of this
technique an other point of view is also very important for a correct understanding of this
observing technique.

3 Angular diameter and Object-Image relationship

Astronomers have developed optical interferometry in order to improve the resolving power
of the telescopes. Indeed image formation in a telescope is a standard di�raction problem and
it is known for a long time that an imageI(�! � ) is obtained as the convolution of the brightness
distribution of the sourceO(�!� ) by the point spread function of the optical deviceH(�! � ).

I (�! � ) = O(�!� ) 
 H(�! � ) (204)

When this convolution relation is translated into the Fourier domain, it shows that the
spatial frequency spectrum of an imageeI(�! u) is the spatial frequency spectrum of the object
eO(�!u) �ltered by the optical transfer functioneH(�! u) of the optical device.

eI(�! u) = eO(�!u) � eH(�! u) (205)

Thanks to the di�raction principle, it could be easily shown (see the paper by J. Surdej
in this book) that the modulus of the optical transfer function, called the modulation transfer
function (MTF), is equal to the autocorrelation of the pupil function, de�ning the entrance
plane of the optical device.

��� eH(�! u)
��� = AC

h
P(� �! u)

i
(206)

In the case of a monolithic telescope of diameterD, the MTF acts as a low pass �lter
transmitting the spatial frequencies of the object brightness distribution up toD=� (see
Fig. 86). This corresponds to what is usually called the di�raction limit�= D of the telescope.
We do not consider here the perturbations induced by the atmosphere and we just consider
the ideal case of a perfect optical instrument.

In the case of an interferometer with two telescopes of diameterD and separated by a
vector

�!
B, the support of the MTF (also called the (u,v) plane), is made of a low frequency

peak of extent� D=� andtwo high frequency peaks of extent� D=� andlocated at�
�!
B=� (see

Fig. 86). The interferometer acts thus as a high frequency band pass �lter, allowing to reach
information at a resolution of�=j

�!
Bj.
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Figure 86. Modulation Transfer Function (bottom row) corresponding to the pupil (top row) of a single
telescope (left) and of a 2-telescope interferometer (right). The units are arbitrary.

In the general case, the (u,v) plane (support of the MTF) is a function of the input
baselines, of the latitude of the observatory, of the target coordinates, of the wavelength and
of the time (because of the earth rotation). The (u,v) plane coverage de�nes the sampling of
the Fourier transform of the object brightness distribution.

The properties of the image obtained directly at the focus of an interferometer clearly
depend on the (u,v) plane coverage but it can also be shown [6] that the beam combination
scheme plays also an important role in that domain. I refer the reader to the important papers
published in that domain [7–10]. As an illustration I present in Fig. 87, some examples
of (u,v) plane coverage and point spread function for di�erent kind of optical interferometers.

Currently, no interferometer is working in a direct imaging scheme except the Large
Binocular Telescope in its interferometric mode. The limitations of coherence for ground
based projects in the optical domain are clearly di�cult to overcome. Progresses are
being made in that direction but for the moment, imaging at high angular resolution, is not
working directly at the focus of the interferometer. Instead, astronomers are using the (u,v)
plane coverage to sample the Fourier transform of the brightness distribution and then to
reconstruct images. This method has made great progresses in the recent years. The quality
of the reconstructed images highly depends of the (u,v) plane coverage and of thea priori
information (regularization constraints) introduced in the reconstruction algorithm. I do not
intend to describe this method in the present paper and I refer the reader to the practical
sessions of the school.



Figure 87. Examples of (u,v) plane coverage (middle column, autocorrelation of the pupil) and of the
corresponding point spread function (right column, modulus of the Fourier transform of the autocorre-
lation of the pupil) for four di�erent input pupil (left column) con�gurations.

I will conclude this section by giving some general considerations about image recon-
struction with an interferometer. First of all, an interferometer made ofN telescopes produces
N(N � 1)=2 baselines and thus samplesN(N � 1)=2 frequencies in the Fourier transform of
the brightness distribution of the object. We thus have a problem withN(N � 1)=2 complex
unknowns.
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Figure 88. Number of unknowns, of modulus and closure phase measurements (left scale) as a function
of the number of telescopes. The dark curve represents the percentage (right scale) of information
measured as a function of the number of telescopes.

We have already indicated that the limitations of ground based interferometers are domi-
nated by the phase e�ects introduced by the atmospheric turbulence. If it is easy to measure
the modulus of the Fourier transform over theN(N� 1)=2 points, the phase measurements are
however highly corrupted by the turbulence. As in radio interferometry, astronomers over-
come this di�culty by computing closure phase measurements over triplets of apertures. It
can be shown easily that the atmospheric phase terms are removed in the sum of the phase
of three interference fringes over any triplet of telescopes. Thus closure phase measurements
(see explanations in Section 6) give us access to (N � 1)(N � 2)=2 additional measurements.
With this in hand, we understand that the problem is not well constrained because the number
of unknowns is always larger than the number of measurements. A representation of these
numbers is presented on Fig. 88.

4 A direct imaging technique

We concluded the previous section on the idea that, ideally, an interferometer may have the
same imaging properties as a single giant telescope. If this is true from the point of view of
the optical system, in practice the encoding of the information is quite di�erent and to reach
this ultimate goal the implementation of interferometers should respect a certain number of
conditions and some restrictions appear. A schematic representation of two generic con�g-
urations of interferometers is given in Fig. 89. The �rst case (A) represents what is usually



called the Fizeau combination. The two segments are really identical to elements of the giant
parabola and if the number of sub-elements is increased the imaging properties of the diluted
parabola approach the ones of the giant mirror. The transfer function is not as rich as for the
full pupil but the main property of the highest angular resolution could be easily preserved.

Figure 89. Schematic representation of an interferometer. A: the Fizeau type, B: the Michelson type.

This �gure helps us to understand that the same formalism of image formation is in action
when considering an interferometer and not only of single telescope. This property of convo-
lution has been studied with many details by Labeyrie [6] and by Tallon&Tallon-Bosc [11].
These works have generated the idea that an interferometer could work as a direct imager and
not only as an aperture-synthesis experiment sampling the spatial frequency plane and allow-
ing an,a posteriori, image reconstruction. A direct image could be obtained at the common
focus of the interferometric array. This was known in the Fizeau-like mode but this one is
not e�cient as the sampling is far from being optimized. The pupil-densi�cation scheme and
the hypertelescope principle have permitted to develop a new way of thinking the interferom-
eters, just as direct-imaging devices. In Fig. 90, I present the Fizeau Point Spread Function
for di�erent pupil con�gurations. If we can easily understand that with an increasing number
of sub pupils, the point spread function is progressively converging towards the point spread
function of the large monolithic telescope, we also identi�ed that the interferometric Fizeau
process generates also a large number of bright side peaks in the point spread function, de-
grading therefore the image quality. This poor imaging quality can be overcome by using the
principle of pupil densi�cation as this is done implicitly in fact in almost all aperture synthesis
interferometers, and even in the Michelson experiment presented in Fig. 91. Thanks to this
important aspect of the beam combination in an interferometer, it is possible to have a �xed
sampling of fringes whatever the entrance pupil. The pupil densi�cation adds an important
constraint with respect to the standard pupil recon�guration of current interferometers: the
geometry of the input and output pupil has to be respected but each output pupil could be
magni�ed to improve the direct imaging properties. Of course there is a price to pay because
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the convolution relation is broken in this densi�cation process. The drawback is a reduction
of the �eld of view but it can be shown that in the direct imaging �eld, a pseudo relation of
convolution exists and that a true direct image is indeed formed. The properties of this direct
imaging scheme (Clean Field, Direct Imaging Field, Interferometric Field, encircled energy)
have been studied in many details by di�erent authors [7, 8]. I present in Fig.92 various pos-
sible interferometric arrays and in Fig. 93 their imaging properties in a densi�ed combination
scheme.

