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ABSTRACT

Context. The Kepler space mission has made it possible to measure the rotational splittings of mixed modes in red giants, thereby
providing an unprecedented opportunity to probe the internal rotation of these stars.
Aims. Asymmetries have been detected in the rotational multiplets of several red giants. This is unexpected since all the red giants
whose rotation profiles have been measured thus far are found to rotate slowly, and low rotation, in principle, produces symmetrical
multiplets. Our aim here is to explain these asymmetries and find a way of exploiting them to probe the internal rotation of red giants.
Methods. We show that in the cases where asymmetrical multiplets were detected, near-degeneracy effects are expected to occur,
because of the combined effects of rotation and mode mixing. Such effects have not been taken into account so far. By using both
perturbative and non-perturbative approaches, we show that near-degeneracy effects produce multiplet asymmetries that are very
similar to the observations. We then propose and validate a method based on the perturbative approach to probe the internal rotation
of red giants using multiplet asymmetries.
Results. We successfully apply our method to the asymmetrical l = 2 multiplets of the Kepler young red giant KIC 7341231 and
obtain precise estimates of its mean rotation in the core and the envelope. The observed asymmetries are reproduced with a good
statistical agreement, which confirms that near-degeneracy effects are very likely the cause of the detected multiplet asymmetries.
Conclusions. We expect near-degeneracy effects to be important for l = 2 mixed modes all along the red giant branch (RGB). For
l = 1 modes, these effects can be neglected only at the base of the RGB. They must therefore be taken into account when interpreting
rotational splittings and as shown here, they can bring valuable information about the internal rotation of red giants.
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1. Introduction

Rotation is known to have a large influence on the structure
and the evolution of stars. In particular, it is expected to in-
duce additional mixing of the chemical elements inside stars.
Taking the effects of rotation into account is believed to be a
key step to making progress in stellar modeling. However, the
internal rotation profiles of stars and the way they are modi-
fied during their evolution remains uncertain. Rotation-induced
processes of angular moment transport such as meridional cir-
culation and shear instabilities (as they are currently modeled)
are not efficient enough to account for the nearly solid-body
rotation in the solar radiative interior that was found by he-
lioseismologic analyses (Schou et al. 1998; Chaplin et al. 1999;
Eff-Darwich & Korzennik 2013). Other types of processes are
likely to operate. The main candidates invoked so far are internal
gravity waves (Charbonnel & Talon 2005; Talon & Charbonnel
2008; Fuller et al. 2014) and magnetic fields that either have a
fossil origin (e.g., Gough & McIntyre 1998; Spada et al. 2010;
Maeder & Meynet 2014) or result from magneto-hydrodynamic
(MHD) instabilities (e.g. Spruit 1999; Rüdiger et al. 2015).
However, the relative importance of these processes and the

timescales over which they operate is still a matter of active
debate.

Recent progresses in the seismology of subgiants and red gi-
ants have proved that it could significantly contribute to under-
standing angular momentum transport inside stars. Owing to the
large core density of red giants, the frequencies of gravity modes
in these stars are comparable to the frequencies of the acous-
tic modes stochastically excited in the convective envelope. This
gives rise to mixed modes, which behave as gravity modes in
the core and as pressure modes in the envelope. Such modes
were initially found in stellar models by Dziembowski (1971),
Scuflaire (1974), and Osaki (1975). They were first detected
from the ground (Kjeldsen et al. 1995). More recently, with the
advent of space missions CoRoT (Baglin et al. 2006) and Kepler
(Borucki et al. 2010), mixed modes were detected in thousands
of subgiants (Deheuvels et al. 2010; Campante et al. 2011) and
red giants (Bedding et al. 2011; Mosser et al. 2011). The mea-
surement of rotational splittings of mixed modes (Beck et al.
2012; Deheuvels et al. 2012; Mosser et al. 2012) has given di-
rect insight into the internal rotation of red giants and their vari-
ations with evolution. In the subgiant phase, Deheuvels et al.
(2014) showed that the core spins up and the envelope spins
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down. This was qualitatively expected, considering that the
deepest layers below the H-burning shell contract, while the
layers above expand. However, the core rotation rates mea-
sured with seismology are several orders of magnitude below
the values predicted by theoretical models that include rotation-
induced transport of angular momentum (Eggenberger et al.
2012; Marques et al. 2013). On the red giant branch (RGB),
seismic measurements of the core rotation for several hundreds
of Kepler targets led to the striking observation that the core
of red giants in fact spins down (Mosser et al. 2012), which is
also at odds with current theoretical models. These results are
clear evidence that an efficient redistribution of angular mo-
mentum between the core and the envelope occurs in red gi-
ants, the origin of which remains unknown. More recently it
has been shown that a similar conclusion can be drawn for
intermediate-mass stars in the core-He burning phase, where
an even milder radial differential rotation was observed, with
core-envelope ratios around two (Deheuvels et al. 2015). These
novel observational constraints prompted new theoretical stud-
ies about the efficiency of angular momentum transport caused
by internal gravity waves (Fuller et al. 2014), MHD instabilities
(Rüdiger et al. 2015; Jouve et al. 2015), or mixed modes them-
selves (Belkacem et al. 2015b,a), but the question remains open.

So far, all the red giants whose rotation profile could be seis-
mically measured have been found to be slow rotators; they ro-
tate in a regime where the effects of the centrifugal force on
stellar pulsations can be safely neglected and the rotation fre-
quency remains small compared to the pulsation frequencies. In
such cases, the effects of rotation can be treated as a first-order
perturbation to the equations of non-radial oscillations. For a
spherically-symmetric rotation profile Ω(r), the frequency shift
for a mode of radial order n, degree l, and azimuthal order m can
be expressed as

δωn,l,m ≈ m
∫ R

0
Kn,l(r)Ω(r) dr, (1)

where the functions Kn,l(r) are the rotational kernels. According
to Eq. (1), the components of a rotational multiplet are expected
to be uniformly spaced, and thus symmetrical with respect to the
central m = 0 component. While most rotational multiplets in
red giants indeed show this symmetry, asymmetries have been
reported in several Kepler red giants. Deheuvels et al. (2012)
found significant asymmetries in the rotational multiplets of two
neighboring l = 2 modes of the young red giant KIC 7341231.
Asymmetries were also reported in the multiplets of several l =
1 modes in the spectra of the red giants KIC 5006817 (Beck et al.
2014) and KIC 4448777 (Di Mauro et al. 2016). These asymme-
tries need to be understood because they are at odds with what is
expected from Eq. (1), which has been assumed by all the stud-
ies that have derived information about the internal rotation of
red giants.

In this paper, we argue that for KIC 7341231 (and poten-
tially also for the two other aforementioned targets), these asym-
metries are caused by near-degeneracy effects, which occur be-
cause of the combined effects of rotation and mode mixing.
So far, it has always been assumed that the effects of rota-
tion on the frequencies of mixed modes could be estimated in
the same manner as for regular modes. However, mode mix-
ing occurs in red giants when p modes and g modes have fre-
quencies close enough for them to couple through the evanes-
cent region separating the two cavities. It is well known that
when two modes have close frequencies, near-degeneracy ef-
fects may arise which modify the frequency corrections to be

applied (e.g., Dziembowski & Goode 1992; Suárez et al. 2006).
If the frequency spacing between mixed modes is of the order
or smaller than the rotation rate, we expect near-degeneracy ef-
fects to become important. This issue has not been addressed
so far for red giants. In this paper, we study this issue using
KIC 7341231 as a test case. We show that near-degeneracy ef-
fects need to be taken into account in this star and we demon-
strate that they produce multiplet asymmetries that can account
for the observations.

The paper is organized as follows. In Sect. 2, we confirm
and update the measurement of multiplet asymmetries in the os-
cillation spectrum of KIC 7341231 using the full Kepler dataset
and we demonstrate that near-degeneracy effects cannot be ne-
glected. In Sect. 3, we include the effects of near-degeneracy
in the first-order perturbative treatment of rotation in the os-
cillation equations. We show that this correction indeed pro-
duces asymmetrical multiplets that are in qualitative agreement
with the observations, and we argue that the intensity of the
asymmetries depends on the level of radial differential rotation
and on the trapping of the modes. In Sect. 4, we use the non-
perturbative oscillation code acor (Ouazzani et al. 2012) to val-
idate the first-order perturbative approach. In Sect. 5, we propose
a new method to measure the average core and envelope rota-
tion rates using the asymmetries in l = 2 rotational multiplets.
This method is thoroughly tested and validated using simulated
data, and then successfully applied to KIC 7341231 in Sect. 6.
Section 7 is dedicated to a discussion of the results and we con-
clude in Sect. 8.

2. Asymmetry of rotational multiplets in Kepler
data: the test-case of KIC 7341231

The star KIC 7341231 is a young red giant, which was observed
with the Kepler spacecraft in short cadence (58.84876 s) from
quarter Q5 through quarter Q17 of the mission. This represents
3.14 yr of nearly continuous data (duty cycle of 91%). Based
on the data from quarters Q5 through Q8 (about one year of
data), Deheuvels et al. (2012) could measure the rotational split-
tings of 17 l = 1 modes and 2 l = 2 modes. By using the Op-
timally Localized Averages (OLA) inversion method, they ob-
tained a precise estimate of the mean core rotation (〈Ω〉c/2π =
710± 51 nHz). The authors showed that the measured splittings,
however, could not be used to build an average kernel for the en-
velope that would efficiently suppress the core contribution, and
they were thus only able to derive an upper limit for the envelope
mean rotation rate (〈Ω〉e/2π < 150 ± 19 nHz). This limitation is
inherent to the eigenfunctions of the detected modes, and the
increased precision to which the rotational splittings could be
measured with the complete Kepler dataset would not solve this
problem. It might, however, be that the rotational splittings of
additional modes have become measurable, which might help in
canceling the core contribution in the envelope average kernel.
This is out of the scope of the present study.

