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ABSTRACT

Context. Layered semi-convection is a possible candidate to explain Saturn’s luminosity excess and the abnormally large radius of
some hot Jupiters. In giant planet interiors, it could lead to the creation of density staircases, which are convective layers separated by
thin stably stratified interfaces. These are also observed on Earth in some lakes and in the Arctic Ocean.
Aims. We aim to study the propagation of internal waves in a region of layered semi-convection, with the aim to predict energy
transport by internal waves incident upon a density staircase. The goal is then to understand the resulting tidal dissipation when these
waves are excited by other bodies such as moons in giant planets systems.
Methods. We used a local Cartesian analytical model, taking into account the complete Coriolis acceleration at any latitude, thus gen-
eralising previous works. We used a model in which stably stratified interfaces are infinitesimally thin, before relaxing this assumption
with a second model that assumes a piecewise linear stratification.
Results. We find transmission of incident internal waves to be strongly affected by the presence of a density staircase, even if these
waves are initially pure inertial waves (which are restored by the Coriolis acceleration). In particular, low-frequency waves of all
wavelengths are perfectly transmitted near the critical latitude, defined by θc = sin−1(ω/2Ω), where ω is the wave’s frequency and Ω
is the rotation rate of the planet. Otherwise, short-wavelength waves are only efficiently transmitted if they are resonant with a free
mode (interfacial gravity wave or short-wavelength inertial mode) of the staircase. In all other cases, waves are primarily reflected
unless their wavelengths are longer than the vertical extent of the entire staircase (not just a single step).
Conclusions. We expect incident internal waves to be strongly affected by the presence of a density staircase in a frequency-, latitude-
and wavelength-dependent manner. First, this could lead to new criteria to probe the interior of giant planets by seismology; and
second, this may have important consequences for tidal dissipation and our understanding of the evolution of giant planet systems.

Key words. methods: analytical – planets and satellites: dynamical evolution and stability – planets and satellites: interiors –
hydrodynamics – waves – planet-star interactions

1. Introduction

Since the first discovery of a planet orbiting a star out-
side our solar system (Mayor & Queloz 1995), astronomy has
experienced an epoch of remarkable expansion: more than
3000 extrasolar planets are now confirmed, including more
than 500 planets in multi-planetary systems1. Planet forma-
tion is thus a universal physical process. Planetary systems
subsequently evolve dynamically by gravitational and mag-
netic interactions over astronomical timescales (for example
Laskar et al. 2012; Bolmont & Mathis 2016; Strugarek 2016).
The induced evolution of the orbital, rotational, thermal and
compositional properties of the planets due to these interactions
depends strongly on the internal structure of the planets involved
(for example Ogilvie & Lin 2004; Efroimsky & Lainey 2007;
Auclair-Desrotour et al. 2014). For example, the convective

1 See http://exoplanet.eu

instability, which is expected to operate in giant planet gaseous
envelopes (which are the focus of attention here), is efficient
at transporting heat, homogenises mean density profiles and
mixes chemical elements. This may strongly impact tidal fric-
tion in these planets (Zahn 1966, 1989; Ogilvie & Lin 2004;
Ogilvie & Lesur 2012; Mathis et al. 2016). However, whether
the gaseous envelope is fully convective remains an open
question.

Planetary interiors are poorly constrained. The juno space-
craft, orbiting Jupiter since July, 4, 2016, should provide high
precision measurements of Jupiter’s gravitational potential, aim-
ing to constrain its interior (Militzer et al. 2016). Giant planet
seismology, on the other hand, is very difficult because radial ve-
locities associated with modes that can potentially be observed
in Jupiter or Saturn are of very small amplitude (Gaulme et al.
2011). Based on Saturn’s ring seismology, Fuller (2014) inferred
that there could be a region of stable stratification in the deep
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interior of the giant planet, departing from the standard model
of planetary interiors, which considers a large H/He convective
gaseous envelope sitting on a rocky and/or icy core (that could
be either fluid or solid, see for example Mazevet et al. 2015) ex-
pected from planet formation by core accretion (see for example
Pollack et al. 1996).

Moreover, it has been shown that a stabilising compositional
gradient could exist in certain regions of giant planet interiors
as a natural outcome of planet formation and thermal evolu-
tion, thus competing with the destabilising entropy gradient that
drives the convective instability. Namely, this is expected to oc-
cur in two different regions.

Firstly, just outside the core, the erosion of part of the
core of giant planets was shown to be energetically plau-
sible in Guillot et al. (2004). This is because in the condi-
tions of temperature and pressure that reign in their cen-
tral regions, some of the heavy elements composing the
core (for example silicates) are thermodynamically unsta-
ble (for example Wilson & Militzer 2012b,a; Wahl et al. 2013;
González-Cataldo et al. 2014; Mazevet et al. 2015). Thus, ero-
sion and redistribution of core materials in the envelope must
be taken into account, and could provide a stable compositional
gradient. We also note that Stevenson (1985) suggested that im-
pacts of planetesimals with a giant planet (this could happen be-
fore the proto-planetary disc clears) could lead to the formation
of a stabilising gradient of heavy elements just outside the core.

Secondly, in the transition region between molecular and
metallic H/He ices: the helium rain region (see Salpeter
1973; Stevenson 1975), the phase separation between H
and He could provide a stabilising compositional gradient
(Stevenson & Salpeter 1977) which could in turn trigger double
diffusive convection (Nettelmann et al. 2015).

Furthermore, laboratory experiments have shown that the
presence of a compositional gradient (i.e. a gradient of the mean
molecular weight) can change the mean density profile that de-
velops in a stratified fluid. This is due to the fact that, like tem-
perature, the mean molecular weight influences the buoyancy
of the fluid (Ledoux 1947). But because of diffusive processes,
even a density stratification stable with respect to the convec-
tive instability can be unstable. This so-called double-diffusive
instability, first theorised by Stern (1960), can arise if the dif-
fusivity of one of the quantities (in general heat) is significantly
greater than the other (heavy elements). In the case of oscillatory
double-diffusive convection (also referred to as semi-convection,
see Garaud 2013, for a review), the entropy gradient is destabil-
ising while the compositional gradient is stabilising (the gradient
of heavy elements is directed towards the planet centre). We note
that without this stable chemical gradient, the envelope would be
convectively unstable in the usual sense.

For particular parameter values, as the instability grows, the
system can quickly develop a layered structure of well mixed,
convective layers separated by thin stably stratified interfaces
where both temperature and density undergo a sudden jump
(Radko 2003). This so-called layered semi-convection is thus
associated with a density staircase-like profile. This is con-
firmed by local three-dimensional non-linear numerical simula-
tions (for example Rosenblum et al. 2011; Stellmach et al. 2011;
Mirouh et al. 2012; Wood et al. 2013) and by direct observation
on Earth, for example in the Canada basin in the Arctic Ocean
(Ghaemsaidi et al. 2016). We note that in local numerical ex-
periments, these layers are observed to merge (see for example
Garaud 2013), but the long-term evolution of such a configura-
tion is not currently understood.

Could this kind of layered structure exist in giant planet inte-
riors and affect the dissipative processes at play? Several decades
ago, Stevenson (1985) pointed out that such layered interior
profiles could be relevant for solar system giant planets. Fol-
lowing that suggestion, Leconte & Chabrier (2012) proposed a
giant planet interior model involving layered semi-convection,
with the aim to verify whether such a model would be consis-
tent with observational constraints. The new picture obtained de-
parts from the standard picture of giant planets that assumes a
three-layer structure composed of a rocky/icy core surrounded
by a metallic H/He layer with a molecular H2/He envelope on
top. Indeed, because of its ability to hamper large-scale con-
vection, we expect the presence of layered semi-convection in
giant planet interiors to deeply modify the long-term interior
evolution of planets. Saturn’s infrared luminosity shows an ex-
cess compared to what is expected from the inherent gravita-
tional contraction and cooling of the body, which cannot be
explained invoking standard models of giant planet interiors
(Pollack et al. 1977; Fortney et al. 2011). Leconte & Chabrier
(2013) proposed that this could be explained invoking lay-
ered semi-convection. Before that, Chabrier & Baraffe (2007)
showed that layered semi-convection could also play a role in
explaining the abnormally large radius of some hot Jupiters (first
noticed by Bodenheimer et al. 2001; and Guillot & Showman
2002; see also Baraffe et al. 2005), though its efficiency in prac-
tice has been questioned by Kurokawa & Inutsuka (2015). In
any case, those findings seem to suggest that layered semi-
convection could be a crucial ingredient in realistic models of
giant planet internal structures.

If layered semi-convection and its associated density stair-
cases are present in giant planet interiors, it is very important to
determine ultimately how this complex structure affects the rates
of tidal dissipation, which has not been studied before. In partic-
ular, it is crucial to determine whether layered semi-convection
in giant planet interiors could account for the higher tidal dis-
sipation than previously thought in Jupiter and Saturn found by
Lainey et al. (2009, 2012, 2017) based on astrometric measur-
ments spanning more than a century, including some from the
Cassini spacecraft. In a series of papers, we will thus be driven
by the following question: how would the presence of density
staircases in giant planet interiors affect the propagation of inter-
nal waves and modify the rates of tidal dissipation?

We also note that semi-convection is thought to be able to
produce a layered state in massive stars of mass M∗ & 15 M�,
(M� denoting the mass of the Sun) outside their convective
core, which contracts over time, potentially leaving a stabil-
ising He gradient in the hydrogen envelope of the star (see
Schwarzschild & Härm 1958; Sakashita & Hayashi 1959). As a
consequence, the results of these papers, which are focused on
giant planets, may also be relevant for those massive stars.

Before evaluating the rates of tidal dissipation in a layered
profile (which will be the focus of attention of a second paper),
we need to understand how density staircases affect the prop-
agation and transmission of gravito-inertial waves that are po-
tentially excited by tidal forcing. This paper aims to determine
how density staircases modify the linear propagation of internal
waves in a rotating planet. This is done by extending and gener-
alising two previous studies: Belyaev et al. (2015; BQF15 here-
after), who derived the dispersion relation for the free modes
of a staircase and considered the effects of rotation at the pole
and equator; and Sutherland (2016; S16 hereafter), who stud-
ied the transmission of an incident internal wave upon a density
staircase embedded in a stably stratified medium under the tradi-
tional approximation. The traditional approximation consists in
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Fig. 1. Overview of our model. In the helium rain region or in the re-
gion just outside the core (where heavy elements, symbolised here by Z,
could be released into the gaseous envelope), layered semi-convection
could operate. The resulting density profile is staircase-like.

neglecting the horizontal component of the rotation vector in the
Coriolis acceleration, which is mostly valid in strongly stratified
fluids (see for example Friedlander 1987). Based on a similar
model of a plane-parallel density staircase, we study in detail
the effects of rotation (by including the complete Coriolis force)
at any latitude, to determine its effects on the free modes and
transmission of incident waves. In Fig. 1, we give an overview
of our reference physical model (and its regions of applicability
discussed above), Convective layers of size d, in which density
is uniform, are separated by infinitesimally thin stably stratified
interfaces across which the density undergoes a discontinuous
jump by a value ∆ρ.