Figure 90. The upper row presents di�erent pupils, from a small telescope to a large telescope, and
with three di�erent interferometric pupils. The bottom row presents the corresponding point spread
function.

Figure 91. The Michelson interferometer mounted on top of the Hooker 100 inches telescope at Mount
Wilson. The light path used 2 �at mirrors in each arm, generating an apparent pupil, as seen from the
eyepiece, always the same, independently of the distance of the two entrance mirrors. This �xed output
pupil generates a �xed fringe spacing and realizes in fact the �rst densi�cation.



Figure 92. Four di�erent possible interferometric arrays with their respective (u,v) plane coverage, the
representation of the interference function, the densi�ed point spread function, and the corresponding
densi�ed pupil.

In this section, I have presented the principle of optical interferometry from the direct
imaging point of view. With the limitation in the �eld of view generated by the beam combi-
nation and the violation of the strict convolution product in the image-object relationship, we
can however consider that an hypertelescope is not di�erent from any imaging telescope. But
we must also recognize that it has taken a very long time to obtain images with interferom-
eters and the hypertelescope principle is, today, still in its demonstration phase. The largest
part of the astrophysical publications in optical interferometry continue to work with squared
visibility, closure phase, triple product amplitude, and model reconstruction or parametric
imaging. The main reason behind the current limitations is again a problem of coherence and
its strong limitation because of the atmospheric turbulence and the actual implementation of
long baseline interferometers. This is also a budgetary issue but we will not cover this aspect
of the problem in the present paper.

5 The reality of the coherence

If we look again at Eq. 197 in Sec. 2, de�ning the radius of coherencerc, we can easily
deduce that for a star with an apparent angular diameter of 10mas, at a wavelength of 1�m,
the radius of coherence is of the order of 13 m. Considering a spectral bandwidth of 0:1�m,
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Figure 93. The four interferometric arrays are considered with a variable number of subpupils and the
imaging properties are compared, in terms of Clean Field, of encircled energy, and of interferometric
�eld of view.

this corresponds to a coherence duration of 3� 10�14 s and �nally a coherence length of
10�m. It means that, independently of any other consideration, the optical paths between
the di�erent arms of the interferometer should be equalized at a level of a fraction of the
coherence length if one wants to be able to detect the interferometric pattern and to measure
it with good quality. For obvious reasons of correlation, the interferometric signal (the fringe
contrast) depends on the residual error on the optical path and if this error is not stable the
transfer function of the interferometer is degraded.
Interferometers have been equipped with di�erent kinds of delay lines to compensate for
the earth rotation and to guaranty the equalization of the optical paths. The usual setup of
such delay lines is a mechanical carriage moving on rails thanks to a motorized wheel. The
optical system, usually a cat's eye, is supported by a second carriage, whose position could be
corrected precisely with a second level of control loop over a small stroke of one millimeter or
less, usually made of a voice-coil. It permits to compensate the defaults of the main driving
system. And �nally the secondary mirror of the cat's eye is usually supported by a piezo
translation stage able to correct the optical path at a very high frequency (a few kiloHertz)
over a very small stroke.

The combination of these three control loops permits strokes of a few tens of meters with
a precision less than 10 nanometers for speeds up to 10mm/s. An example is presented in
Fig. 94. Today the technology of delay lines is very mature and the performance is excellent,
even at the shortest wavelengths.

There is however a second important di�culty in terms of coherence of the stellar wave-
fronts due to the atmospheric turbulence. The gradients of temperature and speed inside the
turbulent medium generate important variations of the index of refraction of air. When the
turbulence is developed, a statistical description of the residual coherence is usually made.



Figure 94. One of the VLTI delay line installed on its rails and supporting the cat's eye.

Astronomical sites are of course carefully studied in terms of seeing properties in comple-
ment with overall weather and transparency characteristics. The spatial coherence of the
atmosphere is usually described by the Fried parameterr0, of the order of 10 cm in good
sites. The temporal coherence is designed by the coherence time� 0, of the order of 10ms.
Finally, at least at visible wavelength, there is an additional characteristic that has to be taken
into account which is called the spectral coherence of the atmosphere, of the order of 30 nm
in the R band. This quantity corresponds to the decorrelation of the speckles and fringes
between two distant spectral bands [12]. All these parameters are usually correlated, even if
one can �nd sites with larger0 and small� 0 but we consider that the hypervolume of coher-
ence (the one that is directly related to the quality of the interferometric measurement) varies
as the power 4 of the turbulence (two spatial dimensions, one temporal, and one spectral).
Moreover, the spatial and temporal coherence (r0 and� 0) vary as� 6=5 which also explains
why near and mid infrared interferometry has been preferred for a long time, in addition of
course to the simple consideration related to the size of the wavelength.

To avoid the e�ects of the atmospheric turbulence, one obvious solution is to implement
interferometers in space. This has been pushed a lot twenty years ago, especially for the
science case of the direct characterization of earth-like planets (TPF, Darwin) but the cost
of these missions and, on certain aspects, the technological maturity have killed the e�orts.
Moreover, the maturity of the ground interferometers was also not well established at that
time. Finally, today, the situation of space interferometers is not encouraging at all and no
clear path forward could be established.

The progress of technology and of fast control loops on ground systems (see the paper by
F. Martinache in this book) have permitted to develop cophasing devices permitting to com-
pensate the negative aspects of the atmospheric turbulence. The individual telescopes could
be equipped with adaptive optics (usually simple one based on the principle of Single Con-
jugated Adaptive Optics for a very narrow �eld). Coherencing devices have been developed
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for a long time [13] in order to stabilize the optical path di�erence within a small fraction of
the coherence length. More recently, and after the pioneering work of FINITO [14] on the
VLTI, cophasing devices permitting to stabilize the optical path di�erence within a fraction
of the wavelength, have been successfully implemented within the GRAVITY instrument on
the VLTI [15].

So, the coherence of the stellar wavefront could be measured with the current interfer-
ometers implemented on ground if di�erent levels of active and adaptive compensation are
implemented: delay lines for the compensation of the earth rotation, adaptive optics on each
individual telescope to correctly use the full collecting area, and �nally a cophasing device
to correct for the di�erence of piston between the di�erent arms of the interferometers. With
the e�ective implementation of all these active systems, the di�erent samples of the incom-
ing stellar �at wavefront are fully recophased and the ultimate performance could be reached,
almost like in a classical giant telescope with a diluted pupil.

6 Practical considerations for the implementation of an
interferometer

Looking back now to the schematic representation of the two types of interferometers (see
Fig. 89), it is clearly understandable that the Fizeau con�guration (A) is not easy to imple-
ment on ground (because of the need for a giant driving system) and the classical way of
doing interferometers on ground is the second scheme (case B), usually called the Michelson
con�guration. In this case the two segments of the giant parabola are replaced by independent
telescopes and the light is recombined at the common focus.