Deheuvels et al. (2012) reported clear asymmetries for two
closely-spaced l = 2 mixed modes in the spectrum of
KIC 7341231 using the one-year-long observation available at
that time. For this reason, these two modes were at that time
excluded from the dataset used for rotation inversions. This is
unsatisfactory since these modes clearly carry information on
the internal rotation of the star. Additionally, since the coupling
between the p-mode and g-mode cavities is weaker for l =
2 modes, these modes could provide a more precise estimate of
the envelope rotation. This study is aimed at understanding these
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Fig. 1. Section of the oscillation spectrum of KIC 7341231 in the neigh-
borhood of the 384-µHz radial mode (light gray area). The dark gray
area corresponds to a rotationally-split l = 1 mode and the vertical
arrows indicate the observed mode frequencies of two l = 2 mixed
modes (see Table 1). The vertical dotted lines show the results of a fit of
Eq. (24) to the observed mode frequencies.

Table 1. Extracted parameters for the components of two l = 2 multi-
plets in avoided crossing in the spectrum of KIC 7341231.

m ν (µHz) H (ppm2/µHz) Γ (µHz)

–2 379.773 ± 0.008 340.0 ± 242.7 0.04 ± 0.02
0 380.372 ± 0.013 220.7 ± 123.4 0.07 ± 0.03
1 380.547 ± 0.012 124.2 ± 174.7 0.03 ± 0.05
2 380.741 ± 0.015 288.4 ± 125.7 0.11 ± 0.04

–2 381.813 ± 0.011 385.6 ± 186.7 0.08 ± 0.02
0 382.615 ± 0.010 142.1 ± 101.2 0.05 ± 0.02
1 383.085 ± 0.052 27.2 ± 20.0 0.17 ± 0.18
2 383.669 ± 0.014 112.1 ± 87.0 0.07 ± 0.06

asymmetries in rotational multiplets and we used KIC 7341231
as a test-case.

We updated the measurements of multiplet asymmetries in
this star using the full-length Kepler data (quarters Q5 through
Q17). Figure 1 shows a section of the power spectrum of the star
in the neighborhood of the two l = 2 modes. The m = (−2, 0, 2)
components are the most prominent because the inclination an-
gle of the star is close to 90◦; only these components were de-
tected by Deheuvels et al. (2012) with the observation available
at that time. When using the full Kepler data, we find that the
m = +1 components of both l = 2 multiplets also stand out
significantly above the noise. We extracted the mode parameters
(frequency, height, width) of all the components of the multiplets
using the fitting technique described in Deheuvels et al. (2012).
The results are summarized in Table 1. The detected components
of the two multiplets, indicated by arrows in Fig. 1, show clear
asymmetries.

The asymmetry of the multiplets can be conveniently quan-
tified by computing the quantity

δasym ≡
ω−m + ω+m − 2ω0

ω+m − ω−m
· (2)

With this definition, δasym = 0 for a symmetric multiplet, while
|δasym| = 1 if either ω−m or ωm overlaps with the ω0 mode. A
positive value for δasym means that the splittings of the m > 0
components are larger than those of the m < 0 components (and
conversely for δasym < 0). For the two l = 2 mixed modes of

KIC 7341231, we found δasym ∼ −0.24 ± 0.03 (red mode in
Fig. 1) and δasym ∼ 0.14 ± 0.01 (blue mode in Fig. 1) using the
m = ±2 components.

The two multiplets that show asymmetries in the spectrum
of KIC 7341231 have close frequencies, which means that near-
degeneracy effects may arise, as mentioned in Sect. 1. Using
Table 1, we find that the frequency spacing between the m =
0 components of the two multiplets is 2.24± 0.02 µHz. The core
rotation rate of KIC 7341231 as obtained by Deheuvels et al.
(2012) thus amounts to ∼32% of the frequency spacing between
the two modes, which is not negligible. Consequently, we ex-
pect near-degeneracy effects to arise and they need to be taken
into account. In the following, we show that near-degeneracy ef-
fects can indeed produce multiplet asymmetries very similar to
the observed ones. For the sake of completeness, in Sect. 7 we
mention other possible causes for multiplet asymmetries, which
we find less likely for KIC 734123.

3. First-order perturbative approach including
near-degeneracy

We tested the influence of near-degeneracy effects on rotational
multiplets by including them in a first-order perturbative treat-
ment of rotation. This has already been studied in detail by pre-
vious authors (e.g., Dziembowski & Goode 1992; Suárez et al.
2006; Ouazzani & Goupil 2012; see also Goupil 2009, for a re-
view) so we briefly recall the procedure and refer to these authors
for more details.

3.1. Non-degenerate frequencies

The oscillation equations including the first-order effects of ro-
tation can be written as

(L0 +L1)ξ − ω2ξ = 0, (3)

whereω corresponds to the mode eigenfrequency and ξ is the as-
sociated eigenfunction. The first-order correction L1 to the non-
rotating operator L0 includes the effect of the advection relative
to the inertial frame and the contribution from the Coriolis force.
The two operators are given by

L0ξ =
∇p′

ρ0
− g′ −

ρ′

ρ0
g0 (4)

L1ξ = 2ω(mΩ − iΩ×)ξ. (5)

For simplicity, in the following the mode eigenfunctions are nor-
malized by the mode inertias, so that 〈ξa|ξa〉 = 1, where the inner
product is defined as

〈ξa|ξb〉 ≡

∫ R

0
ρ0r2

[
ξr,aξr,b + L2ξh,aξh,b

]
dr (6)

and L2 = l(l + 1).
In the general case without near-degeneracy, the first-order

correction ω1 to the mode eigenfrequency is given by the varia-
tional principle, and therefore

ω1 =
1

2ω0
〈L1ξ0|ξ0〉. (7)

If we further assume a spherically symmetric rotation profile
Ω(r), Eq. (7) reduces to

ω1 = m
∫ R

0
K(r)Ω(r) dr, (8)
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where the rotational kernel K(r) is given by

K(r) = ρ0r2
[
ξ2

r,0 + (L2 − 1)ξ2
h,0 − 2ξr,0ξh,0

]
. (9)

Equation (8) shows that without near-degeneracy, the splittings
vary linearly with m, so that the components of a rotational mul-
tiplet are expected to be uniformly spaced, and thus symmetrical
with respect to the central m = 0 component.

3.2. Near-degenerate frequencies

We now consider the case of two modes with same degree l,
same azimuthal order m, and near-degenerate frequencies, that
is, |ω0,a−ω0,b| ∼ Ω, where the subscripts a and b refer to the two
modes. In this case, the modes are coupled and corrections need
to be included in the perturbative calculation of mode frequen-
cies. To first-order, the eigenfunctions of near-degenerate modes
can be written as

ξ = Aξ0,a + Bξ0,b. (10)

As described in Appendix A, the perturbed eigenfrequencies are
then given by the following expression

ω =
ωa + ωb

2
±

1
2

√
(ωa − ωb)2 + 4ω2

1,ab, (11)

where ωa and ωb correspond to the first-order perturbed frequen-
cies of modes a and b when near-degeneracy effects are ignored;
for example, for mode a

ωa ≡ ω0,a + ω1,a. (12)

The quantity ω1,ab represents the coupling between the two
modes. For a spherically symmetric rotation profile, we have

ω1,ab = m
∫ R

0
Kab(r)Ω(r) dr, (13)

where

Kab(r) = ρ0r2
[
ξr,0,aξr,0,b + (L2 − 1)ξh,0,aξh,0,b

−ξr,0,aξh,0,b − ξr,0,bξh,0,a
]
. (14)

Equation (11) shows that if |ωa − ωb| � ω1,ab, then we obtain
ω± ∈ {ωa, ωb}, that is, we recover the eigenfrequencies of the
non-degenerate case.

As shown in Appendix A, we can also obtain the values of A
and B in Eq. (10) for each component of both multiplets. We
can thus estimate the perturbations to the mode eigenfunctions
caused by near-degeneracy effects (for non-degenerate modes,
changes in the eigenfunctions perturb the mode frequencies only
at second order).

3.3. Test on stellar models

We tested the effects of near-degeneracy on the rotational mul-
tiplets using stellar models. For this purpose, we used the best-
fit stellar model obtained for KIC 7341231 by Deheuvels et al.
(2012; model B). This model was computed with the evolution-
ary code cesam2k (Morel 1997) and optimized to match the
observed frequencies of the l = 1 mixed modes for this star. We
refer the reader to Deheuvels et al. (2012) for information about
the input physics of this model and the optimization procedure
that was adopted. One interesting feature of this model is that it
also roughly reproduces the frequencies of the two l = 2 mixed

Fig. 2. Variations in the frequencies of two l = 2 rotational multiplets
during an avoided crossing. The sequence of models B0 through B8
was used, assuming the rotation profile given by Eq. (15) with a core-
envelope contrast of five. The frequencies of rotational multiplets were
computed using the first-order pertubative approach including near-
degeneracy effects (open blue circles), and using the non-perturbative
oscillation code acor (solid and dashed black curves). The filled red
circles correspond to the frequencies obtained with the approximate
Eq. (24) for model B4.

modes that are undergoing an avoided crossing between 380 and
384 µHz (even though these modes were not included in the fit-
ting procedure followed by Deheuvels et al. 2012). This model
can therefore be used to investigate the origin of the observed
asymmetries in these multiplets.

We also had to assume a rotation profile for the star. For
flexibility reasons, we chose an analytic rotation profile of the
type

Ω(r) =
Ωe + Ωc

2
+

Ωe −Ωc

2
tanh

( r − r0

d

)
, (15)

where Ωc and Ωe correspond to the core and surface rotation,
respectively. We here took Ωc/2π = 710 nHz and Ωe/2π =
150 nHz (i.e., a core-envelope contrast of ∼ 5), as per the re-
sults obtained by Deheuvels et al. (2012) for KIC 7341231. The
influence of the level of radial differential rotation is studied in
Sect. 3.5. We assumed a smooth transition between the core and
surface rotation rates (d = 0.06) located inside the evanescent
region (r0 = 0.2).