The outline of this paper is as follows. In Sect. 2, we present
the important mathematical and physical aspects of the linear
propagation of internal waves, using a formalism first intro-
duced by Gerkema & Shrira (2005). Some energetical aspects
are discussed in Sect. 2.4, to yield a general expression of the
transmission coefficient. Section 3 then presents our study of the
layered case. In particular, we generalise the dispersion relation
obtained by BQF15 in Sect. 3.3, and derive a series of analytical
expression for the transmission coefficient of an internal wave
incident upon a density staircase in Sect. 3.4, with the aim to pre-
dict which waves will be able to penetrate into deeper regions of
giant planets. A link is made between the bands of perfect trans-
mission that arise and the free modes of the staircase given by
the dispersion relation. In addition, we extend in Sect. 3.5 the
physical model to a more realistic one for which stably strati-
fied interfaces have a finite size. Finally, we summarise our main
results and discuss their astrophysical implications, particularly
for giant planets seismology, in Sect. 4.

2. Internal waves in giant planet interiors

2.1. Main assumptions

We wish to study the propagation of short-wavelength in-
ternal waves. Therefore we adopt a local Cartesian model
(Gerkema & Shrira 2005; Mathis et al. 2014) that represents a
small-patch of a giant planet (see the appendix of Ogilvie & Lin
2004; Auclair Desrotour et al. 2015, for the cases of pure inertial
waves and gravito-inertial waves, respectively), simplifying the
global spherical geometry. We centre our box on a point M of
the gaseous envelope (see Fig. 2).

O

Ω

z

y
xM

Θ

g

Ω

χ
α

y

x

M

z

Θ

Fig. 2. Left: global view of a giant planet: the gaseous envelope (in yel-
low, the shading denoting density), lies on top of the core (in red). Right:
magnified picture of the local Cartesian box, centred on a point M of a
giant planet envelope, corresponding to a colatitude Θ. The local box is
tilted with respect to the spin axis, and its vertical axis z, corresponding
to the local radial direction, is thus anti-aligned with gravity. The x and
y axes correspond to the local azimuthal and latitudinal directions, re-
spectively, while the χ axis makes an angle α with respect to the x-axis.

The local system of coordinates (x, y, z) corresponds to the
local azimuthal, latitudinal and radial directions, respectively.
The rotation vectorΩmakes an angle Θ with respect to the grav-
ity vector g, aligned with the vertical direction. Thus, in our local
system of coordinates, the latitudinal and vertical components of
the rotation vector are, respectively,

f̃ = 2Ω sin Θ, (1)
f = 2Ω cos Θ, (2)

so that 2Ω = (0, f̃ , f ).
Both the rotation rate of the planet Ω and the local gravity

g are assumed to be uniform and constant. We assume the ro-
tation rate to be far below the breakup angular velocity (ΩK =√
GMp/R3

p, where G is the gravitational constant, Mp and Rp are
the mass and radius of the planet), and accordingly we can ig-
nore the centrifugal acceleration. We also introduce a reduced
horizontal coordinate, χ, that makes an angle α with respect to
the x-axis: χ = x cosα + y sinα.

One must keep in mind that the local approach is valid only
for a box size of negligible extent compared to the characteristic
length scale of the planet,

Lx, Ly, Lz � R, (3)

otherwise curvature effects due to the spherical geometry should
be taken into account. Here, Lx, Ly and Lz are the lengths of
the box in the x, y and z directions, respectively, and R is the
radius of the planet. In addition, considering a constant gravity
vector restricts us to consider dynamical phenomena with length
scales λ far below the pressure scale height Hp,

λ � Hp. (4)

In giant planet deep interiors, we have Hp ∼ R
(Leconte & Chabrier 2012), so that if condition (3) is ful-
filled, condition (4) is as well, since λ < Lx, Ly, Lz. Finally, such
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an approach is suitable because it is expected that tidally excited
waves have a small-scale structure (Ogilvie & Lin 2004).

Our other main assumptions are the followings:

– We adopt the Boussinesq approximation. The fluid is as-
sumed to be quasi-incompressible with a reference density
value ρ0, and accordingly we restrict our study to low Mach
numbers, i.e. |u| � cs, where |u| is the velocity and cs is
the sound speed. In addition, the vertical extent occupied by
the fluid is far below the pressure scale height: Lz � Hp, a
condition that is fulfilled because we use a local approach.

– Dissipative processes (viscosity and thermal diffusion) are
not taken into account, but they will be in our second paper,
which will be focused on tidal dissipation.

– The spatial dependence of the background quantities is as-
sumed to be fixed, as resulting from double-diffusive in-
stabilities as described by for example Leconte & Chabrier
(2012). Thus, the back-reaction of internal waves on the lay-
ered structure is not taken into account, nor is the possible
excitation of internal waves by double-diffusive convection
(see for example Moll et al. 2016).

– Non-linear effects are entirely neglected.

2.2. Equations of motion

Before studying the propagation (and transmission) of inter-
nal waves in density staircases associated with layered semi-
convection, we need to introduce the formalism that allows us to
treat gravito-inertial waves (GIWs) with the complete Coriolis
acceleration, as well as compute the corresponding energetic
quantities. In Sect. 3, which is the heart of this paper, we will
use these results.

We study the linear propagation of GIWs in the local
Cartesian model. First, let us introduce the velocity field,

u(r, t) =

 u(r, t)
v(r, t)
w(r, t)

 , (5)

where u, v and w are the components of the velocity perturbation
in the local azimuthal, latitudinal and radial directions, respec-
tively. Next, we define the fluid buoyancy,

b(r, t) = −g
ρ(r, t)
ρ0

, (6)

where ρ(r, t) is the density fluctuation field. Then, we define the
buoyancy frequency in the Boussinesq approximation,

N2(z) = −
g

ρ0

dρ̄
dz
, (7)

where ρ̄(z) is the resulting background density profile. We stress
that ρ0 is the reference Boussinesq density value, while ρ̄ is the
background density distribution associated with the layered den-
sity profile. We assume max

|z|<Lz/2
ρ̄(z) − min

|z|<Lz/2
ρ̄(z) � ρ0. In Sect. 3,

we will model layered semi-convection by a succession of con-
vective layers, in which we assume N2 = 0, separated by in-
finitesimally thin stably stratified interfaces, in which N2 > 0.

The three linearised components of the momentum equation
are given by

∂u
∂t
− f v + f̃w = −

1
ρ0

∂p
∂x
, (8)

∂v

∂t
+ f u = −

1
ρ0

∂p
∂y
, (9)

∂w

∂t
− f̃ u = −

1
ρ0

∂p
∂z

+ b, (10)

where p(r, t) is the pressure fluctuation, and f̃ and f are ex-
pressed by Eqs. (1) and (2), respectively. Then, we write the
continuity equation,

∂u
∂x

+
∂v

∂y
+
∂w

∂z
= 0. (11)

Finally, we write the thermal energy equation in the adiabatic
limit,

∂b
∂t

+ N2w = 0. (12)

2.3. Propagation of gravito-inertial waves

2.3.1. Dispersion relation in a uniformly stratified medium

We now introduce some key aspects to analyse the linear prop-
agation of GIWs. We consider monochromatic plane wave solu-
tions of the form

x(r, t) = <
{
X exp [i(k · r − ωt)]

}
, (13)

where ω is the wave frequency, and k the wave vector. Here, x
stands for either ρ, p, b, u, v or w.

Substituting the above solution into Eqs. (8)–(12), we obtain
the dispersion relation for GIWs in a uniformly stratified (N(z) =
N0) and rotating medium:

ω2 = N2
0

k2
⊥

k2 +
(2Ω · k)2

k2 · (14)

One can then derive the frequency domain for which GIWs prop-
agate, corresponding to a real frequency ω. This will be done in
Sect. 2.3.4.

In a convective region, in which we assume isentropy (N0 =
0), we recover the dispersion relation for pure inertial waves
(IWs) given by

ω2 =
(2Ω · k)2

k2 · (15)

Similarly, when rotation is absent, we recover the dispersion re-
lation for pure internal gravity waves given by

ω2 = N2
0

k2
⊥

k2 · (16)

2.3.2. Group velocities

From the dispersion relation given by Eq. (14), we can obtain
that the group velocity of GIWs is

u(GIW)
g =

1
ω

[
N2

0

(
kz

k

)
k × (−êz × k)

k3 +

(
2Ω · k

k

)
k × (2Ω × k)

k3

]
·

(17)

Thus, the energy carried by GIWs can propagate along two di-
rections, corresponding to the two signs of ω.
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Ω

z

Θ

λ+

λ−
ug,+

ug,−

Fig. 3. Propagation of energy carried by pure inertial waves at the fre-
quency ω = f . The two allowed group velocity vectors, ug,±, form an
angle λ± = ±(π/2 − Θ) with respect to the rotation axis, represented in
red. Thus, the energy propagates along two characteristics, represented
in blue. At the frequency ω = f , one of the characteristics is perpen-
dicular to the vertical axis, so that the energy propagates in the local
horizontal direction.

The case of pure inertial waves. Let us focus more precisely
on the case of pure inertial waves, which propagate in convective
regions. Setting N0 = 0 in Eq. (17) and using Eq. (15), we get
that the group velocity of pure inertial waves is given by

ug = sgn(ω)
k × (2Ω × k)

k3 · (18)

It is worth considering along which direction the energy of a pure
inertial wave propagates, because in a region of layered semi-
convection, we expect the volume to be mostly convective (the
interfaces are very thin). This can be done with a little algebra,
which yields that the group velocity of pure inertial waves makes
an angle

λ = ± sin−1
(
ω

2Ω

)
(19)

with respect to the rotation vector.
At the frequency ω = f = 2Ω cos Θ, we have

λ± = ±

(
π

2
− Θ

)
. (20)

The solutions are displayed in Fig. 3. At the frequency ω = f ,
one of the energy propagation directions is perpendicular to the
vertical axis, so that the energy propagates along the local hori-
zontal and thus does not propagate towards deeper regions of the
giant planet.

Recalling the simplified physical model to be adopted
(showed in Fig. 1), this means that at this particular frequency,
one of the directions of energy propagation is parallel to the sta-
bly stratified interfaces (which lie in the local horizontal plane).