We should focus �rst our attention on one general geometric particularity of this system.
The entrance pupil plane is now made of independent subpupils that are separated by tens or
hundreds of meter. Therefore the quality of the optical transfer function will highly depend
on the control of the sub pupils, in terms of transverse and longitudinal position. Moreover
the global pupil plane is no longer perpendicular to the direction of pointing, as it was the
case in the Fizeau con�guration or for any standard telescope. Optical delay appears between
the two arms and delay lines are mandatory. An important atmospheric dispersion may ap-
pear because of the prism of air above the pupil, and �nally the subpupils are at variable
distance from the focus which may generate Fresnel di�raction [16]. The �rst conclusion
is that a complex optical system is needed between the collection of the wavefronts and the
interferometric focus (see Fig. 95).

Now that the beams are correctly transported to the common interferometric focus we
should optically form the interferometric signal described in Eq. 201 of Sec. 2. Two options
could be considered: a coaxial beam combiner with a temporal modulation (see left panel
of Fig. 96) or a multi-axial combiner with a spatial modulation (right panel of Fig. 96). The
�rst mode is well adapted to single pixel detectors and was, therefore, used for a long time
at the beginning of infrared interferometry. The low noise and large number of pixels of
the detectors in the visible have permitted to prefer the second scheme in the visible. The
recent progresses of infrared detectors have progressively reduced the interest of the co-axial
combination.

With these schemes of combination, the interferometric equation (Eq. 203 of Sec. 2) is
formed with a dependence of the term� in the cosinus function, either with time (co-axial
scheme) or position (multi-axial scheme).

Pending the actual implementation of direct imaging interferometers, the current instru-
ments are based on the measurements of the fringe properties, mainly contrast and phase.
The �rst measurement is the contrast C of the fringes which is usually de�ned as:



Figure 95. The complex optical Coude train of the VLTI (top) and CHARA (bottom) interferometers.

C =
Imax � Imin

Imax + Imin
: (207)

With the simplifying hypothesisI2 = I1 meaning that no photometric di�erence exists in
the two beams, we can easily deduce that the contrast is an estimation of the complex degree
of mutual coherence, also called the squared visibilityV2.

C = V2 =
j 1 2

� j
q

j 1j2j 2j2
: (208)

It can be shown also that extracting the squared visibility could be done by the so-called
ABCD technique. The principle is to measure the intensity of the signal over four phase
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Figure 96. The two generic beam combiners for optical interferometry: (left) co-axial and temporal
modulation, (right) multi-axial and spatial modulation. The bottom raw gives a representation of the
fringe signal, as a function of time (left) or as a function of the position on the detector (right).

intervals covering:A = [0; �=2], B = [�=2; �], C = [�; 3�=2], and D = [3�=2; 2�]. The
contrast is obtained with the following formula:

C = V2 =
�
p

2

p
(IA � IC)2 + (IB � ID)2

IA + IB + IC + ID
(209)

The ABCD technique is more usually used for measuring the phase of the fringes on
a very e�cient way and the �rst technique withImin and Imax is not easily implementable
because of the fast motion of the fringes due to the atmospheric turbulence. Mathematically
speaking, these two techniques are in fact equivalent, from a numerical point of view, to
discrete Fourier transform of the fringe equation. And this is in fact the usual way to measure
the fringe contrast, through a Fourier transform of the raw images.

The measurement of the phase of the fringes is usually more complicated because of the
atmospheric turbulence. Di�erential measurements between two di�erent spectral bands are
possible and permit to get rid of the atmospheric phase. This has been used a lot and it is
usually estimated through the argument of the cross-spectrum:

Arg(< Ĩ � 1 Ĩ
�
� 2

>) = Arg(Õ� 1(
B
�

)) � Arg(Õ� 2(
B
�

)): (210)

Another possibility, inspired from what has been developed for a long time in radio-
astronomy [17], is the so-called closure phase, as mentioned in Section 3 and Fig. 4. One has
to consider a triplet of telescopes as in Fig. 6:

The phases ( 12,  23, and 31) of the fringes over the di�erent baselines could be ex-
pressed as following:

 12 = � 12 + ' 1 � ' 2

 23 = � 23 + ' 2 � ' 3

 31 = � 31 + ' 3 � ' 1



Figure 97. A triplet of telescopes used for measuring closure phase. The atmospheric phases on each
telescope are indicated ('1, ' 2, and' 3). Over the three baselines (12-23-31), the phases (�12, � 23, and
� 31) of the Fourier Transform of the object brightness distribution are also indicated.

Getting rid of the atmospheric phase is possible by forming the following expression
called the closure phase:

ClosurePhase=  12 +  23 +  31 = � 12 + � 23 + � 31: (211)

Summing the phase of the three fringes system on a closed triplet of telescopes permits to
obtain an information on the phase of the Object without the perturbation of the atmospheric
phase.

With the squared visibility, the di�erential phase and di�erential visibility, and the closure
phase, we have now a complete description of the interferometric observables. We have seen
at the end of Sect. 3, and in particular, in Fig. 88, how many of these quantities are accessible
for an interferometer with a number N of telescopes. In the next Section, I will present a short
overview of the existing facilities and of their main science drivers.

7 A modern panorama of optical long baseline interferometry

After a few decades of development, modern optical interferometry is now focused on four
facilities: ESO/VLTI, CHARA, NPOI, and MROI.

7.1 NPOI

NPOI2 is a collaboration between US Naval Observatory (USNO), Naval Research Lab
(NRL), and Lowell Observatory. NPOI has a long story and was part of the pioneering
installations at the end of the previous century. The major part of its program is dedicated
to global precision astrometry for the maintenance of the coordinates and proper motion of
reference stars. But NPOI has also obtained very impressive results in stellar physics, on
single stars or multiple systems. It is equipped with a Classic combiner based on a tempo-
rally modulating combiner and avalanche photodiodes. It covers the visible domain (550 to
850 nm) with a resolution of 40 and o�ers 16 independent spectral channels. NPOI has a sen-
sitivity limit of mV ' 5:5 with the 6+4 (imaging+astrometric) siderostats, 12 cm in diameter,
equipping the array. Recently a new EMCCD-based spatially modulating combiner called
VISION has been developed [18]. It can accommodate up to 6 beams and o�ers two spectral
resolutions (200 and 1000) in the visible domain. NPOI is currently being upgraded with
larger telescopes (1m in diameter) and the infrastructure for enabling the 450 m baselines of
the Anderson Mesa site.

2http://www2.lowell.edu/rsch/npoi/index.php
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Figure 98. A panorama of the four optical interferometers existing today in the world. We recognize
the Very Large Telescope Interferometer or VLTI (upper-left panel) installed at Cerro Paranal on the
premises of ESO. The Center for High Angular Resolution in Astronomy or CHARA Array, developed
by the Georgia State University (upper-right panel) is installed on Mount Wilson, California. In the
bottom raw, the Navy Precision Optical Interferometer (NPOI) is located on Mesa Anderson, close
to Flagsta� - Arizona (bottom-left panel). And �nally the Magdalena Ridge Optical Interferometer
(MROI) is today in construction phase on the site of the Magdalena Ridge Observatory - New Mexico
(bottom-right panel).

7.2 MROI

The MROI3 is in construction phase. The baseline plan is to equip the Array in Y-shape with
ten 1.4m telescopes with the possibility of relocation on baselines between 8 and 350m. It
is designed for imaging the central zone of active galactic nuclei, the study of the star and
planet formation, and the physical processes of stellar accretion and mass loss. The �rst
telescope has been delivered on site during Spring 2018 and many developments are still
ongoing like innovative evacuated delay lines or a fringe tracker for phase stabilization. The
implementation of the full facility is however funding dependent.