To study the effects of near-degeneracy on the mode frequen-
cies during the avoided crossing between the two l = 2 mul-
tiplets, we recomputed the evolution of our best-fit model of
KIC 734123, but stopped the evolution at a time t0 just before the
avoided crossing (the corresponding model is hereafter referred
to as model B0). We then resumed the evolution with small time
steps (1 Myr) in order to span the entire avoided crossing. This
sequence of models is labeled B0 through B8 and referred to as
such in subsequent discussions. For each model in the sequence,
we computed the unperturbed mode frequencies (ω0,a and ω0,b)
and eigenfunctions (ξ0,a and ξ0,b) of the two l = 2 modes that
are in avoided crossing. We then calculated ω1,a and ω1,b us-
ing Eq. (8), and ω1,ab using Eq. (13). The perturbed mode fre-
quencies were then obtained using Eq. (11). The variations in
the mode frequencies for our sequence of models are plotted as
a function of time in Fig. 2 (blue open circles). We note that
the frequencies of m = 0 modes in fact correspond to the fre-
quencies of unperturbed modes. Before the avoided crossing,
the lowest-frequency multiplet has a g-mode behavior and the
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Fig. 3. Variations in the asymmetry of two l = 2 rotational multiplets
during an avoided crossing, computed using Eq. (2) for m = ±2 compo-
nents. The symbols are identical to those of Fig. 2.

eigenfrequencies of its components thus increase owing to the
core contraction. The highest-frequency multiplet behaves as a
p mode and the frequencies of its components are decreasing
owing to the increase of the stellar radius. When these two mul-
tiplets have comparable frequencies, the modes become mixed
and the multiplets progressively exchange natures.

We found that the frequencies of the two l = 2 multiplets do
indeed show significant levels of asymmetry during the avoided
crossing. We quantified these asymmetries by using Eq. (2) for
m = ±2 components in the same way as was done with the
observations. The results are shown in Fig. 3. As expected, the
asymmetries of the multiplets are maximal when the modes that
are bumping each other are at their smallest frequency differ-
ence, that is, when the modes are the most mixed. Away from
the avoided crossing, the asymmetries decrease and eventually
become negligible.

The asymmetries obtained with our first-order perturba-
tive approach including near-degeneracy effects show encour-
aging similarities with the ones observed in the spectrum of
KIC 7341231 using Kepler data. Indeed, the higher-frequency
mode is found to have a positive δasym during the avoided cross-
ing, while the lower-frequency multiplet has a negative δasym.
This is in agreement with the observed asymmetries (see Sect. 2).
The orders of magnitude of the asymmetries are also compara-
ble, although the ones found here are smaller. This difference is
discussed in detail in Sect. 5.

3.4. Mode eigenfunctions

As mentioned in Sect. 3.2, we were also able to estimate the
eigenfunctions of the components of both multiplets for our se-
quence of models. These eigenfunctions can provide valuable
insight about the trapping of each component during the avoided
crossing. In Fig. 4, we show the integrand of the mode iner-
tia ρr2

[
ξ2

r + l(l + 1)ξ2
h

]
for all the m-components of the higher-

frequency l = 2 multiplet at the time during the avoided crossing
when the asymmetry is the strongest (t = t0 + 3 Myr). The ra-
dial displacements were normalized to their surface value so that
the contribution from the p-mode cavity is nearly identical for
all the components. As can be seen in Fig. 4, the contribution of
the core to the mode inertia varies by a factor of approximately
ten between the m = −2 and the m = +2 components. This
shows that during the avoided crossing, the m-components of an

Fig. 4. Integrand of the mode inertia ρr2
[
ξ2

r + l(l + 1)ξ2
h

]
for the m-

components of the higher-frequency l = 2 multiplet at the time dur-
ing the avoided crossing where it shows the strongest asymmetry (t =
t0 + 3 Myr). The radial and horizontal displacements (ξr and ξh) were
computed using a perturbative approach as explained in Sect. 3 (gray
dashed lines) and with the code acor (solid black lines).

l = 2 multiplet are trapped differently inside the star. This sheds
new light on the asymmetries of multiplets. Indeed, within a mul-
tiplet, the components that have a more g-like behavior mainly
probe the core rotation, while the p-like components are more
sensitive to the envelope rotation. This suggests that there is a
link between the internal rotation of the star and the asymmetries
in the rotational multiplets of mixed modes, which is addressed
in the following section.

3.5. Link between multiplet asymmetry and differential
rotation

The link between differential rotation and multiplet asymmetry
can be simply understood based on Fig. 2. This figure shows that
the avoided crossings between the m-components of the modes
occur at slightly different epochs. The m = +2 modes are the
first to bump with each other, followed by the m = +1 modes,
and so on. The time delay between the avoided crossings of the
different m-components is caused by the difference between the
splittings of g-modes and those of p-modes. For the rotation pro-
file that we assumed here, the splittings of g modes are larger
than those of p modes. As a result, the m = +2 modes are the
first ones to become close enough to each other for the coupling
between p- and g-modes to start modifying their frequencies, as
can be seen in Fig. 2. The link with multiplet asymmetries is
clear. For instance, at t − t0 = 3 Myr, in the lower-frequency
multiplet, the m < 0 components are still behaving as g modes,
while the m > 0 components start to resemble p modes because
they are already coupling with the components of the higher-
frequency mode. The splittings of the m < 0 components are
therefore larger than those of the m > 0 components, thus pro-
ducing a negative asymmetry (see Fig. 3). Conversely, in the
higher-frequency multiplet at that same time, the m < 0 compo-
nents are still p-like, while the m > 0 components have already
taken a g-like behavior. This produces a positive asymmetry, as
confirmed by Fig. 3.

If this interpretation is correct, we expect the asymmetries
to increase as the degree of differential rotation increases. Con-
versely, we expect the asymmetries to vanish when the p modes
and the g modes have identical rotational splittings. For l =
2 modes, this occurs when 〈Ω〉c = 6/5〈Ω〉e, that is, when the
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Fig. 5. Degree of asymmetry δasym of the two l = 2 multiplets dur-
ing the avoided crossing. Different rotation profiles were considered,
with core-envelope contrasts (Ωc/Ωe) of 20 (purple circles), 10 (red tri-
angle), 5 (blue squares), 1 (green downward-triangle), and 0.5 (cyan
stars). The higher-frequency multiplet is represented by filled symbols
and the lower-frequency multiplet by empty symbols. To guide the eye,
we overplotted cubic spline interpolations δasym(t − t0) for each rotation
profile — solid (resp. dashed) lines for higher-frequency (resp. lower-
frequency) multiplet.

rotation is nearly solid-body like1. When the envelope is spin-
ning faster than the core, we expect the asymmetries to increase
again as the envelope-to-core ratio increases. To check this, we
modified the surface rotation Ωe in the input rotation profile
given by Eq. (15) to produce core-envelope contrasts of 20, 10,
5, 1, and 0.5. For each of these rotation profiles, the mode fre-
quencies were computed as before using Eq. (11) over the course
of the avoided crossing. The asymmetries were then calculated
using Eq. (2). We plotted the degree of asymmetry of both mul-
tiplets as a function of time in Fig. 5. To guide the eye in this
figure, we performed a cubic spline interpolation of δasym(t − t0)
for each rotation profile. When the core spins faster than the
envelope, we observe that the asymmetry of the multiplets in-
creases as the core-to-envelope rotation ratio increases, as pre-
dicted above. The asymmetries are at their smallest in the case
of a solid-body rotation. When the envelope spins faster than the
core, the asymmetries increase again as the envelope-to-core ro-
tation ratio increases, as we had foreseen. This clearly confirms
that differential rotation is indeed the cause of multiplet asymme-
tries during avoided crossings. This opens the interesting possi-
bility of using l = 2 multiplets to probe the internal rotation of
red giants.

3.6. Link between multiplet asymmetry and mode trapping

Figure 5 also shows that the development of the asymmetry is
not simultaneous for both multiplets during the avoided crossing.
Two different cases can be distignusihed.

– When 〈Ω〉c > 6/5〈Ω〉e, the higher-frequency multiplet
reaches its maximum asymmetry before the lower-frequency
multiplet does (in terms of the absolute value). This can
be understood as follows. Before the avoided crossing, the
higher-frequency multiplet has a p-like behavior. At the be-
ginning of the avoided crossing, the m = +2 component

1 Indeed, one can show that the rotational splitting of pure g-modes is
approximately equal to

(
L2−1

L2

)
〈Ω〉c, while the splitting of pure p modes

is approximately 〈Ω〉e.

becomes more g-like and its splitting increases because of
the fast core rotation. As a result, the numerator of δasym in
Eq. (2) increases. Since the other components still have a p-
like behavior, their rotational splittings are sensitive mainly
to the envelope rotation and thus the denominator of δasym
remains small, leading to a large degree of asymmetry. On
the other hand, the lower-frequency multiplet initially has
a g-like behavior. When the avoided crossing begins, its
m = +2 component takes on a p-like character and its split-
ting decreases because of the slow envelope rotation. The
numerator of δasym becomes increasingly negative but since
the other components are still g-dominated, their splittings
are sensitive to the core rotation and thus the denominator
of δasym remains large. As a result, |δasym| is initially smaller
than for the higher-frequency multiplet. Near the end of the
avoided crossing, the situation is reversed and |δasym| is larger
for the lower-frequency multiplet. It is important to point this
behavior out because it shows that the asymmetries of rota-
tional multiplets carry information about how far the star is
in the avoided crossing process, and thus on the trapping of
the two l = 2 modes. We make use of this property in Sect. 5
when developing a procedure to infer core and envelope ro-
tation rates from the frequencies of l = 2 mixed modes.