2.3.3. Poincaré equation

Now, we introduce a key partial differential equation (PDE) to
study the dynamics of GIWs. By reducing the system (8)–(12),
we can derive a PDE solely for the vertical velocity w (see Ap-
pendix A),

∂2

∂t2
∇2w + ( f · ∇)2w + N2∇2

⊥w = 0, (21)

where∇2
⊥ =

∂2

∂x2
+

∂2

∂y2
is the horizontal Laplacian, and we recall

that f = (0, f̃ , f ).
We want to study the propagation of a given monochro-

matic GIW with a frequency ω, that propagates in the direc-
tion (cosα, sinα) in the (Mxy) plane (see Fig. 2). Substituting
w = W(χ, z) exp[iωt] where χ = x cosα + y sinα is the re-
duced horizontal coordinate, we obtain the Poincaré equation for
GIWs:[
N2(z) − ω2 + f̃ 2

s

] ∂2W
∂χ2

+2 f f̃s
∂2W
∂χ ∂z

+
[
f 2 − ω2

] ∂2W
∂z2

= 0, (22)

where

f̃s = f̃ sinα. (23)

The case ω = f . Let us focus first on the case ω = f .
Substituting

W(χ, z) = W̃(z) exp
[
ik⊥χ

]
, (24)

where k⊥ the wave number in the χ direction, we obtain

2 f f̃s
dW̃
dz

+ ik⊥
[
N2 − f 2 + f̃ 2

s

]
W̃ = 0. (25)

This equation being of first order in z, it has only one solution,
which we can easily calculate in the case of a uniformly stratified
medium (N = N0):

W̃(z) ∝ exp
i N2

0 − f 2 + f̃ 2
s

2 f f̃s

 k⊥z
 . (26)

The case ω , f . For ω , f , following Gerkema & Shrira
(2005) we introduce the transformation

w = Ŵ(z) exp
[
i(k⊥(χ + δ̃z) − ωt)

]
, (27)

where

δ̃ =
f f̃s

ω2 − f 2 · (28)

Substituting Eq. (27) into (21) leads to

d2Ŵ
dz2 + k2

z Ŵ = 0, (29)

where

k2
z = k2

⊥

N2 − ω2

ω2 − f 2 +

(
ω f̃s

ω2 − f 2

)2 · (30)

In a uniformly stratified or in a convective medium (which both
have N(z) = const), solutions of Eq. (29) have the form Ŵ(z) ∝
exp(±ikzz). We have k2

z > 0 in the propagative regime and k2
z < 0

in the evanescent regime.
We stress that the transformation given by Eq. (27) has the

effect of splitting the vertical wave number into two parts: ±kz,
contained in the z-dependence of the Ŵ function, and k⊥δ̃, con-
tained in the exponential factor of Eq. (27). Thus, we define the
total vertical wave number as

k̃z = ±kz + k⊥δ̃, (31)

so that w ∝ exp
[
i(k⊥χ + k̃zz − ωt)

]
. The non-traditional com-

ponent k⊥δ̃ corresponds to the intrinsic 2D behaviour of GIWs
when taking the complete Coriolis acceleration into account. It
vanishes at the pole or for a null rotation, for which the problem
is separable.
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2.3.4. Frequency spectrum

We now describe GIWs propagation as a function of their fre-
quency ω, along the lines of Mathis et al. (2014). At a given z,
GIWs are propagative if k2

z > 0, where k2
z is defined by Eq. (30),

which occurs when

ω− < ω < ω+, (32)

with

ω± =
1
√

2

√[
N2 + 4Ω̃2

]
±

√[
N2 + 4Ω̃2

]2
− (2 f N)2, (33)

where we have defined a modified rotation rate of the planet

Ω̃ ≡
1
2

√
f 2 + f̃ 2

s = Ω
√

1 − sin2 Θ cos2 α. (34)

In convective regions, the local vertical wave number given by
Eq. (30) is obtained by setting N = 0 and becomes

k2
z,c ≡ k2

⊥

ω2(4Ω̃2 − ω2)(
ω2 − f 2)2 · (35)

In Fig. 4, we illustrate the spectrum of internal waves, depend-
ing on their frequency ω and on the type of layer they propagate
in: convective or stably stratified. In a stably stratified layer, in
which both rotation and stratification are present, gravito-inertial
waves propagate for ω− < ω < ω+, as explained above. In a
convective layer, we have pure inertial waves propagative for
ω < 2Ω̃, and evanescent for ω > 2Ω̃.

2.3.5. Properties of the reflected wave upon an interface

Goodman & Lackner (2009) have considered the reflection of a
monochromatic plane pure inertial wave upon a rigid wall, with
normal êz. In this section, we extend their work to the more
general case of a gravito-inertial wave, which obeys the disper-
sion relation given by Eq. (14). The wave vector is expanded as
k = k⊥êχ + k̃zêz.

The goal of the following calculation is to understand how
the vertical wave vector of the reflected wave is expected to
change as a result of the non-specular reflection from an inter-
face. In our case, the interfaces are in the horizontal plane, with
êz being the vector normal to the interfaces. We thus consider
incident and reflected waves of the form

Ŵin ∝ exp [i (k · r − ωt)] , (36)

Ŵre ∝ exp
[
i
(
k′ · r − ω′t

)]
, (37)

where the scattered (outgoing) wave vector k′ = k′⊥êχ + k̃′zêz is
determined by two conditions. First, in order that the incident
and reflected waves have the same relative phase at all points
along the interface, as required by the impermeability condition,
it is necessary that k and k′ have the same components parallel
to the interface. That means that êz×(k′ − k) = 0, or equivalently
k′⊥ = k⊥. Thus,

k′ = k⊥êχ + k̃′zêz, (38)

where k̃′z (the total vertical wave number) remains to be deter-
mined. Similarly, in order that the relative phase stays constant
in time, the two waves must have the same frequency, i.e ω′ = ω,
so that (see Eq. (14))

ω2 =
k2
⊥

k′2
N2 +

(2Ω · k′)2

k′2
· (39)

Substituting (38) into (39) leads to(
ω2 − f 2

)
k̃′2z − 2 f f̃sk⊥k̃′z +

[
ω2 −

(
f̃ 2
s + N2

)]
k2
⊥ = 0, (40)

where we have used that (2Ω · k) = f̃sk⊥ + f k̃z. From Eq. (40), it
is possible to get the two roots, which are

k̃′z =

(
f f̃s

ω2 − f 2

)
k⊥ ±

√
( f f̃s)2 − (ω2 − f 2)[ω2 − ( f̃ 2

s + N2)]

ω2 − f 2 k⊥

= δ̃k⊥ ± kz, (41)

where δ̃ and kz are given by Eqs. (28) and (30), respectively.
We recognise that the expression of k̃′z given above matches the
definition of the total vertical wave number defined by Eq. (31),
the plus sign corresponding to the incident (ingoing) wave, and
the minus sign corresponding to the reflected (outgoing) wave.
Therefore, this calculation provides an independent check that
the formalism introduced with Eq. (27), which splits the vertical
wave number into two parts, is correct.

2.3.6. Polarization relations

The Poincaré equation given by Eq. (21) is a PDE solely for the
vertical velocity w. In order to study the dynamics of the other
fields: the horizontal components of the velocity, u and v, the
pressure p, and the buoyancy b, we can derive analytic formulae
to get u, v, p and b in term of w and its derivatives. To do that,
we first express each field x(χ, z, t) describing the perturbed flow
using the transformation introduced in Eq. (27) for the vertical
velocity,

x = <
{
X(χ, z)e−iωt

}
, (42)

where

X = X̂(z) exp
[
ik⊥(χ + δ̃z)

]
. (43)

We stress again that X̂ carries only part of the vertical depen-
dence, the other part being included in exp(ik⊥δ̃z). The system
of equations in Sect. 2.2 thus becomes

−iωU − f V + f̃ W = −
ik⊥ cosα

ρ0
P, (44)

−iωV + f U = −
ik⊥ sinα
ρ0

P, (45)

−iωW − f̃ U = −
1
ρ0

∂P
∂z

+ B, (46)

for the three components of the equation of momentum, and

ik⊥ cosαU + ik⊥ sinαV +
∂W
∂z

= 0, (47)

−iωB + N2W = 0, (48)

for the equations of conservation of mass and energy, respec-
tively. Noting that

∂W
∂z

=
(
Ŵ ′ + ik⊥δ̃Ŵ

)
exp

[
ik⊥(χ + δ̃z)

]
,
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ω

Convective region

Stably stratified region

ω− 2Ω̃ N ω+

Inertial waves Evanescent gravito-inertial waves

Gravito-inertial waves

Fig. 4. Low-frequency spectrum for internal waves in a rotating giant planet. Waves in the convective and stably stratified regions are indicated
at the top and bottom, respectively. The purple box corresponds to sub-inertial gravito-inertial waves that are propagative in both convective and
stably stratified regions. Adapted from Mathis et al. (2014).

all the fields can be expressed in term of Ŵ as follows:

Û =
f̃s( f cosα − iω sinα)

f 2 − ω2 Ŵ +
f sinα + iω cosα

ωk⊥
Ŵ ′, (49)

V̂ =
f̃s( f sinα + iω cosα)

f 2 − ω2 Ŵ −
f cosα − iω sinα

ωk⊥
Ŵ ′, (50)

P̂ = i
ρ0 f̃c
k⊥

Ŵ + i
ρ0( f 2 − ω2)

ωk2
⊥

Ŵ ′, (51)

B̂ = i
N2

ω
Ŵ, (52)

where the prime denotes differentiation with respect to z,
and f̃c = f̃ cosα. Then, each field has to be multiplied by
exp

[
i
(
k⊥(χ + δ̃z) − ωt

)]
to get the complete solution. The phys-

ical solution is then the real part of the complete complex
solution.

2.4. Energetical aspects

One of our motivations is to predict energy transport by internal
waves in regions of layered semi-convection. In this section, we
thus focus on the energetics of GIWs propagation.

2.4.1. Expression of the kinetic and potential energies
in term of Ŵ

Kinetic and potential energy densities, averaged over a wave pe-
riod 2π/ω, can be written as

Ek =
1
2
ρ0

〈
<(u)2 +<(v)2 +<(w)2

〉
=

1
4
ρ0 (UU∗ + VV∗ + WW∗) , (53)

and

Ep =
1
2
ρ0

〈
<(b)2

〉
N2

=
1
4
ρ0

BB∗

N2 , (54)

where the brackets 〈·〉 denotes time averaging, and the aster-
isks, the complex conjugate. To get Eqs. (53) and (54), we
have used the identity <(A)<(B) = 1

2< (AB + AB∗), so that
provided the transformation given by Eq. (42), 〈<(x)2〉 =
1
2 〈<(X2e−2iωt + XX∗)〉 = 1

2 XX∗. Then, using the transformation
given by Eq. (43), we have XX∗ = X̂X̂∗, so that the kinetic and
potential energies can be written as

Ek =
1
4
ρ0

(
ÛÛ∗ + V̂V̂∗ + ŴŴ∗

)
(55)

and

Ep =
1
4
ρ0

B̂B̂∗

N2 · (56)

Then, using the polarization relations given by Eqs. (49), (50)
and (52), we can express the kinetic and potential energies in
term of Ŵ only as

Ek =
1
4
ρ0

{[
f̃ 2
s ( f 2 + ω2)
(ω2 − f 2)2 + 1

]
ŴŴ∗ +

1
k2
⊥

( f
ω

)2

+ 1

 Ŵ ′
(
Ŵ ′

)∗
+

4 f f̃s
k⊥( f 2 − ω2)

=
[
Ŵ

(
Ŵ ′

)∗]}
(57)

and

Ep =
1
4
ρ0

(N
ω

)2

ŴŴ∗, (58)

where we recall that Ŵ is a function of z only. Assuming a
plane wave form in the vertical direction also (as suggested by
Eq. (29)),

Ŵ = A exp(ikzz), (59)

we find that the total energy is

Ek + Ep =
1
4
ρ0

{[
f̃ 2
s ( f 2 + ω2)
(ω2 − f 2)2 +

(N
ω

)2

+ 1
]

+

( f
ω

)2

+ 1

 ( kz

k⊥

)2

+
4 f f̃s

(ω2 − f 2)
kz

k⊥

}
|A|2 . (60)

2.4.2. Expression of the vertical energy flux density in term
of Ŵ

In our setup, the energy flux density is 〈pu〉 in real variables, so
that the vertical energy flux density is given by

Fz =
〈
<(w)<(p)

〉
=

1
2
<

(
ŴP̂∗

)
. (61)

Using Eq. (51) for P̂, we get

Fz =
1
2
ρ0

(
f 2 − ω2

ωk2
⊥

)
=

[
Ŵ

(
Ŵ ′

)∗]
. (62)

Finally, using Eq. (59) for Ŵ, we obtain that the vertical energy
flux density is given by

Fz =
1
2
ρ0

(
ω2 − f 2

ωk2
⊥

)
kz|A|

2, (63)
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(S)

∝ |Ain|
2 ∝ R|Ain|

2

∝ T |Ain|
2

z

0

−D

incident wave
region: (in)

transmitted wave
region: (tr)

Fig. 5. Illustration of the system to be considered in Sect. 3, consist-
ing of a density staircase (S) of vertical extent D. An incident wave
of amplitude Ain, thus carrying an energy density ∝|Ain|

2, comes from
above (S). The reflected wave has an amplitudeAre and thus carries an
energy density ∝|Are|

2 = R|Ain|
2, while the transmitted wave has an am-

plitude Atr and thus carries an energy density ∝|Atr|
2 = T |Ain|

2. R and
T are the reflection and transmission coefficients, respectively. The ar-
rows indicate the schematic vertical direction of propagation of energy.
The horizontal components are not shown.

where we recall that A is the amplitude of the vertical compo-
nent of the velocity, and kz the vertical wave number.