7.3 The VLTI array

The ESO/VLTI Array4 is installed on the ESO premises at Cerro Paranal in Chile. The four
8.2-m Unit Telescopes (UTs) and the four 1.8-m Auxiliary Telescopes (ATs) are the light
collecting elements of the VLTI. The UTs are set on �xed locations while the ATs can be

3http://www.mro.nmt.edu/about-mro/interferometer-mroi/
4https://www.eso.org/sci/facilities/paranal/telescopes/vlti.html



relocated on 30 di�erent stations. After the light beams have passed through a complex sys-
tem of mirrors and the light paths have been equalized by the delay line system, the light
re-combination is performed for quadruplet of telescopes with the beam combiners PIO-
NIER, GRAVITY, and MATISSE. The �rst generation instruments (VINCI, MIDI, AMBER)
are now decommissioned. Due to its characteristics, the VLTI has become a very attractive
means for scienti�c research on various objects like young pre-main sequence stars and their
protoplanetary disks, post-main sequence mass-losing stars, binary objects and their orbits,
solar system asteroids, our galactic center, and extragalactic objects such as active galactic
nuclei.

PIONIER [19] is a H-band 4-beam combiner instrument. It was originally a visitor in-
strument that by agreement with IPAG is o�ered to the ESO community from P96 onwards
as a facility instrument, i.e. without the need for collaborating with the instrument team, and
is o�ered both in visitor and service mode for normal, large, and monitoring programs. PI-
ONIER combines either beams from the 8.2-m Unit Telescopes or from the 1.8-m Auxiliary
Telescopes to provide visibilities of six di�erent baselines, as well as four closure phase mea-
surements, simultaneously. PIONIER features low resolution spectroscopic optics to measure
at six di�erent wavelengths within the H-band, increasing the (u,v) coverage, or can work in
integrated light for sensitivity enhancement on faint targets.

GRAVITY [15] is an interferometric instrument operating in the K band, between 2.0
and 2.4�m. It combines 4 telescope beams and is designed to perform both interferometric
imaging and astrometry by phase referencing. The instrument delivers spectrally dispersed
interferometric quantities in low, medium, and high spectral resolution. GRAVITY's angular
resolution is set by the maximum separation of the employed telescopes and the �eld of view
of the instrument. In imaging mode, GRAVITY is able to resolve features between 4 mas
(milli-arcsecond) and 50 mas with the UTs, and between 2 mas and 140 mas with the ATs.
The astrometric accuracy is also given by the maximum separation of the telescopes and will
be of the order of few 10 to 100�as. GRAVITY is equipped with a dedicated fringe tracking
subsystem and with a dedicated IR wavefront sensing system (CIAO) on the UTs.

MATISSE [20] is a mid-infrared spectro-interferometer combining the beams of up to
4 UTs/ATs.The instrument sensitivity, sampling and throughput are optimized for L and N.
The L band is speci�ed from 3.2 to 3.9�m and the N band from 8.0 to 13.0�m. MATISSE
will operate also in M band, from 4.5 to 5.0�m. The L, M and N bands can be observed
simultaneously. The instrument will be able to observe with di�erent spectral resolutions.
Two spectral resolutions are possible in N band (R' 30, R' 200) and 3 in L&M bands (R'
30, R' 500 for L and M, R' 1000 for L only). Due to readout time, the full simultaneous
coverage of the L&M bands in low and medium resolutions, and the full coverage of the L
band in high spectral resolution require an external fringe tracker. MATISSE will measure:
coherent �ux, visibilities, closure phases and di�erential phases. Di�erential visibilities can
also be derived. These quantities will be measured as a function of the wavelength in the
selected spectral bands and resolutions. The objective of MATISSE is image reconstruction.
It will extend the astrophysical potential of the VLTI by overcoming the ambiguities existing
in the interpretation of simple visibility measurements.

7.4 The CHARA array

The Center for High Angular Resolution Astronomy (CHARA5) optical interferometric array
of six telescopes is located on Mount Wilson, California. Each telescope of the CHARA
Array has a light-collecting mirror 1-meter in diameter. The telescopes are dispersed over

5http://www.chara.gsu.edu/
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the mountain to provide a two-dimensional layout that provides the resolving capability of
a single telescope with a diameter of 330 meters. Light from the individual telescopes is
transported through vacuum tubes to a central Beam Synthesis Facility in which the six beams
are combined together. When the paths of the individual beams are matched to an accuracy of
less than one micron, after the light traverses distances of hundreds of meters, the Array then
acts like a single coherent telescope for the purposes of achieving exceptionally high angular
resolution. The Array is capable of resolving details as small as 200 micro-arcseconds. The
strength of the CHARA Array besides in the number and size of its individual telescopes, its
ability to operate at visible and near infrared wavelengths, and its longest baselines of 330
meters.

The CLASSIC and CLIMB beam combiners [21] of the CHARA Array are open air, aper-
ture plane, broadband, single spectral channel instruments optimized for sensitivity. CLAS-
SIC is the original two beam combiner used for the �rst science at CHARA, and it still has the
faintest magnitude limit. CLIMB is a three beam expansion of CLASSIC that also provides
closure phase measurements. It is a very useful coherence tracker for the visible combiners.

JouFLU [22] is a two telescope beam combiner operating in the near infrared K band (�=
2:20�m). JouFLU spatially �lters the light through optical �bers to produce high precision
visibility measurements.

The Michigan Infrared Combiner (MIRC [23]) combines the light from all six CHARA
telescopes simultaneously. It disperses the light across 8 spectral channels in the near infrared
H-band (1.6�m). MIRC can be used to create images of stellar surfaces. The precision
closure phases are well suited to detecting faint binary companions.

PAVO [24] is an integral-�eld-unit for measuring spatially-modulated fringes in the pupil
plane. It spectrally disperses light over a 630-950 nm bandwidth (R= 30). Currently, PAVO
can be used to combine the light from two telescopes.

The Visible spEctroGraph and polArimeter (VEGA [25, 26]) was installed in September
2007 at the CHARA array. VEGA measures spectrally dispersed interference fringes, pro-
viding a spatial resolution of 0.3 mas and spectral resolutions from R= 6,000 to 30,000 over
a wavelength of 480-850nm. It can combine 2, 3, or 4 telescopes.

8 The study of stellar surface and their close environment using
interferometry

In this section we will present some of the most exciting results obtained using interferometry
in the recent years. We will focus on stellar physics, i.e. the study of stellar surface and
their close environment, following the framework of the 2017 edition of the Evry Schatzman
school of the French national program of stellar Physics (PNPS). One can see in Fig. 99 that
the number of refereed publications using interferometry (considering all topics) has grown
continuously to a maximum in 2009, and remains a very active domain of research. The new
generation of instruments that are just arriving now will probably continue this growth.

As we will show, interferometric, direct and Doppler imaging are very complementary
approaches, while the synergy between interferometry and asteroseismology is powerful in
the context ofGaiaand PLATO space missions.

8.1 Imaging at very high angular resolution

Four centuries after Giordano Bruno, one of the dreams in astronomy is to make the image
of an exo-Earth located at say 10 light years to �nd traces of life. However, to achieve this
objective, it would be necessary, for example, to build a 150 km space hypertelescope (see



Figure 99. Histogram of refereed publications in interferometry (considering all topics).Source: statis-
tics done by the Jean-Marie Mariotti Center (JMMC, http://apps.jmmc.fr/bibdb/).