– When 〈Ω〉c < 6/5〈Ω〉e, the splittings of l = 2 p modes are
larger than those of g modes, and the evolution of multi-
plet asymmetries during the avoided crossing is the opposite
of the previous case. We can indeed see in Fig. 5 that for
〈Ω〉c/〈Ω〉e = 0.5, the lower-frequency multiplet reaches its
maximum of asymmetry (in absolute value) earlier than the
higher-frequency multiplet.

4. Non-perturbative approach

Before tackling the question of probing the internal rotation of
giants using l = 2 rotational multiplets (see Sect. 5), we tested
the validity of the first-order perturbative approach that includes
near-degeneracy effects developed in Sect. 3. For this purpose,
we used the oscillation code acor (Adiabatic Computations of
Oscillations including Rotation, Ouazzani et al. 2012), which is
one of only two codes that take into account the effects of ro-
tation in a non-perturbative manner (the other being the Two-
dimensional Oscillation Programme, a.k.a. top, developed by
Reese et al. 2006). These codes were in fact designed to com-
pute the pulsations of rapidly-rotating and therefore significantly
distorted stars.
acor solves the equations of hydrodynamics perturbed by

Eulerian fluctuations. Rotation is included by taking into account
both the effects of the centrifugal distortion and those of the
Coriolis acceleration. The numerical method is based on a spec-
tral multi-domain method that expands the angular dependence
of pulsation modes on spherical-harmonic series. The radial dif-
ferentiation is done by means of a sophisticated finite differences
method which is accurate up to the fifth order in terms of the
radial resolution (Scuflaire et al. 2008). The code has been vali-
dated by comparison with the results of TOP (Reese et al. 2006)
for polytropic models and the agreement between the two codes
was found to be excellent (Ouazzani et al. 2012).

We used acor to compute the mode frequencies for the se-
quence of models B0 through B8, which follows the avoided
crossing between the two l = 2 multiplets. We used the same
rotation profile as in Sect. 3 (Eq. (15) with a core-envelope con-
trast of five). The results are overplotted in Fig. 2 (black solid
and dashed lines). The agreement with the frequencies obtained
with the first-order perturbative approach is excellent.
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We also calculated multiplet asymmetries δasym by inserting
acor mode frequencies into Eq. (2). As can be seen in Fig. 3,
the results match the asymmetries obtained with first-order per-
turbed frequencies in the vicinity of the avoided crossing (2 Myr
< t − t0 < 5 Myr) very well. Outside this range, differences ap-
pear between the two approaches. For t − t0 > 6 Myr, the asym-
metry of the lowest-frequency multiplet increases again, as can
be seen in Fig. 3. At this point, this mode still behaves mainly
as a p mode, but it is already in the process of bumping with a
gravity-dominated mode at lower frequency. Similarly, at t = t0,
the asymmetry of the largest-frequency multiplet is negative,
which is caused by the bumping with another gravity-dominated
mode at larger frequency. In comparison, the asymmetries pre-
dicted by the first-order perturbative approach vanish outside the
avoided crossing because the two modes under consideration are
no longer near-degenerate and adjacent l = 2 modes were not in-
cluded. This discrepancy could be resolved by including the two
l = 2 adjacent modes in the first-order perturbative approach;
however, this is not necessary since l = 2 mixed modes can be
detected only when they have the most mixed character, that is,
only in the close vicinity of the maximum of an avoided crossing.

Finally, we also computed the eigenfunctions of all compo-
nents of the two multiplets along the sequence of models us-
ing acor. The radial and horizontal displacements were used
to compute the integrand of the mode inertia for the higher-
frequency l = 2 multiplet at t = t0 + 3 Myr, and the results
were overplotted in Fig. 4. The agreement with the eigenfunc-
tions obtained with the first-order perturbative approach is once
again excellent.

These comparisons clearly validate the use of a first-order
perturbative approach taking near-degeneracy into account to es-
timate the effects of rotation on the frequencies of mixed modes
during avoided crossings. In particular, they confirm that second-
order effects of rotation on the mode frequencies can indeed be
safely neglected here.

5. Probing internal rotation using l = 2 multiplets

We have shown in Sect. 3 that the asymmetry of l = 2 mul-
tiplets depends directly on the amount of differential rotation.
In this section, we investigate whether the frequencies of l = 2
asymmetric multiplets can be used to measure mean core rota-
tion 〈Ω〉c and envelope rotation 〈Ω〉e in red giants. For this pur-
pose, the perturbative expression of the frequency shifts caused
by rotation given by Eq. (11) is convenient because it opens up
the possibility for applying inversion methods to recover the in-
ternal rotation profile.

5.1. A simplified expression for first-order perturbation
of mode frequencies

We separated the first-order perturbation of mode eigenfrequen-
cies into contributions from the core and the envelope. For in-
stance, we write for mode a (which we here considered to corre-
spond to the lower-frequency multiplet)

ω1,a = m
(
βc,a〈Ω〉c + βe,a〈Ω〉e

)
, (16)

where

βc,a ≡

∫ rc

0
Ka(r) dr (17)

βe,a ≡

∫ R

rc

Ka(r) dr (18)

and

〈Ω〉c ≡

∫ rc

0 Ka(r)Ω(r) dr∫ rc

0 Ka(r) dr
(19)

〈Ω〉e ≡

∫ R
rc

Ka(r)Ω(r) dr∫ R
rc

Ka(r) dr
· (20)

The kernel Ka(r) is obtained from Eq. (9). The radius rc was de-
fined as the outer turning point of the gravity waves (N(rc) =
ω0,a, where N(r) is the Brunt-Väisälä frequency), so that 〈Ω〉c
is an average of the rotation rate over the g-mode cavity. Cor-
respondingly, 〈Ω〉e is an average of the angular velocity in the
layers above rc. It is essentially a measure of the mean rotation
rate in the p-mode cavity because the evanescent zone (region
between rc and the inner turning point of the p-mode cavity)
contributes very little to this average. We also introduced βc,b
and βe,b for mode b (corresponding to the higher-frequency mul-
tiplet) with expressions analogous to Eq. (17) and (18). We note
that rc varies little with mode frequency because of the sharp de-
crease of the Brunt-Väisälä frequency at the edges of the g-mode
cavity. We thus took the same value for both modes. Likewise,
the values of 〈Ω〉c and 〈Ω〉e are very similar whether we use the
kernel of mode a or that of mode b in Eqs. (19) and (20). In the
following discussion, we will thus refer to these quantities with-
out mentioning which kernel was used to compute them. The
values of βc and βe were computed for modes a and b for our
sequence of models spanning the avoided crossing between the
two l = 2 modes. The results are shown in Fig. 6. One can clearly
see that mode a (lower-frequency multiplet) is initially sensitive
to core rotation (g-dominated) and its sensitivity gradually shifts
to the envelope (p-dominated), while mode b (higher-frequency
multiplet) has the opposite behavior.

The coupling term ω1,ab was also rewritten as
ω1,ab = m (γc〈Ω〉c + γe〈Ω〉e) , (21)

where

γc ≡

∫ rc

0
Kab(r) dr (22)

γe ≡

∫ R

rc

Kab(r) dr (23)

and the function Kab(r) is defined by Eq. (13). The values of γc
and γe during the avoided crossing are shown in Fig. 6. As de-
scribed in Appendix B, a simplified expression can be obtained
for ω1,ab, which shows that the coupling term vanishes in the
particular case of a rotation profile for which the splittings of
pure g modes are identical to those of pure p modes. In this
case, we recover the eigenfrequencies of the non-degenerate case
(see Eq. (11)) and the multiplets remain symmetric, in agreement
with what was found in Sect. 3.5.

As a result, the first-order perturbed mode frequencies can
be expressed as

ω± = ω̄0 + m
(
β̄c〈Ω〉c + β̄e〈Ω〉e

)
±

1
2

{
4m2(γc〈Ω〉c + γe〈Ω〉e)2

+
[
δω0 + m(δβc〈Ω〉c + δβe〈Ω〉e)

]2
}1/2

, (24)

where we have defined

ω̄0 ≡
ω0,a + ω0,b

2
; δω0 ≡ ω0,a − ω0,b (25)

β̄c ≡
βc,a + βc,b

2
; δβc ≡ βc,a − βc,b (26)

and similar expressions hold for β̄e and δβe as well.
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Fig. 6. Variations in the parameters βc, βe, γc, and γe (defined in
Eqs. (17), (18), (22), and (23)) along the course of the avoided crossing
between the two l = 2 multiplets for our reference sequence of mod-
els B0 through B8. Mode a (resp. b) corresponds to the lower- (resp.
higher-) frequency multiplet. Core quantities are represented by open
circles and envelope quantities by open squares. Interpolations using
cubic splines are overplotted (blue dashed lines for core parameters and
red dot-dash lines for envelope parameters).

We thus obtained approximate expressions for the perturbed
mode frequencies involving only four parameters (〈Ω〉c, 〈Ω〉e,
ω0,a, and ω0,b) and the rotational kernels of the chosen refer-
ence model. This gives us the possibility of estimating the mean
core and envelope rotation using l = 2 modes by fitting Eq. (24)
to the observed mode frequencies. We note that βc and βe can
in fact be approximately estimated from seismic observables
without the need of a reference stellar model, as was shown by
Goupil et al. (2013; see also Mosser et al. 2015). If approximate
expressions relating γc and γe to observable quantities can be
derived, then Eq. (24) could be used to estimate 〈Ω〉c and 〈Ω〉e
directly from the observed mode frequencies. This is, however,
out of the scope of the present work, and instead we compute βc,
βe, γc, and γe from reference stellar models in this study.