It is interesting to note that the vertical energy flux density
can be expressed in an alternative manner, noting that the energy
is transported vertically with the vertical component of the group
velocity, ug · êz. That suggests that the vertical energy flux density
can be expressed as

Fz = (ug · êz) (Ek + Ep), (64)

where the group velocity is defined by Eq. (15) and the sum of
the mean kinetic and potential energies has been derived in the
case of a plane wave in Eq. (60). We stress that this expression
only makes sense when Ek and Ep are mean quantities, aver-
aged over a wavelength and period, as it has been done to obtain
Eq. (60). It has been checked that both expressions are equal,
providing that kz takes the expression given by Eq. (30).

2.4.3. Expression of the transmission coefficient

In Sect. 3, we will study in detail the transmission of inter-
nal waves through a portion of a density staircase produced
by semi-convection: an incident (downward propagating) wave
carrying an energy density ∝|Ain|

2 enters the staircase (S), of
vertical extent D. At the top of the staircase, a reflected (up-
ward propagating) wave is created, carrying an energy density
∝ |Are|

2 = R|Ain|
2. At the bottom of the staircase, the transmit-

ted (downward propagating) wave comes out, carrying an en-
ergy density ∝ |Atr|

2 = T |Ain|
2. Here, R and T are the reflection

and transmission coefficients, respectively; this is illustrated in
Fig. 5.

The transmission coefficient itself is defined to be the ratio of
transmitted (labelled by (tr)) to incident (labelled by (in)) energy
flux densities, for which we have found an analytic expression in
the previous section:

T =
F(tr)

z

F(in)
z

· (65)

In our case, using Eq. (63) for the vertical energy flux density
gives

T =
k(tr)

z

k(in)
z

∣∣∣∣∣Atr

Ain

∣∣∣∣∣2 · (66)

This is the expression we will use to calculate transmission coef-
ficients. The regions above and below (S), respectively defined
by z > 0 and z < −D (see Fig. 5), are a priori different: in par-
ticular, the stratification (stable or unstable) in those regions is
not necessarily the same, so that the vertical wave numbers kz
will not be either. We note that here, kz is not the total vertical
wavenumber, that we denote by k̃z (see Eq. (31)), but only the
part defined through Eqs. (29)–(30).

In the absence of energy sources such as background shear,
we expect that the energy is conserved. Therefore, the reflection
coefficient is given by

R = 1 − T. (67)

3. Propagation of internal waves in layered
semi-convection

Armed with the results of the previous section, we can now study
the propagation of internal waves in a idealised model describing
layered semi-convection.

3.1. Physical set up

We continue to work in the local Cartesian box described in
Sect. 2.1. The background state is assumed to be in hydrostatic
equilibrium with constant gravity pointing in the −êz direction,
so that dP/dz = −ρ0g.

We consider a region of a giant planet envelope in which
double-diffusive convection has produced a layered density pro-
file, as described in the introduction. Thus, the density profile is
close to a density staircase in which convective layers of size d
are separated by infinitesimally thin stably stratified interfaces.
This idealised reference model is similar to that considered by
BQF15 and S16. The distance between adjacent interfaces, d, is
assumed constant. We will later discuss the effects of relaxing
some of these assumptions in Sects. 3.4.5 and 3.5. At each in-
terface, the density undergoes a discontinuous jump by a value
∆ρ > 0. This is illustrated in Fig. 6, on which are displayed the
physical quantities introduced so far.

The Boussinesq approximation restricts us to have d � H,
where H is the characteristic length over which the background
quantities vary. Under this condition, the magnitude of the den-
sity jump, ∆ρ, between adjacent steps (which we obtain by inte-
grating Eq. (7) over one step including the interface) is given by

N̄2 =
g∆ρ

ρ0d
(68)

(BQF15). Here, N̄ corresponds to a mean stratification: typi-
cally, an internal wave with a large wavelength compared to the
size of the steps will see the staircase as a continuously strati-
fied medium characterised by the buoyancy frequency N̄. Since
N = 0 within a convective layer, the only contribution to N̄
comes from the density jump across the discrete interfaces. Also,
because d � H by assumption, we generally have ∆ρ � ρ0, so
that the background density profile ρ̄(z) does not depart signifi-
cantly from the constant reference density value ρ0.
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Ω

g

z

ρ̄

∆ρ

d

Θ M

Fig. 6. Model of the internal structure of a giant planet hosting layered
semi-convection. The red area represents the core, while the white one
represents the gaseous envelope. Within the latter, double-diffusive con-
vection acts to create a staircase-like profile for the density (in orange).
Convective layers of vertical extent d are separated by infinitesimally
thin stably stratified interfaces. The density undergoes a density jump
by a value ∆ρ at each interface. The rotation axis Ω (in red) forms an
angle Θ with respect to the gravity g (in blue), directed along the (Mz)
direction.

In Fig. 7, three panels are displayed to summarise our ref-
erence model. Panel 7a shows the general scheme: m convec-
tive steps, each of vertical extent d, are separated by infinites-
imally thin stably stratified interfaces. The incident (ingoing)
wave – whose vertical velocity has an amplitude A0 – enters
the staircase from above (region z > 0); a reflected wave with
amplitude B0 is created, and a transmitted (outgoing) wave with
amplitudeAm+1 comes out of the staircase (region z < −md). By
causality, there is no upward propagating wave below the stair-
case (S16). The regions above and below the staircase can either
be convective (N = 0), or stably stratified (N > 0). We will de-
note the stratification above and below the staircase by Na and
Nb, respectively. We note that Fig. 7 corresponds to the partic-
ular case where Na = Nb = 0, i.e. a staircase embedded in a
convective medium, but we also consider the general case.

In each convective step, labelled by the integer n ranging
from 0 to m, the solution is the sum of an upward and a down-
ward propagating (or evanescent) wave, whose vertical velocities
have amplitudesAn and Bn, respectively.

We recall that the propagative or evanescent behaviour of a
pure inertial wave depends on the value of |ω/2Ω| (<1 for prop-
agative and >1 for evanescent). Panel 7b shows the correspond-
ing density profile: the density undergoes a discontinuous jump
by a value ∆ρ across each interface, and in between is uniform.
This creates a mean density gradient∣∣∣∣∣dρ̄dz

∣∣∣∣∣ =
∆ρ

d
· (69)

Finally, the buoyancy frequency profile N2(z) is displayed on
panel 7c. It consists of a sum of Dirac distributions centred on
the interfaces, each with an integrated value of N̄2, such as to
create a profile

N2(z) =


N2

a for z > 0,

N̄2
m∑

n=0

δ(z + nd) for 0 > z > −md,

N2
b for z < −md,

(70)

where δ denotes the Dirac distribution. We stress that the verti-
cal wave number, kz, is a function of the buoyancy frequency N.
This means that the incident gravito-inertial wave (or pure iner-
tial wave if Na = 0) has a vertical wave number kz,a which is
in general different from the one of the transmitted wave, kz,b,
which are both a priori different from the wave number of purely
inertial waves inside the convective steps, kz,c (Nc = 0). Remem-
bering Eq. (30), we have defined

k2
z,α = −k2

⊥

N2
α − ω

2

ω2 − f 2 +

(
ω f̃s

ω2 − f 2

)2 · (71)

Here, α stands for either a, b or c. We note that this definition is
minus the one given by Eq. (30), a choice we will explain in the
following section. Once again, we stress that the total vertical
wave number is given by k̃z = ±kz + δ̃k⊥.

In the following sections, we will mostly consider a finite
staircase constituted of m steps, as described above, but we will
also consider as a first approach in Sect. 3.3.1 an infinite stair-
case, for which m � 1.

3.2. Mathematical statement of the problem

The quantity we will manipulate is the GIW’s vertical veloc-
ity w, whose dynamics is governed by the Poincaré equation (see
Sect. 2.3). Above and below the staircase (where N = Na,Nb re-
spectively) and within each step (where N = 0), the differential
equation given by Eq. (25) for ω = f and by Eq. (29) other-
wise (modified by the definition of kz given by Eq. (71)), can be
solved explicitly.

The case ω = f . First, let us focus on the case ω = f . In that
case, the solution of the equation governing the vertical depen-
dence of the vertical velocity is given by Eq. (25). The solution
for prescribed k⊥ and ω is

W̃(z) =


E0eiγaz for z > 0,

Eneiγ(z+nd) for − nd < z < −(n + 1)d, n = {1, . . . ,m}

Em+1eiγb(z+md) for z < −md,
(72)

where we have defined

γα =

(
N2
α − f 2 + f̃ 2

s

2 f f̃s

)
k⊥ (73)

(we have omitted the subscript “c” in the convective steps to
make notations lighter). Equation (25) being of first order in
z, the only boundary condition we need to get the full solution
comes from the requirement that the two fluids above and below
the interface stay in contact: wn = wn+1, for n = {0, . . . ,m + 1}.
It is then straightforward that the amplitudes of the incident and
transmitted waves, E0 and Em+1 respectively, are related by

E0 = ei(m−1)γdEm+1. (74)

The coefficient γ being real, we conclude that

|E0| = |Em+1|. (75)
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(a) General scheme

0

−d

−(m − 1)d

−md

z

A0 B0

A1 B1

...
...

Am Bm

Am+1

(b) Density profile

z

ρ̄

∣∣∣∣∣dρ̄dz

∣∣∣∣∣ =
∆ρ

d

(c) N2 profile

z

N2

N̄2 =
g∆ρ

ρ0d

Fig. 7. Summary of our physical model: m convective steps of constant size d and indexed by the integer n = {1, . . . ,m} are separated by discrete
interfaces. a) General scheme: the incident, reflected and transmitted waves have amplitudesA0, B0 andAm+1, respectively. In the nth convective
step, the ingoing wave has an amplitude An, and the outgoing has an amplitude Bn. b) The corresponding density profile: at each interface, the
density undergoes a discontinuous jump by a value ∆ρ > 0. In the convective steps, it follows an adiabatic gradient. This creates a mean density
gradient |dρ̄/dz| = ∆ρ/d. c) The corresponding buoyancy frequency profile: N = 0 everywhere, except at the location of the interfaces, where it is
a Dirac distribution, which creates a mean stratification N̄2 = g∆ρ/ρ0d.