Fig. 100). This example shows the di�culty of the task, with both problems of angular
resolution and contrast. Thus, what can be done �rst, and is in fact absolutely necessary to
understand the planet, is to image the stars and in particular, the most resolved stars, such as
giant stars or red supergiants.

Figure 100. Simulated image of the planet Earth located 10 light-years away and observed by a 150
km hypertelescope consisting of a network of 150 3m mirrors in the visible domain [27].

8.1.1 Giant and red supergiants stars

We can for instance cite the interferometric image of the red giant� 1 Gruis (radius of 350
R� ), obtained by the PIONIER instrument at VLTI, which reveals for the �rst time granulation
patterns on the surface of a star [28] (see Fig. 101). Valuable information on the geometry
and dynamics of the granulation is obtained from interferometric observations, even if the
coverage of the spatial frequency plane is insu�cient to produce an image. Several studies
have been conducted, �rst on the red supergiant Betelgeuse [29], then Antares [30] and �nally
on the red giant� Oph with the instrument MIRC on the interferometer CHARA [31]. Let's
also mention a series of remarkable images obtained on a giant,� And, with the instrument
MIRC on CHARA [32] (see Fig. 102) which made it possible to detect a dark spot during
a cycle of rotation of the star. Note that these observations of red giants or supergiants stars
generally require a heavy investment in terms of numerical computation time in order to
produce a 3-dimensional model of the star [33] to interpret the visibility and phase closure
measurements.
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Figure 101.The surface of the red giant� 1 Gruis imaged by the PIONIER instrument on the VLT [28],
i.e. with a hectometric base and in K band.

Figure 102. The surface of the giant� And obtained with the instrument MIRC on CHARA [32]. We
can see a persistent spot at the pole of the star and a transient spot moving with the rotation of the star.

To go further in the analysis of this type of astrophysical objects, it becomes interesting to
adopt precisely a multi-technique or multi-wavelength strategy. We will give two examples
here.

� First, it should be noted that a strong linear polarization was detected in the Betelgeuse
[34] atomic lines, in several other red supergiants [35], as well as in Mira or RV Tau
pulsating stars [36]. This polarization in the spectral lines makes it possible to go back
to the geometry of a possible bright spot on the disk of the star, a spot that can also be
detected by interferometry. Thus, the bright spots observed on the interferometric images
of Betelgeuse [29] have also been detected by spectro-polarimetry [34]. Thus, a remarkable
synergy between interferometric and Doppler imaging appears. And it may be noted in this
regard that the VEGA instrument on the CHARA interferometer has a polarimetric mode,
thus allowing spectro-polaro-interferometry, but this mode is not used on a regular basis
[37].

� Another example is given by a multi-wavelength AGB L2 Pup approach, observed in the
visible with the ZIMPOL/SPHERE instrument of the VLT [38] on the one hand, and with
the radio interferometer ALMA [39] on the other hand. What is remarkable here is that the
angular resolution of a telescope of 8 meters in the visible (16 mas) is almost identical to



that obtained by the kilometer bases of ALMA in the radio domain at 0.9 mm (14 mas).
It thus becomes possible to superimpose two images at identical angular resolutions, but
at two di�erent wavelengths. While SPHERE gives indications on the geometry of the
observed object, ALMA provides, because of its spectral resolution, constraints on the
kinematics of the environment in the CO line (see Fig. 103). It is interesting to mention
that we will obtain in the future the same type of synergy, i.e. images of equivalent angular
resolution, between ZIMPOL/VLT in the visible and a K-band ELT, or between an ELT in
the visible and MATISSE/VLTI in N-band (Fig. 104).

Figure 103. Superimposition of L2 Pup images obtained with ZIMPOL/SPHERE [38] and ALMA
[39]. The image in gray color corresponds to the observations of ZIMPOL/SPHERE instrument on the
VLTI. In color (blue / red) appears the velocity �elds (in km.s�1 ) as measured by ALMA. These two
images have the same angular resolution, which perfectly illustrates the potential of a multi-wavelength
approach.

Giant and supergiant imaging is thus a very dynamic �eld of research. But, failing to be
able to image the exoplanets, another synergy appears around thedetectionof the exo-planets
by imagery.

8.1.2 The star/planet interaction

The high angular resolution is a powerful tool that currently allows, especially with the
SPHERE instrument on the VLT to detect exoplanets by imaging. An interesting example
concerns the GJ504 system [40]. As the subtitle of this publication"Combining interferomet-
ric, radial velocity, and high contrast imaging data"indicates, this is a good example of syn-
ergy between IRDIS/SPHERE observations on the VLT which allow to detect the exoplanet,

Evry Schatzman School 2017



Figure 104.Comparison of the angular resolution of monolithic telescopes and existing interferometric
arrays as a function of wavelength. It is thus possible to obtain images of equivalent angular resolution
with ZIMPOL/SPHERE on the VLT in the visible and the interferometric ALMA interferometric array
in the B9 band at 0.9 mm (see Fig. 103). In the same way, we can anticipate interesting future syner-
gies between the ELT in the K band, ZIMPOL and ALMA (B9); or between the visible ELT and the
MATISSE interferometric instrument on the N-band VLTI.

and interferometric observations VEGA/CHARA [41], which, in turn, make it possible to
constrain the angular diameter of the central star. This angular diameter, combined with a
measurement of parallax provides the radius of the star, which in turn provide strong con-
straints on the age of the system, a crucial information to better characterize the fundamental
parameters of the star-planet pair.

8.1.3 The rotating stars

Fast rotators are generally smaller angularly, and therefore more di�cult to image than the
giant or supergiant stars, but signi�cant e�orts have been made in recent years in this �eld
of research. We can mention for instance the image of the star Achernar, the closest and
brightest rotating star of the sky, obtained with the instrument PIONIER on the VLTI. The
'e' indicates that there is a Balmer emission line due to the circumstellar environment of the
star, which appears and disappears periodically. Achernar's 2014 images show an excess of
continuous emission in the H band with a spatial extension of typically 2 stellar radii [42]
(see Fig. 105).

The study of Be's disks is also an active �eld of research and we can present here the
remarkable results obtained on� Per with the complementary contribution of the MIRC and
VEGA instruments on CHARA. The MIRC instrument (in H band, with a resolution 4 times
lower than in the visible range with VEGA) made it possible to image the disc of the star,
as well as the orbit of the companion (Fig. 106). The VEGA data, with the combination of
the spatial and spectral resolution of the instrument, provide images of the disk of the star



Figure 105. Pionier/VLTI image of Archenar secured in 2014. The arrow corresponds to the axis of
rotation of the star whose equatorial angular diameter is close to 2 mas [42]

at di�erent wavelengths in the hydrogen line H�, which gives access to the disc kinematics
[43]. This example shows the need of combining interferometric instruments at di�erent
wavelengths, and, as such, the availability of the di�erent instruments within CHARA is
particularly pro�table for many projects in stellar physics. This also applies to the VLTI, and
even between the VLTI and CHARA for some objects close to the ecliptic.

Figure 106. On this image obtained with the instrument MIRC on CHARA, we see the disc of the Be
star� Per (the star itself has been removed) as well as the orbit of the companion.