5.2. Preliminary test

To test this approach, we used the eigenfrequencies obtained
with acor for a model in the close neighborhood of the avoided
crossing between the l = 2 multiplets (model B4) as artificial
data, assuming the same rotation profile as in Sect. 3 (Eq. (15)
with a core-envelope contrast of five). In this preliminary test,
we assumed that all the components of the multiplets are de-
tected (ten frequencies) and that the frequencies are free of noise.
We used the same model (model B4) as the reference model to
perform inversions of 〈Ω〉c and 〈Ω〉e. We used the non-rotating
version of acor to compute the unperturbed eigenfunctions of
model B4, which were then inserted into Eqs. (17), (18), (22),
and (23) to obtain the values of βc, βe for both modes, as well as

γc, γe. We then performed an iterative fit of Eq. (24) to the eigen-
frequencies obtained with acor, using 〈Ω〉c, 〈Ω〉e, ω0,a, and ω0,b
as free parameters of the fit. The optimal values obtained for
the core and envelope rotation rates (〈Ω〉c,fit/2π = 716 nHz and
〈Ω〉e,fit/2π = 154 nHz) are very close to the true values of these
quantities computed using Eqs. (19) and (20) for our reference
rotation profile (〈Ω〉c,mod/2π = 710 nHz, and 〈Ω〉e,mod/2π =
154 nHz). The frequencies obtained using the best-fit parame-
ters and Eq. (24) are overplotted in Fig. 2 (red filled circles at
t = t0 + 4 Myr). The agreement with the frequencies computed
with acor is better than 10 nHz, that is, below the precision to
which rotational splittings can be measured with the four years
of Kepler observations.

These results are encouraging, but they do not guarantee that
we can recover 〈Ω〉c and 〈Ω〉e using the observed frequencies
of l = 2 multiplets. Indeed, in this preliminary test, we consid-
ered the ideal case where the reference model is “perfect”. If
we perform a similar fit, but use the values of βc, βe, γc, and γe
computed with a different model (say for instance model B5), no
satisfactory fit to the frequencies of acor can be found and the
recovered values of 〈Ω〉c and 〈Ω〉e are incorrect. The reason for
this is that the trapping of the modes differs between the chosen
reference model and the model that was used to produce rota-
tional multiplets.

The need for a reference model that produces a correct trap-
ping of the modes was already emphasized in works that per-
formed rotation inversions using dipolar modes. However, in the
latter case, a large number of l = 1 modes can be detected, and
these have a wide variety of natures ranging from g-dominated
to p-dominated. Deheuvels et al. (2012) showed that all the non-
rotating models that provide satisfactory matches to the frequen-
cies of the m = 0 components of the observed l = 1 modes
predict a similar trapping of the dipolar modes, quantified by the
parameter ζ defined as the ratio between the mode inertia in the
g-mode cavity and the total mode inertia, that is,

ζ ≡

∫ rc

0 ρr2
(
ξ2

r + L2ξ2
h

)
dr∫ R

0 ρr2
(
ξ2

r + L2ξ2
h

)
dr
. (27)

Goupil et al. (2013) showed that the trapping of l = 1 modes
can even be estimated reliably from the mode frequencies them-
selves, independently of stellar models, using the Wentzel-
Kramers-Brillouin (WKB) approximation. For l = 2 modes the
situation seems much more complex. Deheuvels et al. (2012)
mentioned that the models that satisfactorily reproduce the fre-
quencies of l = 1 modes predict different mode trappings for
the l = 2 mixed modes, which means that these models can-
not be directly used to perform inversions using l = 2 modes.
Besides, the coupling between the p-mode and g-mode cavities
is weaker for l = 2 modes than for l = 1 modes because the
evanescent region that separates them is wider. We can thus de-
tect l = 2 modes only when their frequencies are very close
to those of pure p modes. Outside these frequency ranges, the
l = 2 modes have inertias that are too large for the modes
to have detectable heights in the oscillation spectra, even with
the longest Kepler datasets (see, e.g., Grosjean et al. 2014). This
makes it much harder to precisely estimate the asymptotic prop-
erties of l = 2 pure g modes, which are required if we want to
apply the method of Goupil et al. (2013) to l = 2 modes.

5.3. New fitting procedure

In Sect. 3.5, we have shown that the asymmetries of the rota-
tional multiplets carry information not only about the internal
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rotation, but also about how far the star is in the avoided crossing
process, and thus on the trapping of the l = 2 modes. This could
yield a solution to the problem mentioned above. We explored
the possibility of also recovering the trapping of the l = 2 modes
(expressed by the ζ parameter) when fitting Eq. (24) to the data.
The idea is to allow the age of the reference model to vary
slightly in our fitting procedure by considering the time elapsed
since the beginning of the avoided crossing, ∆t ≡ t− t0, as an ad-
ditional free parameter. We note that because of the much weaker
coupling, the timescale over which the trapping of l = 2 modes
is modified is small compared to the equivalent quantity for
l = 1 modes. As a result, the small age adjustment that is made
in this fit has a negligible impact on the trapping of l = 1 modes
in the model.

With this new fitting procedure, the value of ∆t changes at
each iteration, and in principle the rotational kernels need to be
recomputed every time, which is numerically very costly. In fact
the only quantities that are needed are βc, βe, γc, and γe, whose
variations during the avoided crossing are quite smooth (see
Fig. 6). We thus chose to perform a cubic-spline interpolation
of these quantities using our sequence of models B0 through B8.
The results are overplotted in Fig. 6. For several values of ∆t, we
compared the interpolated values of βc, βe, γc, and γe to the ones
computed using the rotational kernels and found agreements at a
level of 1% or better. Inserting the interpolated parameters into
Eq. (24), this 1% discrepancy translates into frequency differ-
ences at most of the order of 1 nHz, which is small compared
to the precision to which the mode frequencies can be measured
from the observations. We thus used interpolated values of βc,
βe, γc, and γe in the fits presented in the subsequent sections.

For clarity, we briefly summarize the steps of the fitting
procedure:

1. Compute a reference model that satisfactorily reproduces the
observational constraints of the star under study. This model
should in particular reproduce the frequencies of the ob-
served l = 1 modes and roughly match the frequencies of
the l = 2 modes that are undergoing an avoided crossing.

2. Recompute the evolution of the reference model until a time
t0 just before the avoided crossing.

3. Restart the evolution with small timesteps to span the entire
avoided crossing.

4. For each model of the sequence, compute the values of the β
and γ parameters using Eqs. (17), (18), (22), and (23).

5. Perform cubic spline interpolations of the variations in the β
and γ parameters with time so that they can be estimated at
any time during the avoided crossing.

6. Perform an iterative fit of Eq. (24) to the observed frequen-
cies of the component of the two l = 2 multiplets, using 〈Ω〉c,
〈Ω〉e, ω0,a, and ω0,b as free parameters. At each iteration of
the fit, the β and γ parameters corresponding to the value of
∆t are calculated using the interpolations.

5.4. Test of the method with noise-free artificial data

To test the fitting procedure described above, we again gener-
ated artificial data (frequencies of l = 2 rotational multiplets in
avoided crossing) using other models than model B. We conve-
niently used models A, C, D, and E obtained by Deheuvels et al.
(2012). All these models were found to reproduce the observed
frequencies of the m = 0 components of the observed l =
1 mixed modes of KIC 7341231 quite satisfactorily. They also
match the observed atmospheric parameters of the star. The main
difference between these models is the metallicity, which ranges

from −0.75 dex (model A) to −1.75 dex (model E), reflecting
the poorly constrained metallicity of the star. All these models
were used by Deheuvels et al. (2012) to perform inversions of
the rotation profile of KIC 7341231, and were found to yield al-
most identical results. They all include an l = 2 avoided crossing
between two l = 2 modes around 380 µHz, but they predict dif-
ferent mode trappings for these two l = 2 mixed modes. For
models A, C, D, and E, we computed the frequencies of the two
l = 2 rotational multiplets with acor, assuming the same rota-
tion profile as before (Eq. (15) with a core rotation of 710 nHz)
and we considered core-envelope contrasts of 100, 20, 10, 5,
and 2.

For each of these scenarios, we fitted Eq. (24) to the fre-
quencies of acor, considering 〈Ω〉c, 〈Ω〉e, ω0,a, ω0,b, and ∆t as
free parameters. As described above, for each iteration of the fit
we interpolated through the values of βc, βe, γc, and γe of the se-
quence of models B0 though B8. The inversions of 〈Ω〉c and 〈Ω〉e
are thus performed using a different model than the ones used to
generate the artificial data. The results are given in Table 2. The
first observation is that the recovered mean core and envelope
rotation rates agree very well with the actual values computed
with the input rotation profile and Eqs. (19) and (20), regardless
of the chosen core-envelope ratio and the model that is used to
generate artificial data.

The optimal value of ∆t can also be used to obtain an es-
timate of ζ0,a and ζ0,b, which quantify the trapping of the m =
0 components of the two l = 2 multiplets. Indeed, we can com-
pute ζ0,a and ζ0,b for the models B0 through B8 and perform
cubic spline interpolations of these quantities in the same way
as was done for the β and γ parameters. The values of ζ0,a and
ζ0,b can then be obtained at the fitted time ∆t. The corresponding
values are given in Table 2. They can be compared to the actual
values of ζ0,a and ζ0,b computed by injecting the eigenfunctions
of the model that was used to generate data into Eq. (27). As can
be seen in Table 2, the agreement between the recovered values
of ζ0,a and ζ0,b and the actual ones computed from the model is
excellent. This confirms that we can indeed determine the trap-
ping of the modes using the frequencies of two l = 2 rotational
multiplets in avoided crossing.

5.5. Test of the method under realistic conditions

Next, we tested our method with more realistic artificial data
by including noise and by taking into account that the ob-
served l = 2 multiplets are generally incomplete. We per-
formed Monte Carlo simulations using models A, C, D, and E
and considered different rotation profiles. In the following, we
show only the results obtained with model D (the other models
give undistinguishable results), assuming a rotation profile with
〈Ω〉c/2π = 710 nHz as before and a core-envelope contrast of 5.
The influence of a change in this parameter is mentioned when
relevant.