The case ω , f . The solution for prescribed k⊥ and ω is then

Ŵ(z) =



A0ekz,az + B0e−kz,az for z > 0,

Anekz[z+(n−1/2)d] + Bne−kz[z+(n−1/2)d]

for − nd < z < −(n + 1)d, n = {1, . . . ,m}

Am+1ekz,b[z+md] + Bm+1e−kz,b[z+md] for z < −md,

(76)

where

kz ≡

√
k2

z,c = i
√
−k2

z,c, (77)

and the addition of (n − 1/2)d in the exponents have been in-
cluded to take advantage of symmetry in finding analytic solu-
tions (S16). Thus, defining k2

z as in Eq. (71) allows us to treat
the propagative versus evanescent behaviour of the ingoing and
outgoing waves self consistently.

We note that under the traditional approximation, f̃ = 0 so
that δ̃ = 0. In this sense, the term δ̃ accounts for non-traditional
effects, together with the other non-traditional terms contained
in Eq. (71). In the general case, these effects vanish when f = 0
or f̃ = 0, i.e. at the equator (Θ = π/2) and at the pole (Θ = 0),
respectively.

Equation (29) being of second order, we need a second
boundary condition to get the complete solution. It arises from
the requirement that the momentum flux is continuous across the
interface. It can be obtained by integrating Eq. (21) across the in-
terface, situated at zn = −nd for the example case that follows:∫ −nd+εd

−nd−εd

(
f 2 − ω2

) ∂2w

∂z2
dz︸                            ︷︷                            ︸

α1

+

∫ −nd+εd

−nd−εd
2i f f̃sk⊥

∂w

∂z
dz︸                        ︷︷                        ︸

α2

−

∫ −nd+εd

−nd−εd
k2
⊥

(
N2 − ω2 + f̃ 2

s

)
w dz︸                                    ︷︷                                    ︸

α3

= 0, (78)

where we have introduced a dimensionless parameter ε < 1. We
have

α1 =
(

f 2 − ω2
) (
w′n − w

′
n+1

)
, (79)

where the primes denote differentiation with respect to z, and

α2 = 2i f f̃sk⊥(wn − wn+1) = 0, (80)

where we have used the first boundary condition wn = wn+1.
Finally, we have

α3 =

∫ −nd+εd

−nd−εd
k2
⊥

(
N2 − ω2 + f̃ 2

s

)
w dz

= k2
⊥wnd


∫ +ε

−ε

N2 dζ︸       ︷︷       ︸
N̄2

+
(

f̃ 2
s − ω

2
)
× (2ε)

 , (81)

where we used the change of variable ζ = (z + nd)/d, and took
w out of the integral as it does not vary across the interface. Re-
placing N̄2 by its expression given by Eq. (68), and taking the
limit ε → 0 lead to

α3 = k2
⊥g

∆ρ

ρ0
wn. (82)

Thus, we finally obtain a set of two boundary conditions involv-
ing the vertical velocity wn and its z-derivative w′n,

wn+1 = wn, (83)

w′n+1 = w′n +
gk̄2

ω2

∆ρ

ρ0
wn, (84)

where we have defined

k̄ = k⊥
ω√

ω2 − f 2
· (85)
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These results agree with those of BQF15 for the two cases they
consider of the pole and the equator.

Let us consider the interior of the staircase, i.e. consider
n = {1, . . . ,m}. Substituting the expression of wn given by
Eq. (76) into the two boundary conditions given by Eqs. (83) and
(84), we obtain two recurrence relations between the coefficients
(An,Bn),

An = e−iϕ̃ [∆ (1 − Γ)An+1 − ΓBn+1] , (86)

Bn = e−iϕ̃
[
ΓAn+1 + ∆−1 (1 + Γ)Bn+1

]
, (87)

where the following dimensionless quantities have been defined:

ϕ̃ ≡ δ̃k⊥d, (88)

∆ ≡ ekzd, (89)

Γ ≡
1
2
gk̄2

kzω2

∆ρ

ρ0
=

1
2

(
N̄
ω

)2
(
k̄d

)2

kzd
· (90)

The coefficient Γ can further be expressed as a function of more
appropriate variables for our problem, as

Γ =
1
2

(k⊥d)
(

N̄
ω

)2
1 − 2Ω̃

ω

2
−1/2

· (91)

Inside the staircase, the coefficients of adjacent convective steps
are then related by[
An
Bn

]
= T̃

[
An+1
Bn+1

]
, (92)

where the transfer matrix T̃ is defined by

T̃ = e−iϕ̃

 ∆ (1 − Γ) −Γ

Γ ∆−1 (1 + Γ)

 . (93)

Above and below the staircase, we have to perform a separate
calculation because the stratification is not the same a priori. This
will give us the boundary conditions of the entire staircase.

3.3. Dispersion relation for gravito-inertial waves
in a staircase density profile

The dispersion relation for pure gravity modes in a staircase
modelled as described in Sect. 3.1 has been derived by BQF15.
This was done in detail in the case without rotation, and they dis-
cussed the effects of rotation for the two particular cases where
the spin axis is parallel or perpendicular to êz (respectively Θ = 0
at the pole and Θ = π/2 at the equator). In this section, we extend
their calculation to the general case where the spin axis makes an
arbitrary angle Θ to the local radial direction, in order to obtain
the free modes of a density staircase at any latitude.

3.3.1. Infinite staircase

Following BQF15, we first consider an infinite staircase. The lo-
cal model strictly loses validity in this case, but this idealised cal-
culation will provide us useful insights. We first consider strictly
periodic boundary conditions. That is, we assume that there is an
integer m so that An = An+m and Bn = Bn+m, so that m is the

periodicity of the infinite staircase. Recalling Eq. (92), we obtain[
An
Bn

]
= T̃m

[
An
Bn

]
. (94)

Non trivial solutions of this equation exist only if

det
(
T̃m − δ

)
= 0, (95)

where δ is the 2×2 identity matrix. With some algebra, following
BQF15, we obtain the dispersion relation for periodic solutions
with rotation,

ω2 = N̄2
(

(k̄d)2/kzd
2coth(kzd) − 2 cos θcsch(kzd)

)
, (96)

where

θ =
2πn
m
± δ̃(k⊥d), (97)

n being an integer that ranges from 0 to m − 1, and N̄2 is the
background buoyancy frequency that corresponds to the aver-
aged density gradient, defined by Eq. (68). Equation (96) gives
the frequencies for the modes of the staircase.

In the case without rotation, δ̃ = 0 and kzd = k̄d = k⊥d, so
that we recover BQF15’s dispersion relation (see their Eq. (18)):

ω2 = N̄2
(

k⊥d
2coth(k⊥d) − 2 cos θcsch(k⊥d)

)
· (98)

Equation (96) also agrees with BQF15 for the specific cases with
rotation that they study, i.e. at the pole and the equator.

3.3.2. Finite staircase embedded in a convective medium

In this section, we extend the calculation made in BQF15 for
the case of a finite staircase embedded in a convective medium,
including rotation at any colatitude Θ. This is done in order to
get the free modes of oscillation of a finite staircase in that set-
up. The perturbations are assumed to decay as z → ±∞. The
boundary conditions are thenA0 = 0 at the top, and Bm+1 = 0 at
the bottom.

Applying those boundary conditions and using Eq. (92), we
can write[
Am+1

0

]
= T̃m

[
0
B0

]
. (99)

The equation above is true in general if the lower-right corner of
the 2×2 matrix T̃m is zero. The dispersion relation thus becomes(
T̃m

)
22

= 0. (100)

We can diagonalise this matrix, and with some algebra (follow-
ing BQF15), we can obtain a similar dispersion relation:

ω2 = N̄2
(

(k̄d)2/kzd
2coth(kzd) − 2 cos θcsch(kzd)

)
, (101)

but now cos θ is one of the roots of the polynomial
Tm(cos θ) + [cos θcoth(kzd) − csch(kzd)]Um−1(cos θ) = 0, (102)
where Tm and Um are Chebyshev polynomials of the first and
second kinds, respectively, defined by
cos(mθ) = Tm(cos θ), (103)
sin(mθ) = Um−1(cos θ) sin θ. (104)
We refer the reader to BQF15 to see the details of the calcula-
tion in the case without rotation. Here, the same lines are repro-
duced. However, taking into account rotation at any colatitude
somewhat complicates the analysis.
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3.4. Transmission of an incident (gravito-)inertial wave

In this section, we aim to answer the following question: what
is the effect of a density staircase on the transmission of an in-
cident internal wave with amplitude A0 taking into account the
complete Coriolis acceleration? This should help us to under-
stand how the presence of layered semi-convection and associ-
ated density staircases would affect the fate of tidally excited
waves launched in one region as it propagates towards another.
It could also be of great interest when studying the seismology
of giant planets, to predict what modes can be observed when
looking at the oscillations of their surfaces (Gaulme et al. 2011;
Fuller 2014).

We thus analyse the properties of the transmission of an in-
ternal wave upon a finite-length density staircase. We will use
the same formalism as previously, except for the boundary con-
ditions. Indeed, because we consider the transmission of an in-
ternal wave upon the staircase, we refer to Fig. 5: an incident
(ingoing) wave with amplitude A0 enters the staircase, creating
a reflected (outgoing) wave with amplitude B0. Only a down-
ward propagating wave is assumed to exist below the staircase.
This is the transmitted wave, with amplitudeAm+1 (Bm+1 = 0).

The first work of this type was S16, who studied internal
wave transmission through a density staircase in the ocean using
the traditional approximation. If this is often appropriate for a
thin oceanic layer on the Earth, this is not suitable to model low-
frequency internal waves in the deep envelopes of giant planets
(Ogilvie & Lin 2004). In this section, we generalise S16 to arbi-
trary top and bottom layer properties, and include the complete
Coriolis acceleration.

3.4.1. Analytic expression of the transmission coefficient

Our aim is now to calculate a transmission coefficient in the gen-
eral case of arbitrary boundary conditions and number of steps.
This will allow us to determine what fraction of the incident
wave energy makes its way through the staircase and propagates
to deeper regions of a giant planet. Recalling the expression we
derived in Sect. 2.4.3, the transmission coefficient is defined by

T =
kz,b

kz,a

∣∣∣∣∣Am+1

A0

∣∣∣∣∣2 , (105)

which simply reduces to T = |Am+1/A0|
2 when the stratification

is the same above and below the staircase, for example in the
case of a staircase embedded in a stably stratified medium (S16).