In addition to the environment (disk) of Be-type stars, the surface of rapidly rotating
stars is also interesting to study, since it exhibits a �attening e�ect, as well as a gravitational
darkening due to a gradient of temperature and gravity. Interferometry is a technique adapted
to the study of these geometric properties. Visibility and closure phase measurements are
indeed used to constrain the parameters of the model of the rotating star. For instance, the
CHARRON code was recently used to analyze the PIONIER data of Archenar [44]. Beside,
it should be mentioned that the gravitational darkening is particularly well contrasted in the
visible range, and that the �rst measurements in this wavelength domain although incomplete
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Figure 107.The polychromatic images of� Per in the H� line, a good tracer of the kinematics of the ro-
tating disc) obtained by the VEGA/ CHARA instrument (at the top) are compared to a model (medium),
itself arti�cially degraded by a model of the instrument (below). This �gure is taken from [43].

(without phase closure) remain valuable. Thus, [45] measured a �attening of 12% for� Per
in the visible domain, and deduced a speed of rotation of 57% of the critical speed (i.e.
maximum speed allowed for the stability of the star) .

8.2 Cepheids and eclipsing binaries as distance indicators in the universe

Figure 108. SpectroPhoto-Interferometry of Pulsating Stars (SPIPS) is a version of the Baade-
Wesselink distance determination method that combines observations of di�erent types (photometry,
velocimetry and interferometry) to constrain the parameters of a quasi-static model of pulsation of the
Cepheid (here� Cep), and in particular its distance [46].



Interferometry plays a key role in the calibration of distance scales in the universe, and
this at di�erent levels. Indeed, to understand the nature of dark energy, we must measure
the rate of expansion of the universe, that is to say the Hubble constant (H0), with a good
precision, i.e. better than 2%. The two main methods for doing this, the study of the cosmic
background radiation and the determination of distances in the universe show signi�cant
disagreements, which we refer to as the 'tension'. One of the ways to solve this tension is
to better calibrate the period-luminosity relation (PL) of Cepheids: what is its zero point? Is
it sensitive to metallicity? Can we reduce the dispersion of the relationship? The method
based on eclipsing binaries has recently been used to reach the 2.2% precision on the LMC
distance [47], which makes it possible to constrain the zero point of the PL relation and to
study the e�ect of metallicity. The eclipsing binary method is based on a very simple concept:
the linear radii of the two components of the eclipsing binary are deduced from photometric
and spectroscopic observations, while the corresponding angular diameters are calculated
from a surface brightness-color relationships, which is precisely calibrated by interferometry.
As part of the international project Araucaria6, the current goal is to reach 1% on the accuracy
on these relations [48, 49], especially for KIII-type giant stars (such as those found in LMC
eclipsing binaries). This will allow to reach the 1% precision on the distance of LMC. Similar
e�orts aim to calibrate the surface-brightness color relationships for early types stars (O, A,
B) [45], that we �nd in M31 and M33 eclipsing binaries, two key galaxies for the calibration
of thePL relationship.

Moreover, applying the Baade-Wesselink method (see the recent SPIPS version, Fig. 108)
of distance determination to the Cepheids of the Magellanic clouds is now possible [50], but
the projection factor and its dependence with the Cepheid pulsation period remains a key-
issue, except perhaps for� Cep, a well-understood prototypical star [51]. It is therefore
crucial to re�ne our understanding of the atmospheric dynamics of Cepheids and their envi-
ronment to determine distances in the universe. This is particularly true as the envelopes of the
Cepheids could have an non-universal e�ect on the dispersion of the period-luminosity rela-
tion. Cepheid envelopes were detected by infrared interferometry [52], but rather surprisingly,
an envelope around� Cep was recently detected in the visible range by the VEGA/CHARA
interferometer contributing to 7% of the �ux of the star [53]. An e�ort is currently done to
understand the structure and the physico-chemical nature of these envelopes, as well as their
distribution in the instability strip.

8.3 Young stellar objects

Finally, we will discuss the contribution of imagery and high angular resolution to the study
of young stars. These objects are complex with most of the time a circumstellar disc, whose
material is accreted toward the central star, then ejected and collimated into a jet. We thus
try to understand the geometrical structure of the disc, its physico-chemical nature, as well as
the links with the planetary formation. For these young stellar objects the multi-wavelength
approach is particularly suitable: the outer part of the disk is probed by radio interferometry,
with ALMA for example (see the section on young objects), the medium-infrared allows to
determine the molecular composition of the heart of the disc (soon with MATISSE/ VLTI),
while the near infrared (K band) and the ionized gas (Br
 , AMBER/VLTI line) allow to
prode the inner edge of the dust disc. Concerning the visible domain, it allows us to get even
closer to the star (ionized gas probed by the line H� with VEGA/CHARA), while the UV
emission informs us about the magneto-spheric accretion and energy processes related to the
jet. Here are some examples:

6https://araucaria.camk.edu.pl/
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Figure 109. Polarized light image of the SPHERE/VLT protoplanetary disk MWC758 in the infrared.
The two diamonds correspond to planets. The dotted ellipse corresponds to a projected circle with a
radius of 250 mas [54].

Figure 110.HD100546 observations of ZIMPOL/SPHERE in polarized light with a resolution for this
object of 2 au. Structures in the discs are clearly detected and can be the understood as an interaction
between the disk and planets [55].

� First, let us take the example of VEGA data on CHARA obtained in di�erent spectral
channels of the H� emitting line of the Herbig Ae/Be star AB Aur [57], which is an
excellent tracer of the geometry and kinematics of the ionized gas just below the inner edge
of the disk of dust (0.05 - 0.15 ua), and which indeed showed that there was an accretion
wind on the innermost part of the disk.

� Then, let's continue our way out with [58] that probed the inner part of the HD50138 disk,
a pre- or post-primary B[e] star using AMBER/VLTI observations in the Br
line. These
observations show that the zone of emission of the ionized hydrogen gas is closer to the star
(< 3 ua) than the emission due to the dust continuum, which helps to constrain the geometry
of the object. These observations also show that the disk has a Keplerian rotation.



Figure 111.Left, observations ZIMPOL/SPHERE of HD163296 in polarized light, and corresponding
model on the right (see [56] for more details).

� Recently, thanks to its sensitivity, the GRAVITY instrument of the VLTI [59] has been able
to probe the emission Br
 at scales lower than the astronomical unit. [60] observed S CrA,
a double classical T Tauri star located at a distance of 130 pc. The continuum (K band)
allows to resolve two disks of radius 0.1 ua each, having a tilt and a very similar position
angle, which suggests that they stem from the fragmentation of a single disk. The visibility
signature as a function of the wavelength makes it possible to detect and locate spatially
the emissions of the He I and Br
 lines, showing an inverse P Cygni pro�le, characteristic
of an accreting gas. The Br
 emission is compact with a radius of� 0.06ua, about twice
as large as the truncation radius of the inner disk, and traces mainly a wind. In the coming
years other observations of a sample of T Tauri stars with di�erent masses, ages and disk
properties are planned with GRAVITY.

� This type of statistical approach is already underway with the PIONIER/VLTI observation
of 21 T Tauri type stars. [61] have shown that for 13 of them there is a disc, whose scattered
light (in band H) extends beyond 3 ua (at 150 pc). Each object looks di�erent and an
analysis job is in progress.

� Finally, on a larger scale, many results have been obtained by SPHERE/VLT. First, [54] un-
veiled an extremely complex structure within the MWC 758 protoplanetary disk between
26ua and 148ua, using observations in infrared polarized light. These SPHERE/VLT obser-
vations con�rm the presence of two spirals, whose origin is attributed to two planets (see
Fig. 109). Let us also mention the results obtained with SPHERE on the protoplanetary
disk LkCa15 [62], as well as the results obtained by [55] on HD100546 (see Fig. 110), or
HD163296 [56] (see Fig. 109) and HD169142 [41].