5.5.1. Effects of adding noise on mode frequencies

We first assumed uncertainties of 15 nHz for the frequencies of
the components of rotation multiplets. This value corresponds
to the typical error bar resulting from the extraction of mode
frequencies in the oscillation spectra of red giants observed dur-
ing four years with Kepler (see for instance Table 1). We added
a realization of Gaussian noise with a standard deviation of
15 nHz to the mode frequencies computed with acor and fit-
ted Eq. (24) to the resulting set of frequencies. This operation
was then repeated 1000 times. The values of 〈Ω〉c and 〈Ω〉e re-
covered from our Monte Carlo simulation for this case are shown
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Table 2. Values of the parameters 〈Ω〉c, 〈Ω〉e, ∆t, ζ0,a, and ζ0,b obtained when fitting Eq. (24) to the mode frequencies of acor for models A, C, D,
and E, assuming a rotation profile following Eq. (15) with a core rotation 〈Ω〉c/2π = 710 nHz and core-envelope contrasts of 100, 20, 10, 5, and 2.

Model id. Rotation Fit Model
profile 〈Ω〉c/2π 〈Ω〉e/2π ∆t ζ0,a ζ0,b 〈Ω〉c/2π 〈Ω〉e/2π ζ0,a ζ0,b

(nHz) (nHz) (nHz) (nHz)

Model A 100 714.7 21.5 4.201 0.287 0.738 709.6 22.7 0.286 0.737
20 714.6 49.5 4.202 0.287 0.738 709.6 50.5 0.286 0.737
10 714.4 84.5 4.202 0.287 0.738 709.6 85.2 0.286 0.737
5 714.1 154.5 4.204 0.287 0.738 709.7 154.6 0.286 0.737
2 713.2 364.4 4.214 0.283 0.743 709.8 362.9 0.286 0.737

Model C 100 720.8 18.1 3.824 0.407 0.619 709.6 23.6 0.406 0.621
20 720.3 46.3 3.824 0.407 0.619 709.6 51.4 0.406 0.621
10 719.8 81.5 3.824 0.407 0.619 709.6 86.0 0.406 0.621
5 718.6 151.8 3.825 0.407 0.619 709.7 155.4 0.406 0.621
2 715.2 363.0 3.830 0.404 0.622 709.8 363.4 0.406 0.621

Model D 100 724.1 15.8 3.630 0.480 0.546 709.6 24.8 0.481 0.548
20 723.5 44.1 3.630 0.480 0.546 709.6 52.5 0.481 0.548
10 722.7 79.4 3.630 0.480 0.546 709.6 87.1 0.481 0.548
5 721.1 150.0 3.631 0.480 0.546 709.7 156.3 0.481 0.548
2 716.3 362.0 3.633 0.480 0.546 709.8 363.9 0.481 0.548

Model E 100 723.2 17.2 3.685 0.458 0.568 709.6 24.1 0.460 0.570
20 722.6 45.4 3.685 0.458 0.568 709.6 51.8 0.460 0.570
10 721.9 80.6 3.685 0.458 0.568 709.6 86.4 0.460 0.570
5 720.4 151.0 3.686 0.458 0.568 709.7 155.7 0.460 0.570
2 715.9 362.3 3.689 0.458 0.568 709.8 363.6 0.460 0.570

Notes. For comparison, the right columns give the actual values of 〈Ω〉c, 〈Ω〉e, ζ0,a, and ζ0,b computed with the input rotation profile and the
eigenfunctions of the chosen model.

in Fig. 7. Using the distribution of the fitted parameters, we de-
rived 〈Ω〉c/2π = 721 ± 18 nHz and 〈Ω〉e/2π = 150 ± 16 nHz,
which is in close agreement with the actual values of 〈Ω〉c and
〈Ω〉e computed using Eqs. (19) and (20) (see Table 2). It is clear
from Fig. 7 that even with noisy data one can efficiently recover
the average core and envelope rotation rates.

We repeated this procedure using different sets of initial pa-
rameters for the iterative fits. For instance, we tried starting from
a solid-body rotation or with profiles such that 〈Ω〉e > 〈Ω〉c.
We also varied the initial value of ∆t. In all cases, the obtained
results are undistinguishable from the ones mentioned above,
which shows that the procedure has little dependence on the cho-
sen initial parameters. We note, however, that an ambiguity may
arise in the determination of ∆t. As was mentioned in Sect. 3.5,
a larger |δasym| for the higher-frequency multiplet means that the
star is either at the beginning of the avoided crossing with a core
rotating faster than the envelope, or near the end of the avoided
crossing with an envelope rotating faster the core (see Fig. 5).
This potential degeneracy was not found when using models A,
C, D, or E to generate artificial data, but it arose when using
model B3. When choosing 〈Ω〉c > 〈Ω〉e in the initial parame-
ters of the fit, we recovered the correct mean core and envelope
rotation rates with ∆t = 3 Myr, as expected. However, when
starting with 〈Ω〉e > 〈Ω〉c, the fit converged to a spurious so-
lution with a fast rotating envelope near the end of the avoided
crossing (〈Ω〉c/2π = 194 nHz and 〈Ω〉e/2π = 621 nHz, with
∆t = 5.1 Myr). However, if this potential ambiguity arises, it
should be easy to resolve, since the two scenarios provide very
different splittings for dipolar modes. In all the red giants studied
so far using Kepler data, the rotational splittings of l = 1 modes
safely ruled out the possibility of an envelope rotating faster than
the core.

Fig. 7. Values of 〈Ω〉c and 〈Ω〉e obtained by fitting Eq. (24) to the mode
frequencies of model D computed with acor, assuming a rotation pro-
file with 〈Ω〉c/2π = 710 nHz and 〈Ω〉c/〈Ω〉e = 5. A random noise with
an rms of 15 nHz was added to the mode frequencies and 1000 itera-
tions were performed. The quantity βc〈Ω〉c + βe〈Ω〉e is conserved along
the blue lines, where βc and βe correspond to mode a (dashed line) or
mode b (dot-dashed line). The red cross indicates the actual values of
〈Ω〉c and 〈Ω〉e computed with Eqs. (19) and (20).

We observe from Fig. 7 that the recovered values of 〈Ω〉c
and 〈Ω〉e are highly correlated. This can be understood because
the average rotation 〈Ω〉 over the whole interior, which can be
written as

〈Ω〉 ≡

∫ R
0 K(r)Ω(r) dr∫ R

0 K(r) dr
=
βc〈Ω〉c + βe〈Ω〉e

βc + βe
, (28)
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Fig. 8. Distribution of the values of 〈Ω〉c (left) and 〈Ω〉e (right) obtained by fitting Eq. (24) to the mode frequencies of acor for model D, assuming
a rotation profile with 〈Ω〉c/2π = 710 nHz and 〈Ω〉c/〈Ω〉e = 5. A random noise with an rms of 15 nHz (top), 30 nHz (middle), and 50 nHz (bottom)
was added to the mode frequencies. The colors correspond to the different scenarios that were tested: ideal case where all the components are
detected (black), inclination angle of 90◦ (purple) or 30◦ (red), and case of an overlap with the closest radial mode (blue). The vertical dashed lines
indicate the actual values of 〈Ω〉c and 〈Ω〉e computed with Eqs. (19) and (20).

can be recovered from the observed modes frequencies much
more precisely than 〈Ω〉c and 〈Ω〉e individually. As a result, the
quantity βc〈Ω〉c + βe〈Ω〉e is expected to be roughly conserved for
all the iterations of the Monte Carlo simulation. The conserva-
tion of this quantity in the (〈Ω〉e, 〈Ω〉c) plane defines a straight
line, which is overplotted in Fig. 7 and accounts well for the cor-
relation between the fitted values of 〈Ω〉c and 〈Ω〉e.

To study the influence of the uncertainties of mode frequen-
cies on the performance of our method, we performed Monte
Carlo simulations considering error bars of 30 and 50 nHz. The
distributions of the recovered values of 〈Ω〉c and 〈Ω〉e are shown
in Fig. 8 (black histograms). The error bars of 〈Ω〉c and 〈Ω〉e
increase to ∼35 nHz for σν = 30 nHz and to ∼65 nHz for
σν = 50 nHz. In the latter case, the distributions of 〈Ω〉c and
〈Ω〉e become slightly bimodal, with a small secondary peak at
〈Ω〉c/2π ∼ 480 nHz and 〈Ω〉e/2π ∼ 360 nHz. These spurious
solutions are obtained along with extremum values of ∆t (either
0 Myr or 8 Myr), that is, away from the avoided crossing. These
solutions therefore have negligible multiplet asymmetries, and
they correspond to the solutions that would be obtained if near-
degeneracy effects were ignored. The fact that the fits sometimes
converge to this spurious solution in our noisiest scenario can be
understood because the frequency uncertainty (50 nHz) becomes
comparable to the asymmetry of the multiplets (the numerator of
δasym is around 135 nHz for the rotation profile that we have cho-
sen for these simulations). If we use rotation profiles with larger
core-envelope contrasts, the asymmetry of rotational multiplets
during the avoided crossing increases and the bimodality of the
recovered rotation rates vanishes, even for σν = 50 nHz.

In our Monte Carlo simulations, the parameter ∆t was also
recovered with very little scatter (3.63 ± 0.02 for σν = 15 nHz).
As was done before, we used the optimal value of ∆t to estimate

ζ0,a and ζ0,b for each simulation. The distribution obtained for
ζ0,a is shown in Fig. 9 (the distribution of ζ0,b is qualitatively sim-
ilar). The recovered values are in close agreement with the actual
values of the ζ parameters computed by inserting the eigenfunc-
tions of model D into Eq. (27) (we obtained ζ0,a = 0.481± 0.008
and ζ0,a = 0.545 ± 0.008 for σν = 15 nHz). This confirms that
the trapping of the modes can be precisely recovered, even when
the effects of noise are included.

5.5.2. Effects of missing components

In addition to the effects of the noise, we must take into account
the fact that in general not all the components of the l = 2 multi-
plets can be detected. This is caused mainly by the inclination of
the star, but also by the possible overlap of certain components
with the adjacent radial or mixed dipolar modes. To determine
the effects of missing components on the fitting procedure, we
tested the following scenarios:

1. Ideal case (all m-components are detected),
2. Inclination angle of 90◦ (m = ±1 components missing),
3. Inclination angle of ∼30◦ (m = ±2 components missing),
4. Overlap of a part of the higher-frequency multiplet with the

closest radial mode (m = +1, +2 components of this multi-
plet missing).