Substituting Eq. (76) (including the boundary condition dis-
cussed above, namely Bm+1) into the interface conditions given
by Eqs. (83) and (84), we obtain after some algebra the following
set of equations:

A0 = 1
2 ∆1/2 [

1 − Kc
a (1 − Γ)

]
A1 (106)

+ 1
2 ∆−1/2 [

1 + Kc
a (1 + Γ)

]
B1

An = ∆(1 − Γ)An+1 − ΓBn+1 (107)

Bn = ΓAn+1 + ∆−1(1 + Γ)Bn+1 (108)

Am = 1
2 ∆1/2

[
1 − Γ + Kb

c

]
Am+1 (109)

Bm = 1
2 ∆−1/2

[
1 + Γ − Kb

c

]
Am+1, (110)

where n = {1, . . . ,m − 1}, and we have defined

Kα
β =

kz,α

kz,β
· (111)

We recall that it has been defined that kz ≡ kz,c in convective
steps, to make notations lighter. Those equations can be com-
bined to expressA0 in term of solelyAm+1,

A0 =
[
bT

a T̃m−1bb

]
Am+1, (112)

where T denotes transposition, and the left and right vectors are
defined by

ba =
1
2

[
∆1/2 [

1 − Kc
a (1 − Γ)

]
∆−1/2 [

1 + Kc
a (1 + Γ)

] ] , (113)

bb =
1
2

 ∆1/2
[
1 − Γ + Kb

c

]
∆−1/2

[
1 + Γ − Kb

c

]  . (114)

Therefore, the transmission coefficient is given by

T =
kz,b

kz,a

∣∣∣∣bT
a T̃m−1bb

∣∣∣∣−2
, (115)

with

kz,b

kz,a
=

ω4 + ω2[N2
b − 4Ω̃2] + (Nb f )2

ω4 + ω2[N2
a − 4Ω̃2] + (Na f )2

1/2

, (116)

where we recall that 2Ω̃ ≡
√

f 2 + f 2
s (i.e. 2Ω when α = π/2).

Equation (115) is a general analytic expression of the trans-
mission coefficient, that can now be used in order to analyse the
behaviour of the transmission in the parameter space (wave fre-
quency, wavelength, number of steps, boundary conditions, etc.).

3.4.2. Transmission across one step

Staircase embedded in a stably stratified medium. S16 have
considered the transmission of an internal wave through a den-
sity staircase embedded in a stably stratified medium (Na,Nb >
0). Because the aim of his work is to predict energy trans-
port by internal waves incident upon observed density staircases
in the strongly stratified ocean, the traditional approximation
is adopted (even though Gerkema & Shrira 2005, have demon-
strated that this is not always appropriate, even for the ocean).
We begin by recovering their results in the case of the transmis-
sion across one step (see his Sect. II.B) under the traditional ap-
proximation, which corresponds to a colatitude Θ = 0, where the
rotation axis and gravity are aligned. This will provide us a first
check that our mathematical formalism, in which the traditional
approximation is not assumed, is correct. The result is shown in
Fig. 8.

The transmission coefficient T is displayed as a function
of the wave frequency normalised by the mean buoyancy fre-
quency, ω/N̄, and of the horizontal wave number rendered di-
mensionless by multiplication by the size of the convective lay-
ers, k⊥d. In this and subsequent figures, the range of frequency
over which the transmission coefficient is calculated is chosen
so that both the incident and reflected waves (carrying energy
densities ∝|A0|

2 and ∝|Am+1|
2, respectively) are propagative in

both regions z > 0 and z < −D, respectively. This gives a range
ω− < ω < ω+, where

ω− = max (ω−(Na), ω−(Nb)) , (117)
ω+ = min (ω+(Na), ω+(Nb)) , (118)

where ω±(Nα) is given by Eq. (33). Figure 8 can be directly
compared to Fig. 2a of S16 for parameters Ω = 0.05N̄, Θ = 0,
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ω− ω+

Fig. 8. Transmission coefficient as a function of normalised frequency,
ω/N̄ and horizontal wave number, k⊥d, with Ω = 0.05N̄ and Θ = 0
( f = 0.1N̄), for comparison with S16. The transmission coefficient, T ,
lies between 0 and 1 and is calculated for the range of frequency over
which the incident wave is propagative, which we denote by ω− < ω <
ω+.

giving f = 0.1N̄. No transmission occurs for ω < f because
the incident wave would be evanescent in that case, as explained
above (this occurs in the traditional approximation).

We can see that the qualitative behaviour of the transmission
coefficient is the same: transmission is enhanced for large wave-
lengths (low wave numbers) compared to the size of the staircase
(D = d in this section because there is only one step), and there is
a branch of enhanced transmission near ω+, where transmission
can be large even with k⊥d of order unity.

However, a quantitative discrepancy is found between the
two figures: perfect transmission for incident waves withω ≈ ω+

occur for k⊥d ≈ 2.4 in the case of S16, and k⊥d ≈ 1.5 in our case.
This difference is due to the fact that the density jumps at the first
and the last interfaces is taken to be ∆ρ/2 in S16, and ∆ρ every-
where in our work in order to treat all cases self-consistently,
regardless of the boundary conditions applied to the staircase.
However, it has been checked that the model of S16 with our
formalism yields his results. The origin of this band of enhanced
transmission is a resonance between the ingoing wave with in-
terfacial gravity waves on either side of the convective step. The
dispersion relation for these waves on an interface with density
jump ∆ρ (assuming infinitely deep layer) is

ω2 =
1
2

k⊥g∆ρ
ρ0

=
1
2

(k⊥d)N̄2. (119)

So when ω ≈ N̄, we expect enhanced transmission when k⊥d ≈
2, which is what we (and S16) observe, at least approximately.
However, given that our layer is not infinitely deep, we expect
quantitative discrepancies from this simple estimate.

We note that waves with low wave numbers, and thus large
wavelengths

λ � d (120)

are expected to be unaffected by the staircase. This is confirmed
by the fact that we get perfect transmission at low wave num-
bers, for any frequency. Those waves will see the staircase as a
continuously stratified medium with N0 = N̄. However, shorter

wavelength waves, with λ ∼ d, are strongly affected by the pres-
ence of a staircase, only being efficiently transmitted in certain
regions of parameter space.

Now, to quantify the importance of the non-traditional ef-
fects, we move the box away from the pole and choose a colati-
tude Θ = π/4. We calculate the transmission coefficient embed-
ded in a stably stratified medium with Na = Nb = N̄ for various
rotation rates to quantify the influence of rotation. The results are
displayed in Fig. 9 for Ω = 0, 0.4N̄ and 0.6N̄. Thus, in an astro-
physical context we mostly consider fast rotators, so that the ef-
fects of the complete Coriolis acceleration are clearer, especially
near ω = f . In Fig. 9, we see that new features arise compared
to the traditional case (see Fig. 8), in the form of bands of per-
fect transmission departing from ω = f (≈0.57N̄ for Ω = 0.4N̄,
and ≈0.85N̄ for Ω = 0.6N̄), these getting thicker with increasing
rotation (but not more numerous, as we will see later). We note
that the discontinuous (scattered, even) appearance of some of
these branches is a plotting issue, because the branches are very
narrow. However, the underlying branches are physical and not
due to numerical errors, as we will discuss below.

Figure 10 shows the behaviour of the transmission coefficient
as a function of the vertical wave number kz (instead of k⊥), ren-
dered dimensionless by muliplication by d. It will be seen that
as soon as rotation is non-zero (see Figs. 10b, c), we obtain per-
fect transmission around the Coriolis frequency ω = f , which
is indicated by a white arrow. Furthemore, two regions can be
identified:

– the region ω− < ω < 2Ω̃ (delimited by the vertical dashed
red line) – in which transmission is enhanced even for
large vertical wave-lengths (meaning low vertical wave num-
bers) – shows bands of perfect transmission departing from
the vertical transmission line at ω = f , to reach kzd equalling
multiple of π lines (indicated by the horizontal dashed black
lines) near 2Ω̃;

– the region 2Ω̃ < ω < ω+, which shows a similar behaviour
to Fig. 9 as a function of the horizontal wave number k⊥.

We note that the region ω− < ω < 2Ω̃ corresponds to the fre-
quency window for which both inertial waves in the convective
layers, and GIWs in the stably stratified ones, are propagative.
Thus, it makes sense to obtain enhanced transmission for those
frequencies. We note that Ω̃ = Ω for α = π/2 that is adopted
throughout this and subsequent sections.

Thus, the transmission differs mostly for GIWs, which have
frequency close to f . We find that the qualitative behaviour re-
mains the same for ω > 1.5 f . However, because including the
complete Coriolis acceleration extends the range of admissible
frequencies below f , there is a new band of perfect transmis-
sion for k⊥d of order unity arising for sub-inertial waves (i.e. for
ω− < ω < f ). Similarly, the range of admissible frequencies is
extended above Na,b = N̄, so that the band of perfect transmis-
sion for ω ≈ ω+ reaches higher values of k⊥d with increasing
rotation rates.

The features described above only arise when the complete
Coriolis force is taken into account, and therefore they are in-
trinsically caused by non-traditional effects. We will give them a
physical interpretation in Sect. 3.4.4.

Staircase embedded in a convective medium. Now, we con-
sider a staircase embedded in a convective medium, which is
probably more relevant to a portion of a giant planet inte-
rior in which double-diffusive convection operates. In this case,
the incident and transmitted waves are pure inertial waves.
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(a) Ω = 0 (b) Ω = 0.4N̄ (c) Ω = 0.6N̄

Fig. 9. Transmission coefficient for one step embedded in a stably stratified medium, in an inclined box with Θ = π/4, for different rotation
frequencies a) Ω = 0; b) Ω = 0.4N̄ and c) Ω = 0.6N̄, as a function of frequency and perpendicular wave number. The white and dashed red arrows
indicate frequencies ω = f and ω = 2Ω, respectively. A set of bands depart from f = 2Ω cos Θ (=

√
2Ω here) corresponding with a resonance with

short-wavelength inertial waves. The transmission coefficients are calculated over a frequency range ω− < ω < ω+, calculated such that both the
incident and transmitted wave are propagative.

(a) Ω = 0 (b) Ω = 0.4N̄ (c) Ω = 0.6N̄

Fig. 10. Transmission coefficient for one step embedded in a stably stratified medium, in an inclined box with Θ = π/4, for different rotation
frequencies a) Ω = 0, b) Ω = 0.4N̄ and c) Ω = 0.6N̄, as a function of frequency and of the vertical wave number. The white arrow indicates the
frequency ω = f , while the vertical dashed red line indicates the frequency ω = 2Ω. The horizontal dashed black lines indicates multiple of π.

Considering a staircase embedded in a convective medium can
also be seen as considering a portion of a vertically (more) ex-
tended staircase.

In the special case of a single convective layer embedded
in convective medium (m = 1,Na = Nb = 0), the expression
of the transmission coefficient, T given by Eq. (115) takes the
following analytical expression:

T =
1

1 + 4Γ2 [
cos(kzd) − Γ sin(kzd)

]2 , (121)

where kz is the vertical wave number of inertial waves,

kz = k⊥

√
ω2(4Ω̃2 − ω2)(
ω2 − f 2)2 · (122)

From this formula, it is obvious that T lies between 0 and 1, as
we expect for a transmission coefficient.

In this case, the range of frequency over which the trans-
mission coefficient is calculated is the range of frequencies over
which inertial waves are propagative in a convective medium, i.e.

between 0 and 2Ω̃ (see Eq. (34)). In the case where α = π/2 that
we consider here, Ω̃ = Ω. The results are displayed in Fig. 11
for different rotation rates Ω = 0.2N̄, Ω = 0.4N̄, Ω = 0.6N̄,
and the colatitude Θ = π/4. Again, we get perfect transmission
for large enough wavelengths (small wave numbers), and a set
of bands depart from ω = f (≈0.28N̄ for Ω = 0.2N̄, ≈0.57N̄ for
Ω = 0.4N̄, and ≈0.85N̄ for Ω = 0.6N̄). What differs from the
previous case is that transmission stays close to unity for higher
and higher wave numbers as rotation is increased, which made
us choose a range in k⊥d from 1.0 to 2.5 for Ω = 0.2N̄ and
Ω = 0.6N̄, in order to observe this effect.