� Concerning the external parts of the protoplanetary disks, which are mainly probed by
ALMA, we refer the reader to the following publications (to be speci�ed).

8.4 The prototypic star � Lyrae

In this short section, we would like to show a recent result [63] concerning the interacting
binary� Lyrae which perfectly illustrates the relevance of a global approach on a prototypical
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object. � Lyrae is an extremely complex object studied since 1830 and which has made the
subject of more than 850 publications. The combination of a rich bibliographic heritage, new
photometric and interferometric data (NPOI, CHARA/MIRC and VEGA) associated with
a complex model (SHELLPEC) allowed to provide a coherent understanding of the object,
whose �gure 112 gives a representation. The coordination of photometric, spectroscopic
and interferometric observations has permitted a global modeling from UV to far IR. The
structure of the accretting disk, its temperature pro�le demonstrate that it is not in hydrostaic
equilibrium. A mass transfer is thus clearly established. Authors have also demonstrated that
a hot spot appears on the disk and that it is clearly related to the mass transfer from the donor.

Figure 112.Three-dimensional model of� Lyrae (SHELLPEC), constrained by photometric and inter-
ferometric data NPOI, MIRC and VEGA on CHARA [63]

So far we have been interested in 'stellar zoology' in high angular resolution, i.e. in
their activity (granulation, rotation, pulsation) or their environment (Be and/or protoplanetary
disks, envelope of AGB or Cepheids). We will now enter another �eld, that is the fundamental
parameters of stars and planets.

8.5 Interferometry, asteroseismology and fundamental stellar and planetary
parameters

The Figure 113 (shorty R. Ligi), illustrates the path and synergy between interferometry,
asteroseismology and the precise and exact determination of stellar and planetary parameters.

Let's start at the top of the �gure. Interferometry requires surface-brightness color rela-
tionships (or equivalent) to determine the angular diameter of its calibrators, and hence, to
calibrate the visibility measurements corresponding to the star to be studied7. A remarkable
work has been to provide a catalog (the JSDC: 'The Stellar JMMC Diameter Catalog' ver-
sion 2) which contains the estimated angular diameter for 465877 stars, with a median error
of 1.5 % and possible bias of the order of 2% [64]. Nevertheless, it must be kept in mind
that the activity of the star (wind, environment, spots, granulation, rotation) has an e�ect on
the estimate of the diameter of the calibrator and/or the star science8. The rapid rotation has
for example an e�ect on the estimate of the diameter of stars O, A, B of the order of a few
percent [45, 65].

It should also be noted that the conversion between the "uniform" angular diameter� UD

and "darkened"� LD , i.e. taking into account the limb-darkening of the star requires a model
of the atmosphere of the star. E�orts are currently done to quantify the e�ect of a 1D or 3D

7These are precisely the same relationships that are used to determine the distance of eclipsing binaries, see
section above

8It should be kept in mind that the accuracy on the diameter of the interferometric calibrator is not linearly related
to the accuracy on the diameter of the star science



Figure 113. Interferometry, asteroseismology and fundamental stellar and planetary parameters. This
�gure illustrates how interferometric angular diameters, combined with precise and accurate parallax
measurements (Gaia), constrain asteroseismic models, which in turn (viacurrent and future planetary
transient measurements with PLATO) allow to deduce the radius of the planet from the radius of the
star.

model on the interferometric estimation of the angular diameter, especially for the giant [66–
68]. This work is particularly interesting as it is now possible, for only a few stars, to measure
directly the limb-darkening of a star by interferometry. Limb-darkening is therefore not as-
sumed (based on a 1D or 3D atmosphere model), but directly measured using precise and
accurate visibility measurements at high spatial frequencies. Note at this level the remark-
able result obtained on� Cen A & B with the PIONIER instrument on the VLTI [69], which
made it possible to measure the limb-darkening of the star. These measurements indicate
lower limb-darkening than the values predicted by the 1D or 3D models (see Fig. 114).

Once the angular diameter of the star is determined independently by interferometry, it
is then possible to combine it with a measure ofGaia parallax (for example) to deduce the
radius of the star and then compare it with a radius estimate from asteroseismic measure-
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Figure 114. The limb-darkening of� Cen A measured by the Pionier instrument on the VLTI. The
dotted line corresponds to a uniform disk model of the star, while the solid line corresponds to a limb-
darkened disk model. In paper [69], the authors �nd a diameter of� LD = 8:502� 0:038 mas (0.43 %
accuracy) using an analytic power law for the limb-darkening, which is then compared to 1D or 3D
atmospheric models of limb-darkening.

ments [70, 71]. The agreement is generally good, but gaps are currently observed for giant
stars. There is also another way to proceed, without using parallaxes. Asteroseismic scaling
relationships [72, 73] rely the mass and radius of the star to the actual temperature, in an
independent way. Thus, if one determines the temperature of the star, by spectroscopic mea-
surements for example (historical approach), one obtains the asteroseismic mass and radius.
The interferometric diameter can here play an important role, since the temperature can be
deduced directly from the bolometric �ux of the star and the angular diameter. The prob-
lem comes down to compare the temperatures derived by spectroscopy and interferometry,
respectively. This is what is currently done on roAp type stars, which have also spots due to
their magnetism [74], which are known to alter the derived temperature. Since the roAp have
extremely small angular diameters, the VEGA/CHARA instrument, whose spatial resolution
is one of the largest in the world (see Figure 104) has been used to measure their angular
diameter. For instance, it allowed to measure the angular diameter of 78 Vir and HD24712,
which have indeed the smallest diameters ever measured, respectively� LD = 0:346� 0.006
mas [75] and� LD = 0:335� 0:009 mas [74] (see Fig. 115).

The determination of the e�ective temperature of the stars is thus a key issue, which is
particularly important when considering metal poor stars. These stars are excellent tracers in
galactic archeology, which brings constraints on the structure and evolution of galaxies. As an
example, we can mention the star HD140283 observed again with VEGA/CHARA because
of its extremely small diameter:� LD = 0:353� 0:013 mas. These observations were used to
compare the spectroscopic (based in particular on the H�spectral line) and interferometric
temperatures, while stellar evolution models allow us to deduce the mass and the age of the
star. Using a 3D atmosphere model and a CESAM2k stellar evolution model, remarkable
accuracies of 1.8% and 7.4% on the mass and age of the star were obtained [76]. Note that
this star is particularly interesting because it is part of the 'benchmark' stars ofGaia.



Figure 115. Angular diameter measurement of the roAp 78 Vir done with the VEGA/CHARA instru-
ment. This is one of the smallest angular diameters ever measured,� LD = 0:346� 0:006 mas [75].

The determination of stellar parameters is an interesting subject in itself, because the
stars are the constitutive elements of galaxies, but also because these stellar parameters are
indispensable for determining the exo-planetary parameters. Indeed, if we know the ratio
of stellar and planetary radii by an exo-planetary transit measurement from space missions,
CoRoT, Kepler, K2, TESS or soon PLATO, thenit is enough to know the radius of the star to
deduce the radius of the planet, and therefore its density. Since a 1% accuracy is expected on
the transits, an accuracy of 1% on the star radius would be required to deduce the planetary
radius at 1%. In this context, the measurements of angular diameters of 10 exoplanet host
stars, including one having a transit (55 Cnc), is an important �rst step to consider [41]. The
average accuracy on the derived angular diameters is of about 2% (1.6% for 55 Cnc).

This synergy combining interferometry, asteroseismology, also related to spatial missions
Gaiaand PLATO, is something very interesting that should be followed in the coming decade.