Scenario 1 was already tested in Sect. 5.5.1. We repeated the
same Monte Carlo simulations for scenarios 2, 3, and 4. The
distributions of the obtained values of 〈Ω〉c and 〈Ω〉e are shown
in Fig. 8. For scenarios 2 and 4, the missing components re-
sult in a slight increase in the error bars of the recovered core
and envelope rotation rates, but overall the performance of the
method remains quite comparable to the ideal case where all the
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Fig. 9. Distribution of the values of ζ0,a recovered when fitting Eq. (24)
to the mode frequencies of acor for model D, assuming a rotation pro-
file with 〈Ω〉c/2π = 710 nHz and 〈Ω〉c/〈Ω〉e = 5. The lines and colors
have the same meaning as in Fig. 8. The vertical dashed lines indicate
the actual value of ζ0,a computed with the eigenfunctions of the model
and Eq. (27).

components are detected. In the case of a low inclination an-
gle (scenario 3), the performance of the method is much poorer,
with the bimodality of the distributions of 〈Ω〉c and 〈Ω〉e appear-
ing even with σν = 15 nHz. This is expected since in the absence
of the m = ±2 components, the asymmetry can only be detected
through the m = ±1 components and it is much smaller. With the
rotation profile that we have chosen here,ωm=−1+ωm=1−2ωm=0 is
around 35 nHz, which is comparable to the uncertainties of the
mode frequencies. This explains the large increase of the sec-
ondary peak in the distributions for scenario 3 as σν increases.
As mentioned in Sect. 5.5.1, this secondary peak corresponds
to the cases where the fit converged toward ∆t = 0 Myr or
∆t = 8 Myr, that is, toward a configuration without multiplet
asymmetries. These cases are clearly identified in Fig. 9 because
they form sharp peaks at ζ0,a ∼ 0.2 and ζ0,a ∼ 0.96, which corre-
spond to ∆t = 8 Myr or ∆t = 0 Myr, respectively.

We therefore conclude that provided the inclination angle of
the star is large enough to detect m = ±2 components (i & 50◦),
the full set of Kepler data (four years of observations) should be
sufficient to reliably estimate the mean core and envelope rota-
tion rates using only two l = 2 modes undergoing an avoided
crossing.

6. Application to KIC 7341231

The young red giant KIC 7341231 is a favorable case for study
considering the results of our Monte Carlo simulation. The in-
clination angle of the star is high (i = 85◦ ± 5◦, Deheuvels et al.
2012) so that the m = ±2 components of the l = 2 multiplets
are clearly visible. Compared to scenario 2 which was tested in
Sect. 5.5.2, we also have measurements for the frequencies of

Table 3. Optimal parameters resulting from the fit of Eq. (24) to the
observed frequencies of the two l = 2 multiplets in avoided crossing in
the spectrum of KIC 7341231.

〈Ω〉c/2π (nHz) 771 ± 13
〈Ω〉e/2π (nHz) 45 ± 12
ω0,a/2π (µHz) 380.366 ± 0.009
ω0,b/2π (µHz) 382.619 ± 0.009
∆t (Myr) 4.14 ± 0.02
ζ0,a 0.304 ± 0.006
ζ0,b 0.722 ± 0.006

the m = +1 components, even though the associated error bars
are larger than for the other components. The error bars of the
m = −2, 0, and 2 components are all around or below 15 nHz.
Consequently, we expected to be able to reliably extract 〈Ω〉c and
〈Ω〉e for this star using our method.

We fitted Eq. (24) to the observed frequencies of the two
l = 2 multiplets which are listed in Table 1. The fit converged
to a core rotation of 〈Ω〉c/2π = 771 ± 13 nHz and an envelope
rotation of 〈Ω〉e/2π = 45 ± 12 nHz. The values obtained for the
other fitted parameters are given in Table 3. The quoted error bars
were obtained by performing Monte Carlo simulations using the
observed mode frequencies and their uncertainties. We repeated
the fitting procedure using a wide range of initial parameters.
We found that if 〈Ω〉c > 〈Ω〉e in the set of initial parameters, we
always recover the solution that is given in Table 3, regardless
of the initial guess for ∆t. As mentioned in Sect. 5.5, we found
that if the fit is started with initial rotation rates such that 〈Ω〉e >
〈Ω〉c, it converges to a solution with the envelope rotating much
faster than the core (〈Ω〉c/2π = 67 ± 14 nHz and 〈Ω〉e/2π =
675±12 nHz, with ∆t = 3.98±0.02). This alternate solution can
be clearly excluded for KIC 7341231 because if it were the case,
the g-like dipolar modes would have smaller splittings than the
p-like ones, contrary to what is observed.

The mode frequencies produced by the set of best-fit param-
eters are overplotted in Fig. 1 (vertical dotted lines). They are in
very close agreement with the observed mode frequencies. The
agreement can be qualitatively assessed by computing the χ2 us-
ing the observed frequencies and error bars listed in Table 1. For
the best-fit parameters, we obtained χ2 = 4.8. This translates
into a reduced χ2 of 1.6 (the fit involves five free parameters
for eight observables, thus yielding a number of degrees of free-
dom of three), which indicates a statistically good agreement.
With this procedure we were also able to predict the location of
the m = −1 components of the multiplets, which could not be
detected from the observed oscillation spectrum. For the lower-
frequency multiplet, the theoretical location of the m = −1 com-
ponent coincides with a slight excess of power, while nothing
can be seen in the power spectrum around the frequency pre-
dicted for the m = −1 component of the higher-frequency multi-
plet.

7. Discussion

7.1. Other possible sources of multiplets asymmetry

As we have shown in this paper, near-degeneracy effects are very
likely the origin of the multiplet asymmetries in KIC 7341231.
Conditions that cause near-degeneracy of modes are expected
to occur in this star, and our treatment of these effects shows
that they produce asymmetries similar to those that are observed.
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Additionally, no asymmetries were found in the l = 1 multiplets
of KIC 7341231, which implies that whatever phenomenon is
producing multiplet asymmetries in this star does not affect
dipolar modes. This can be accounted for by near-degeneracy
effects, because the evanescent region for l = 1 modes is thin-
ner, which produces a much stronger coupling between the
g-mode and p-mode cavities. As a result, the frequency separa-
tion between dipolar mixed modes is larger than for quadrupolar
modes and near-degeneracy effects are much weaker. Based on
Deheuvels et al. (2012), the smallest frequency spacing between
l = 1 modes in the spectrum of KIC 7341231 (7.64 ± 0.05 µHz)
represents more than ten times the core rotation rate of the star,
which confirms that near-degeneracy-effects should be small for
dipolar modes in this star. For the sake of completeness, we
briefly mention other potential sources of asymmetries.

Asymmetries in rotational multiplets can be the signature
of a rotation rate that is fast enough to produce non-negligible
effects of the centrifugal force and second-order effects of the
Coriolis force. In this case, higher-order perturbations need to be
included in the oscillation equations, which break the symme-
try of rotational multiplets (e.g., Dziembowski & Goode 1992;
Suárez et al. 2006). However, the rotation rate estimated for
KIC 7341231 by Deheuvels et al. (2012) is much too low for
second-order effects of rotation to significantly contribute to ro-
tation splittings. Besides, no asymmetries were detected in the
l = 1 multiplets of KIC 7341231, contrary to what would be ex-
pected in the presence of fast rotation.

It is also known that latitudinal differential rotation can pro-
duce asymmetric rotational multiplets. To first order, the fre-
quency shifts caused by rotation can be written as

δωn,l,m = m
∫ R

0

∫ π

0
Kn,l,m(r, θ)Ω(r, θ) drdθ. (29)

Since the kernels Kn,l,m(r, θ) depend on the azimuthal order m,
the splittings of the different m components, usually computed
as (ω−m − ωm)/2m, differ. However, it can be readily shown
from the expression of the kernels that Kn,l,−m = Kn,l,m, so that
δωn,l,−m = −δωn,l,m (e.g., Aerts et al. 2010). As a result, the
asymmetry as defined by δasym in Eq. (2) is expected to can-
cel at the first order in the presence of latitudinal differential ro-
tation. Second-order effects of rotation may on the other hand
produce non-zero values of δasym. In order to rule out latitudinal
differential rotation as the cause of the observed asymmetries,
we performed non-perturbative calculations with acor. The ro-
tation law was chosen to be differential in latitude only, of the
form Ω(θ) = Ωeq(1−∆Ω/Ωeq cos θ2), where Ωeq and Ωpol are the
equatorial and polar rotation, respectively, and ∆Ω ≡ Ωeq −Ωpol.
We chose Ωeq/2π = 710 nHz and a latitudinal differential rota-
tion of ∆Ω/Ωeq = 0.36, which corresponds to the solar value.
With this rotation profile, we obtained asymmetries of the order
of δasym ∼ 10−3, that is, much lower than the observed values. We
thus conclude that latitudinal differential rotation cannot account
on its own for the observed asymmetries.

Finally, multiplet asymmetries can also be the signature of
an internal magnetic field. The possibility of a buried magnetic
field inclined with respect to the rotation axis can be excluded
for KIC 7341231, since such a field would produce a magnetic
splitting of each of the 2l + 1 components in each rotational mul-
tiplets (Dicke 1982; Dziembowski & Goode 1985), and this is
not observed. However, an internal field aligned with the ro-
tation axis would not change the number of components, but
would alter the fine structure pattern of the multiplets, poten-
tially producing asymmetries. Establishing the impact of such a

field on the rotational multiplets would require a dedicated study
and is out of the scope of the present paper. We can, however,
remark that a buried magnetic field would produce more distor-
tion in the g-dominated multiplets than in the p-dominated ones
(Hasan & Christensen-Dalsgaard 1992), which is the opposite of
what is observed in KIC 7341231 and KIC 5006817. Also, it is
hard to imagine how an internal magnetic field would produce
asymmetries in quadrupolar multiplets but not in dipolar ones in
KIC 7341231.