Figure 12 shows the behaviour of the transmission coefficient
as a function of the vertical wave number, kz. Again, we find per-
fect transmission near ω = f (white arrow), and a set of bands of
perfect transmission are departing from this frequency to reach
lines of kzd = 0,π, 2π, . . . (black dashed lines) for any vertical
wavelength.

Staircase embedded in convective medium at the top and sta-
bly stratified medium at the bottom. The boundary conditions

A117, page 14 of 25

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730765&pdf_id=9
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730765&pdf_id=10


Q. André et al.: Layered semi-convection and tides in giant planet interiors. I.

(a) Ω = 0.2N̄ (b) Ω = 0.4N̄ (c) Ω = 0.6N̄

Fig. 11. Same as Fig. 9, but for one step embedded in a convective medium. The frequency domain extends from 0 to 2Ω.

(a) Ω = 0.2N̄ (b) Ω = 0.4N̄ (c) Ω = 0.6N̄

Fig. 12. Same as Fig. 10, but for one step embedded in a convective medium. The frequency domain extends from 0 to 2Ω.

of the staircase are changed once again to consider a staircase
embedded in a convective medium at the top and a stably strati-
fied medium at the bottom. Thus, the incident wave is a pure in-
ertial wave, and the transmitted wave is a gravito-inertial wave.
This situation is interesting to consider for astrophysical appli-
cations because density staircases might develop in the deep in-
teriors of giant planets where there could be a stably stratified
region just outside the core (Fuller 2014), on top of which could
sit a region of layered semi-convection and associated density
staircases.

This is found to be equivalent to the opposite situation where
Na and Nb are interchanged, which could correspond to a stably
stratified layer near the surface of a hot Jupiter matching the con-
vective envelope of deeper regions through a region of layered
semi-convection. The fact that both cases are identical likely re-
sults from the symmetry of the Boussinesq equations under the
transformation {z → −z,Θ → −Θ, b → −b, w → −w} (i.e. “up
→ down”, “hot→ cold”).

The results are displayed in Figs. 13 and 14, as a function of
k⊥d and kzd, respectively, for different rotation rates Ω = 0.2N̄,
Ω = 0.4N̄, Ω = 0.6N̄. The behaviour of the transmission coef-
ficient is similar to the two previous cases. One difference that
arises, however, concerns the band of perfect transmission cor-
responding to resonance with interfacial gravity waves on either
side of the convective step, which do not extend to ω+ like in the
two previous cases.

3.4.3. Transmission across m steps

Density staircases that might exist in giant planet interiors are
expected to have a large number of steps, with each step be-
ing much smaller than the planet’s radius (Leconte & Chabrier
2012). Therefore, we now study the effects of having more than
one step. We choose again to perform our calculations at a colat-
itude Θ = π/4, for illustration and comparison with the results
of the previous section. The transmission coefficient is given by
Eq. (115), and we checked that our results agreed with S16 as-
suming the traditional approximation, and for similar parame-
ters. We recall that here, unlike in S16, the complete Coriolis
acceleration is taken into account.

Figure 15 shows the results for m = 2, 5 and 10 steps embed-
ded in a stably stratified medium with Ω = 0.4N̄ (upper panels)
and in a convective medium with Ω = 0.6N̄ (bottom panels). The
upper and bottom panels can directly be compared to Figs. 9b
and 11c, respectively, on which is displayed the corresponding
single step case with same colatitude and rotation rates.

In the regions ω > f and ω < f , it will be seen that as the
number of steps increases, more and more transmission peaks
appear. These are particularly visible for ω . ω+ (ω & ω−, re-
spectively), and propagate back (forward, respectively) toω = f .
Confirming the results of S16 in the case of a staircase embed-
ded in a stably stratified medium, we find that if there are m
steps, the number of peaks equals m. This will be explained in
the following section. Also, as the numbers of steps increases,
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(a) Ω = 0.2N̄ (c) Ω = 0.4N̄ (c) Ω = 0.6N̄

Fig. 13. Same as Fig. 9, but for one step embedded in a convective medium at the top and a stably stratified medium at the bottom.

(a) Ω = 0.2N̄ (b) Ω = 0.4N̄ (c) Ω = 0.6N̄

Fig. 14. Same as Fig. 10, but for one step embedded in a convective medium at the top and a stably stratified medium at the bottom.

those bands of perfect transmission become narrower, and trans-
mission becomes inhibited for larger and larger wavelengths
(k → 0⇒ λ→ ∞).

As a function of the vertical wave number (see the bottom
panel of Fig. 15), those observations hold. Namely, in each re-
gion of enhanced transmission previously described, one can see
m bands of perfect transmission for a staircase with m steps.

3.4.4. Understanding the transmission coefficient

Perfect transmission at ω = f . We have seen that the trans-
mission is perfect at the Coriolis frequency ω = f for almost any
wavelength (see for example Fig. 12). This result can be inter-
preted by noting that when ω = f there is only one direction for
wave propagation that is allowed by the dispersion relation that
is not parallel to the interface (see Fig. 3: the group velocity ug,−
is directed along the perpendicular to the z-axis), so there is only
one wave solution with non-zero vertical velocity. This means
that the boundary condition at the interface that matches the ver-
tical velocity between the incoming and transmitted waves (see
Eq. (131)) requires the transmitted wave to have the same ampli-
tude, so that T = 1. Furthermore, from the separate calculation
we have made in Sect. 3.2 for ω = f (see Eq. (75)), it is straight-
foward that T = |Em+1/E0|

2 = 1 (at least when the stratification
is the same above and below the staircase).

Resonances with short-wavelength inertial modes. In
Sects. 3.4.2 and 3.4.3, we have seen that, regardless of the prop-
erties of the regions that surround the staircase, we always ob-
tained a set of bands of perfect transmission departing from the
inertial frequency ω = f . We interpret those peaks of transmis-
sion as being caused by resonances between the incident internal
wave and the short-wavelength inertial waves that exist within a
convective step. This happens when a multiple of the vertical
semi wavelength (λz/2) of the internal waves that propagate in-
side the step fits inside one step, i.e. for

nλz

2
= d, (123)

where n is an integer. This is illustrated in Fig. 17 for n =
{1, 2, 3}. The condition above can be rewritten in term of the ver-
tical wave number of the inertial wave inside the steps, to read

kzd = nπ. (124)

In Fig. 3.4.5, curves of equation kzd = nπ (in dashed red) are
overplotted to Fig. 9c for n = {1, . . . , 6}. As one can see on this
figure, the matching between the bands of transmission and the
curves of equation kzd = nπ is satisfying. The largest discrep-
ancy is obtained for the peak of transmission in the bottom left
corner of the figure, which corresponds to very low frequency.
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(a) m = 2 (b) m = 5 (c) m = 10

Fig. 15. Transmission coefficient for a staircase embedded in a stably stratified medium, in an inclined box with Ω = 0.4N̄ and Θ = π/4, for
different number of steps a) m = 2; b) m = 5 and c) m = 10, as a function of dimensionless frequency and horizontal wave number (upper
panel) or vertical wave number (bottom panel). The white arrow indicates the frequency ω = f . A set of bands extending vertically depart from
f = 2Ω cos Θ (≈0.57N̄). In addition, m bands of perfect transmission appear in the regions ω < f and ω > f , each becoming narrower with
increasing m.

Excitation of free gravity modes of the staircase. Other fea-
tures we give a physical interpretation for are the bands of per-
fect transmission, more noticeable for the m > 1 steps case with
m bands of perfect transmission starting from ω = ω+ and k⊥d
of order unity, and propagating back to ω = f and k⊥d � 1
(see Fig. 15). In Sect. 3.3, we have derived dispersion relations,
whose branches give us the free modes of oscillation of the stair-
case. Therefore, incident waves with a prescribed frequency can
resonate with a free mode of oscillation of the staircase if its fre-
quency is such that it matches a root of the dispersion relation
given by Eq. (101) (in the case of a finite staircase).

Since it is very challenging to extract the roots of the dis-
persion relation with rotation (in particular because there are in-
finitely many solutions near ω = f , which we have just identi-
fied), we have focused on the case without rotation, for which the
dispersion relation given by Eq. (101) gives us a direct relation
between ω/N̄ and k⊥d. In Fig. 18b, the transmission coefficient
in the case of 10 steps without rotation is displayed, together
with the branches of the corresponding dispersion relation. As
one can see, the bands of perfect transmission are matched sat-
isfyingly well by the branches of the dispersion relation (in light
blue). They correspond to incident waves that excite a free mode
of oscillation of the staircase. In principle, the same could be
done for the case with rotation, the only reason this has not
been done here being that it is hard to extract all of the roots of

the dispersion relation, but we have nevertheless identified the
branches near ω = f as explained above.

3.4.5. Non-uniform step sizes

In this section, we relax the assumption of having equally sized
steps. Observed density staircases in the ocean have approxi-
mately equally-sized steps with a typical length-scale, d ∼ 2.5 m
(see Ghaemsaidi et al. 2016), which determines the vertical ex-
tent of the convective steps. We might expect density staircases
in giant planet interiors also to have approximately equally-sized
steps, though this is not clear from theory or observations. How-
ever, we can expect (as is observed in the case of the ocean, see
Ghaemsaidi et al. 2016) some inherent variations in the vertical
extent of each step around a mean value d. To model them, we
adopt the same procedure as in S16: inside the staircase, the steps
have a vertical extent

dn = d(1 + εσn), (125)

where, for 1 ≤ n < m, σn are random numbers between −1 and
1, ε being the amplitude of the fluctuations of the vertical extent
of the convective layers about the mean value d. Typically, we
set 0 ≤ ε < 0.5, the value ε = 0 corresponding to equally spaced
interfaces, i.e. our reference model. It is interesting to see how
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(a) m = 2 (b) m = 5 (c) m = 10

Fig. 16. Same as Fig. 15, but for a staircase embedded in a convective medium, with a rotation rate Ω = 0.6N̄ ( f ≈ 0.85N̄).

the value of the parameter ε affects the results that have been
described so far, because having uneven steps is a more realistic
situation. The transmission coefficient can be calculated numer-
ically, and is given by Eq. (115), where T̃m−1 is now given by

m−1∏
n=1

 (1 + Γ) ∆−1 Γ∆−2εσn

−Γ∆2εσn (1 − Γ) ∆

 e−iϕ̃n , (126)

where ϕ̃n = δ̃k⊥dn. The matrix given by Eq. (126) reduces to
T̃m−1 when ε = 0.

The results obtained in the case of five steps (m = 5) for
Ω = 0.4N̄, Θ = π/4 and different values of ε = {0, 0.1, 0.5} are
displayed in Fig. 19. The left panel (ε = 0) is used as a test of
the ability of the method described above to reproduce the ana-
lytical solution given by Eq. (115), and is useful for comparison
with cases which have ε > 0. The cases with ε = 0.1 and ε = 0.5
show no difference at large wavelengths, so that the perfect trans-
mission for wavelengths λ � d is a robust result.