8.6 Doppler Imaging and Hot Jupiter Detection

'Hot Jupiters' orbit on average 100 times closer to their star than Jupiter around the Sun.
But how and when in their history do they migrate so close to their star? [77] have just
discovered a very young hot Jupiter in the immediate vicinity of a young T Tauri star, barely
2 million years old. But the detection of planets around very young stars proves to be a real
challenge, because these stars are very active: their intense magnetic activity disturbs the
light emitted by the star signi�cantly. One of the team's prowess was to separate the signal
due to the activity of the star from the one generated by the planet. By removing the e�ect
of activity on the ESPaDOnS and Narval velocity curves using Doppler imaging techniques,
the team detected a periodic signal of 4.93� 0.05 days and a semi-amplitude of 75� 11
m/s. This signal completely disconnected from the rotation of the V830 Tau star (2:741 days)
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Figure 116. Brightness distribution of the T Tauri V830 Tau obtained from a �t of LSD ('Least
Squared Deconvolution' technique) pro�les of ESPaDOnS and Narval, according to the Doppler imag-
ing method [77]. The cold and hot spots are represented in brown and blue, respectively.

Figure 117. Radial velocity curves of a hot Jupiter around V830 Tau. The Doppler Imaging technique
was used to determine the activity of the star, whose velocimetric signature was removed from the
ESPaDOnS and Narval observations. The residual radial velocity curve is attributed to the presence of
a hot Jupiter [77].

is thus attributed to the presence of a mass planet 0:77� 0:15 Ms orbiting at a distance of
0:057� 0:001 of the host star. This discovery thus con�rms that early migration within the
disk is possible in the case of giant planets, the other hypothesis being a migration arriving
erratically later in the history of the system by the interplay between planets.



Here we see the power of Doppler imaging, which can be combined (if the object is bright
enough) with interferometric measurements as we have already mentioned in the case of red
giants and supergiants.

8.7 Detection of the gravitational redshift in the orbit of the star S2 near the
Galactic center massive black hole

Figure 118. Veri�cation of Einstein's theory of General Relativity near the supermassive black hole
(Sgr A *) by the GRAVITY/VLTI instrument.

Before concluding, we would like to emphasize a recent spectacular result obtained by
the team in charge of the GRAVITY instrument at the VLTI. By accurately determining the
trajectory of the S2 star in orbit around the supermassive black hole located at the center
of the Milky Way (Sgr A*), measurements of the GRAVITY instrument (astrometry) made
it possible to determine the gravitational redshift of the S2 star and thus con�rm the theory
of relativity of Einstein [78]. Indeed, at periastron, i.e. at 120 ua of the black hole or 1400
Schwarzschild' radii, the star has an orbital velocity of 7640 km/s, a velocity su�ciently large
for the e�ects of relativity to become measurable (see Fig. 118).

9 Steps to the future

Optical interferometry has made important progresses these last three decades after the pio-
neering works of the �rst instruments. It is interesting to compare these progresses with the
same ones done in radio-interferometry (see Fig. 119).
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If one looks at the progression of the publications in optical interferometry, it can be
understood that this domain mimics the radio-interferometry developments with a shift of
thirty years in fact!

In the next decade, we can anticipate several synergies:

� direct visible imaging and radio interferometry that allow to superimpose images at di�er-
ent wavelengths but with the same angular resolution (case of the AGB star L2 Pup);

� interferometric and Doppler imaging, which both allow to see the spots on the surface of
stars (case of Betelgeuse), as well as Doppler imaging and velocimetry for the detector of
exo-Jupiters (case of the Tauri V830 Tau);

� direct imaging and interferometry: for example, detection of exoplanets by imaging with
SPHERE and determination of the interferometric diameter of the host star to determine
the age of the system (case of GJ504);

� the interferometry in thecontinuumand in a spectral line (H�for example) to probe both
the geometry and the kinematics of the studied object (case of the Be star� Per, but also of
young stars);

� interferometry and asteroseismology for the determination of stellar and planetary param-
eters.

Beyond these synergies, the road will continue for sure and we will, in the future, reach
facilities with a large number of sub-apertures and an incredible imaging power. An inter-
national group is developing the conceptual studies for a project called Planet Finder Imager
[79]. However the complexity of such developments because of the current technology and
concepts used in the current facilities may prevent the astronomical community to see these
facilities operating one day. Other alternatives are considered, such as intensity interferome-
try or space developments in order to simplify the implementation technology.

We are also developing a demonstrator of a new kind of recombination based on the
principle of the Arecibo radio telescope. The idea is to replace the pointing primary mirror
(or mirrors in the case of an interferometer) by a �xed primary mirror and a moving gondola
acquiring the moving image on the focal sphere. This has proven to be well adapted at radio
wavelengths with the long life of the Arecibo radio telescope. The concept has even been
improved recently with a continuously deformable primary mirror of 500m in diameter (the
FAST Chinese radio telescope [84]) to permanently match the required parabola primary to
avoid the limits generated by the spherical aberration of a spherical primary mirror. The
very interesting feature of such a con�guration is that it permits to avoid the implementation
of long delay lines and that it highly simpli�es the transfer of beams from the collecting sub
apertures to the combiner. We have started the development of a demonstrator [85] in a valley
of the Southern Alps, as represented on Fig. 120.

Although the �rst results of this prototype are highly encouraging in terms of control and
accuracy of tracking, the way is still long before a full implementation of a complete system.
A space-based or moon-version of such an ambitious hypertelescope is maybe the correct de-
velopment that will have to be done in the future. However the current facilities like the VLTI
or CHARA have still a great potential of developments in the coming decade, with improved
adaptive optics systems, fringe sensor, additional telescopes or additional wavebands. And,
as said previously, the need for high angular resolution beyond the di�raction limit of single
telescopes is clearly the main driver of the future development of this observing technique.
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[48] D. Graczyk, P.F.L. Maxted, G. Pietrzyński, B. Pilecki, P. Konorski, W. Gieren, J. Storm,
A. Gallenne, R.I. Anderson, K. Suchomska et al., A&A581, A106 (2015),1508.03188
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Figure 121.Denis Mourard, after his enlightning lecture, relaxing during the school dinner.



Figure 122.Nicolas Nardetto, guiding the students across the week of lectures.
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Figure 123.Students working during a practical session.

Figure 124.Hands-on session organized by Eric Lagadec to reduce SPHERE/VLT data



Figure 125.Yveline Lebreton, enjoying a hands-on session.
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Figure 126. Anthony Soulain, helping Eric Lagadec during the SPHERE data reduction practical ses-
sion.



Figure 127.Gallery of the school's attendees
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Figure 128.Gallery of the school's attendees.



Figure 129.Nicolas Nardetto, working on the organisation of the sessions.
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Figure 130.Participants working in the lobby of the hotel

Figure 131.Florentin Millour and Aurélien Crida, enjoying the poster session.



Figure 132.

Dylan Bollen, Katerina Kravchenko, Clémence Fontanive and Alan Rainot, presenting their
posters.

Figure 133.The school's dinner is ready, with great seafood from Brittany!
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Figure 134. Improvised concert during the dinner.

Figure 135.Pierre Kervella gave us an excellent seminar on the �rst GRAVITY/VLTI results.



Figure 136.Annaëlle Maury relaxing after her excellent lecture on radio interferometry.

Figure 137.Anne-Marie Lagrange relaxing after her excellent lecture and enjoying being in Brittany.
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