7.2. Near-degeneracy effects in red giants

In this paper, we have focused on the case of the young red gi-
ant KIC 7341231. The internal rotation of this star is not pecu-
liar compared to other similar targets, thus near-degeneracy ef-
fects are expected to be important for many other giants. In fact,
since the intensity of the coupling between the p-mode and g-
mode cavities decreases during the evolution (e.g., Mosser et al.
2017), we anticipate that near-degeneracy effects become even
larger for giants more evolved than KIC 7341231, which lies at
the base of the RGB. Therefore, these effects should always be
considered when using the rotational multiplets of quadrupolar
modes to probe the internal rotation of red giants.

For dipolar modes, near-degeneracy effects are smaller than
those for quadrupolar modes, as explained in Sect. 7.1. How-
ever, they need to be considered for giants slightly more evolved
than KIC 7341231. This is the case for KIC 5006817, for which
asymmetrical l = 1 multiplets have been reported (Beck et al.
2014). It is straightforward to show that near-degeneracy effects
are expected in this star. The closest frequency separation be-
tween l = 1 mixed modes in this star is ∼0.8 µHz, which is
even smaller than the core rotation rate of 0.93 µHz inferred
for this star by Beck et al. (2014). In fact, the asymmetries de-
tected in this star show a lot of similarities with the ones pro-
duced by near-degeneracy effects: they arise only for the modes
that show the highest level of mixing (see Fig. 6 of Beck et al.
2014) and it is clear from Fig. 5 of Beck et al. (2014) that for all
pairs of asymmetric multiplets, the lowest-frequency multiplet
has a negative asymmetry, while the highest-frequency multi-
plet has a positive asymmetry, as we have found in Sect. 3. In
the case of KIC 4448777, for which Di Mauro et al. (2016) re-
ported asymmetries in the multiplets of several l = 1 modes,
the authors found a mean core rotation of 0.75 µHz, which rep-
resents about 40% of the closest frequency spacing between
l = 1 mixed modes. We thus expect near-degeneracy effects to
be non-negligible in this star also, although a dedicated study
would be necessary to determine whether they are the cause of
the reported asymmetries.

8. Conclusion

In this paper we investigated the origin of the asymmetries
that have been detected in the rotational multiplets of mixed
modes in red giants. We showed that in both red giants in which
asymmetrical multiplets have been reported (KIC 7341231,
Deheuvels et al. 2012; KIC 5006817, Beck et al. 2014), near-
degeneracy effects are expected to arise because of the small
frequency spacing between mixed modes. Such effects had not
been included in previous studies. Using the young red giant
KIC 7341231 as a test case, we accounted for the effects of
near-degeneracy in the framework of a first-order perturbative
approach and showed that these effects indeed produce mul-
tiplet asymmetries with very similar features compared to the

A75, page 13 of 15



A&A 605, A75 (2017)

observations. We also validated this perturbative approach us-
ing the code acor (Ouazzani et al. 2012), which solves the os-
cillation equations including the effects of rotation in a non-
perturbative manner.

We showed that the asymmetries of rotational multiplets
arising for near-degenerate mixed modes are linked to differen-
tial rotation between the core (g-mode cavity) and the envelope
(p-mode cavity). Indeed, for near-degenerate mixed modes, the
components of the rotational multiplets are trapped differently
inside the star. Each component is thus sensitive to an average
of the internal rotation with different weights given to the core
and the envelope. By exploiting this property, we developed a
method to measure the mean core and envelope rotation using
the rotational multiplets of near-degenerate mixed modes. This
method was then tested using Monte Carlo simulations on ar-
tificial data, where we included the effects of the uncertainties
of mode frequencies and considered different scenarios for the
mode visibilities within the multiplets. We showed that, provided
the dataset is long enough for the asymmetries to be detected at
a statistically significant level, our method can be used to suc-
cessfully and precisely recover the mean rotation rates of the
core and envelope using the frequencies of only two l = 2 near-
degenerate rotational multiplets. Higher-inclination angles are
more favorable, because then the m = ±2 components can be de-
tected, and they are the ones that show the largest asymmetries.

Next, we successfully applied our method to the young
red giant KIC 7341231. We obtained a core rotation rate of
〈Ω〉c/2π = 771 ± 13 nHz for this star. This measurement is in
good agreement with the results of Deheuvels et al. (2012), who
had obtained 〈Ω〉c/2π = 710 ± 51 nHz by applying the OLA in-
version method to the dipolar modes. The improved precision on
the measurement of 〈Ω〉c is likely related to the longer time series
that was used here compared to Deheuvels et al. (2012), who had
only one year of data at their disposal. This result shows that we
are now able to measure the core rotation rate using quadrupo-
lar mixed modes, which had not been possible earlier. We intend
to investigate in a future work whether this measurement, com-
bined with the one obtained with dipolar modes, can be used
to place constraints on the latitudinal differential rotation of the
core – we know that modes of different degree are sensitive to
different latitudes of the stellar rotation profile.

Interestingly, our method also enabled us to provide an esti-
mate of the envelope rotation of KIC 7341231, which had not
been possible for this star using the dipolar modes. We ob-
tained 〈Ω〉e/2π = 45 ± 12 nHz, which is in agreement with
the upper limit given by Deheuvels et al. (2012). We thus ob-
tained an estimate of the core-envelope contrast of 17 ± 5
for KIC 7341231. This is an improvement compared to the re-
sults of Deheuvels et al. (2012) who could only provide a lower
limit of five for the core-envelope rotation ratio. This measure-
ment could be used to improve our knowledge of the timescale
over which angular momentum is transported in red giants
(Eggenberger et al. 2017).

Based on our results, we expect near-degeneracy effects to be
important for quadrupolar mixed modes all along the red-giant
branch. For dipolar mixed modes, these effects are negligible at
the base of the red-giant branch, but must be taken into account
for more evolved giants. We have shown in this paper that rota-
tional multiplets affected by near-degeneracy effects require spe-
cial treatment and that they give us information about the internal
rotation of red giants.
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Appendix A: First-order perturbative approach
including near-degeneracy effects

Let us consider the case of two modes (indicated by subscripts
a and b) with near-degenerate eigenfrequencies, that is, |ω0,a −

ω0,b| ∼ Ω. In this case, the eigenfunctions of the near-degenerate
modes can be written as ξ = Aξ0,a + Bξ0,b. By injecting this
expression into Eq. (3) and taking the inner product with ξ0,a
and ξ0,b successively, the following system is obtained(
ω2

0,a − ω
2 + 2ω0,aω1,a

)
A + 2ω0,aω1,abB = 0

2ω0,bω1,abA +
(
ω2

0,b − ω
2 + 2ω0,bω1,b

)
B = 0, (A.1)

where we have defined

ω1,ab ≡
1

2ω0
〈L1ξ0,a|ξ0,b〉. (A.2)

To first order, one can writeω2
0,a+2ω0,aω1,a−ω

2 ∼ 2ω0,a(ωa−ω),
where ωa corresponds to the first-order perturbed frequency of
mode a in the absence of near-degeneracy (see Eq. (12)) and a
similar expression holds for mode b. Equation (A.1) can thus be
rewritten as(
ωa − ω ω1,ab
ω1,ab ωb − ω

) (
A
B

)
=

(
0
0

)
. (A.3)

Solutions to Eq. (A.3) can exist only if

(ωa − ω)(ωb − ω) − ω2
1,ab = 0. (A.4)

This yields the following expression for the frequencies of the
near-degenerate modes

ω± =
ωa + ωb

2
±

1
2

√
(ωa − ωb)2 + 4ω2

1,ab. (A.5)

Equation (A.3) can also be used to obtain a relation between A
and B, and therefore to estimate the eigenfunctions of the per-
turbed modes.

Appendix B: An approximate expression for ω1,ab

We here obtain an approximate expression for the coupling term
ω1,ab, starting from Eq. (21), in order to interpret its behavior as

a function of the rotation profile. For this purpose, we introduce
the quantity

γ ≡

∫ R

0
Kab(r) dr, (B.1)

where Kab is defined by Eq. (14). Taking into account the fact
that the unperturbed eigenfunctions of modes a and b are or-
thogonal, Eq. (B.1) can be rewritten

γ = −

∫ R

0
ρ0r2 (

ξh,0,aξh,0,b + ξr,0,aξh,0,b + ξh,0,aξr,0,b
)

dr. (B.2)

In the g-mode cavity, the horizontal displacement is much larger
than the vertical displacement for all modes, so that the cross-
terms ξrξh can be safely neglected in this region. In the p-mode
cavity, these cross-terms dominate, but since the horizontal dis-
placement is much smaller that the radial displacement, the over-
all contribution of the p-mode cavity to γ is smaller than the con-
tribution of the g-mode cavity. We can thus approximately write

γ ≈ −

∫ rc

0
ρ0r2ξh,0,aξh,0,b dr. (B.3)

In the g-mode cavity, considering that ξh � ξr, the quantity γc
(defined by Eq. (22)) can be approximated by

γc ≈

∫ rc

0
ρ0r2(L2 − 1)ξh,0,aξh,0,b dr (B.4)

≈ (1 − L2)γ. (B.5)

Hence

γe = γ − γc ≈ L2γ. (B.6)

Consequently, Eq. (21) can be rewritten as

ω1,ab ≈ mγ
[(

1 − L2
)
〈Ω〉c + L2〈Ω〉e

]
. (B.7)

In the particular case of a rotation profile for which the rotational
splitting of pure gmodes is identical to that of pure p modes, one
has 〈Ω〉c = L2/(L2 − 1)〈Ω〉e, and it can be seen from Eq. (B.7)
that ω1,ab vanishes.
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