However, some differences arise for larger wave numbers
(i.e. smaller wavelengths). In particular, the bands of perfect
transmission departing from ω = f weaken with increasing ε
(especially the rightmost one). These bands corresponding to
half multiple of the wavelength fitting perfectly inside a step (as
explained in Sect. 3.4.4), we expect this mechanism to be less ef-
fective when the steps are no longer even, since these bands are
due to resonances with waves that strongly depend on the step-
size. Thus, this observation is perfectly in agreement with the
physical interpretation of the bands near the inertial frequency.

z
0 −d
• •

n = 1

n = 2
z

0 −d
• •

n = 3
z

0 −d
• •

Fig. 17. Transmission is enhanced for incident waves for which a mul-
tiple of the vertical semi-wavelength λz/2 = π/kz matches the vertical
semi-wavelength of inertial waves that fits inside one step, i.e. kzd = nπ
with n an integer. This is shown for n = {1, . . . , 3}.

The rest of the figure does not differ much from the even step
case until the value ε = 0.5 is reached (right panel), for which
it becomes obvious that there is less transmission near ω = ω+.
Some modulation of the placement and intensity of the perfect
transmission bands between f and ω+ can also be seen. This
means that free modes of the staircase, given by the dispersion
relation, are weakened when the steps are no longer even. This
is expected to vary for each random realisation, which we have
indeed verified.
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(a) kzd = cst

kzd = π

kzd = 2π

kzd = 3π

. . .

f

(b) m steps peaks

Fig. 18. a) Same as Fig. 9c, overplotted with curves of equation kzd = nπ for n = {1, . . . , 6}. A set of bands of perfect transmission departs
from the frequency f = 2Ω cos Θ, corresponding with a resonance with short-wavelength inertial waves. b) The case of 10 steps without rotation,
overplotted with the branches of the dispersion relation given by Eq. (101). Transmission is enhanced along those branches, corresponding to
resonances with free modes of the staircase.

(a) ε = 0 (b) ε = 0.1 (c) ε = 0.5

Fig. 19. a) The even steps case and two uneven steps cases for one particular realisation with b) ε = 0.1 and c) ε = 0.5. These results have been
obtained for 5 steps embedded in a stably stratified medium, with Ω = 0.4N̄ and Θ = π/4. The white and red dashed arrows indicate ω = f and
ω = 2Ω, respectively.

3.5. Extension of the model: finite size interfaces

3.5.1. Physical set up

Now, we relax the assumption of having discrete interfaces. We
denote by l the vertical extent of the stably stratified interfaces,
and define the aspect ratio

ε =
l
d
, (127)

where d is still the vertical extent of the convective layers. The
staircase thus consists of a succession of patterns containing a
stably stratified and a convective layer (in red and orange respec-
tively, see Fig. 20), of total size L = l+d. The total vertical extent
of the staircase is D = mL + l. This model is of course more re-
alistic since we naturally expect the stably stratified interfaces to
have non-zero vertical extent.

The buoyancy frequency profile is defined step wise (see
Fig. 20c) through

N2 =


N2

i for − nL < z < −(nL + l),
n = {0, . . . ,m},

0 otherwise,
(128)

where N2
i has been defined in order to keep the mean stratifica-

tion (and accordingly the mean density gradient, see Fig. 20) the
same as in the previous model. This gives

N2
i =

N̄2

ε
· (129)

This definition of N2
i ensures that the integrated value of N2 over

one interface is independent of ε and equals N̄2. Also, for van-
ishingly small aspect ratios, we recover the reference model with
discrete interfaces. This is illustrated in Fig. 21.
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(a) General scheme

z

0

−l

−L

−(L + l)

−mL

−(mL + l)

A0 B0

C0 D0

A1 B1

C1 D1

...
...

Cm Dm

Am+1

(b) Density profile

z

ρ̄

∣∣∣∣∣dρ̄dz

∣∣∣∣∣ =
∆ρ

d

(c) N2 profile

z

N2

N2
i =

N̄2

ε

N̄2

Fig. 20. Summary of our physical model with finite size interfaces: m convective steps of constant size d and indexed by the integer 1 < n < m, are
separated by interfaces of size l. a) General scheme: the incident, reflected and transmitted waves have amplitudesA0, B0 andAm+1, respectively.
In the nth convective step, the ingoing wave has an amplitude An, and the outgoing has an amplitude Bn, while in the nth stably stratified
interface they have amplitudes Cn and Dn, respectively. b) The corresponding density profile: in each interface, the density follows a gradient
|dρ̄/dz| = ∆ρ/l, so that the density varies by an ammount ∆ρ > 0. In the convective steps, it follows an adiabatic gradient. Thus, the mean density
gradient |dρ̄/dz| = ∆ρ/L, where L = l + d. c) The corresponding buoyancy frequency profiles are N2 = 0 in the convective layers and N2

i = N̄2/ε

in the interfaces to create the mean stratification N̄2 = g∆ρ/ρ0L.

N

ε→ 0

Ni(ε1)

Ni(ε2 < ε1)

0

Fig. 21. Buoyancy frequency profiles with various aspect ratios. As the
aspect ratio decreases, Ni increases to maintain the integrated value of N
equal to N̄. Our model converges towards the reference model (the limit
being the Dirac distribution) when ε→ 0.

The corresponding density profile is shown in Fig. 20b. In
convective layers (represented in orange in Fig. 20a), the density
follows an adiabatic gradient, while in the interfaces the density
gradient is∣∣∣∣∣dρ̄dz

∣∣∣∣∣ =
∆ρ

l
=

∆ρ

εd
, (130)

where the density jump across one interface, ∆ρ, is maintained
to be the same as in the reference model of Sect. 3.4, thanks to
this procedure.

3.5.2. Analytic expression of the transmission coefficient

Since the density profile is continuous (there is no density jump),
the boundary conditions between adjacent layers are simply

the continuity of the vertical velocity and its derivative (see
Eq. (78)):

wn = wn+1, (131)
w′n = w′n+1. (132)

Now, the function Ŵ reads

Ŵ(z) =



A0 ekz,az + B0 e−kz,az for z > 0,
C0 ekz,iz +D0 e−kz,iz for − l < z < 0,

An ekz(z+nL) + Bn e−kz(z+nL)

Cn ekz,i(z+nL) +Dn e−kz,i(z+nL) for − (n − 1)L − l < z
< −nL, n = {1, . . . ,m},

Am+1 ekz,b(z+mL) for z < −(mL + l).
(133)

Using the boundary conditions given by (131)–(132), we get re-
currence relations between coefficients at each interface between
a convective layer and a stably stratified interface that, after little
algebra, can be put into matrix form as in Sect. 3.2. We first get
a relation between coefficients (An,Bn) and (Cn,Dn),[
Cn
Dn

]
= T1

[
An
Bn

]
, (134)

where

T1 =
1
2

 (1 + Kc
i )∆−1

c,l ∆i,l (1 − Kc
i )∆c,l∆i,l

(1 − Kc
i )∆−1

c,l ∆
−1
i,l (1 + Kc

i )∆c,l∆
−1
i,l

 . (135)

Here, we have defined

∆α,β = ekz,αβ. (136)
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(a) ε = 0.01 (b) ε = 0.1 (c)ε = 0.5

Fig. 22. Transmission coefficient for one step embedded in a convective medium with Ω = 0.4N̄ and Θ = π/4 for different aspect ratios a)
ε = 0.01; b) ε = 0.1 and c) ε = 0.5. The white and dashed red arrows indicate frequency ω = f and ω = 2Ω, respectively. A vertical band of
perfect transmission appears near the inertial frequency ω = f , this broadens with increasing ε.

Here β stands for either l or L. Then, we get a second relation
between coefficients (An,Bn) and (Cn+1,Dn+1),[
An
Bn

]
= T̃2

[
Cn+1
Dn+1

]
, (137)

where

T̃2 =
1
2

e−iϕ̃

 (1 + Ki
c)∆c,L (1 − Ki

c)∆c,L

(1 − Ki
c)∆−1

c,L (1 + Ki
c)∆−1

c,L

 . (138)

Equations (134) and (137) can be combined in order to get a
recurrence relation between coefficients (Cn,Dn):[
Cn
Dn

]
= T1T̃2

[
Cn+1
Dn+1

]
. (139)

Finally, as we did in Sect. 3.5.2, we can then expressA0 in term
of solelyAm+1,

A0 =
[
bT

a

(
T1T̃2

)m
bb

]
Am+1, (140)

where the left and right vectors are defined by

ba =
1
2

 (1 + Ki
a)

(1 − Ki
a)

 , (141)

bb =
1
2

∆−1
b,l

 (1 + Kb
i )∆i,L∆i,l

(1 − Kb
i )∆−1

i,L∆−1
i,l

 . (142)

Therefore, the transmission coefficient is given by

T =
kz,b

kz,a

∣∣∣bT
a (T1T2)m bb

∣∣∣−2
, (143)

where T2 ≡ eiϕ̃T̃2 (we have |e±iϕ̃| = 1), and the ratio kz,b/kz,a is
given by Eq. (116).

3.5.3. Comparison with the reference model

Now, we study the effect of having finite size stably stratified
interfaces on the transmission coefficient. We maintain the angle
Θ = π/4, and choose a rotation rate Ω = 0.4N̄. The expression
of the transmission coefficient is now given by Eq. (143). The
results for different aspect ratios ε = 0.01, 0.1 and 0.5 for a
single step embedded in a stably stratified medium are displayed
in Fig. 22. The panels can directly be compared to Fig. 9b, on
which is displayed the single step case at the same colatitude
and rotation rate, assuming infinitesimally thin interfaces.

As the aspect ratio is increased, a band of enhanced transmis-
sion around ω = f (≈0.57N̄ here) appears, this being in agree-
ment with Gerkema & Exarchou (2008). We note that this was
already observed in the reference model when the transmission
coefficient was plotted as a function of the vertical wave number,
kz. If we denote by

ω(i)
± = ω±(Ni) (144)

the frequency limits between which the incident wave is prop-
agative in the interfaces, there is a frequency range over which
the wave is propagative in the convective layers (this happens
for 0 < ω < 2Ω̃) and the stably stratified interfaces (this happens
for ω(i)

− < ω < ω(i)
+ ). In our case, the intersection of those two

frequency domains is such that this happens for

ω(i)
− < ω < 2Ω̃. (145)

This is illustrated in Fig. 23, on which the frequency range above
has been overplotted in dashed red lines. Therefore, there is en-
hanced transmission for waves that are propagative in both con-
vective layers and stably stratified interfaces, as one would ex-
pect. The transmission is inhibited for ω < ω(i)

− for larger aspect
ratios ε – leading to less symmetric transmission about ω = f
than our reference model (which corresponds to ε → 0) – be-
cause the waves are evanescent in the interfaces for ω < ω(i)

− .
Thus, as we make ε larger, the evanescent region becomes larger,
which inhibits transmission.

Another difference with the reference model is that there
is more transmission near ω+, and that the transmission peak
is shifted to higher wave numbers when the aspect ratio is
increased.
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ω = ω(i)
−

ω = 2Ω̃

Fig. 23. Transmission coefficient for one step embedded in a stably
stratified medium, with Ω = 0.4N̄, Θ = π/4 and an aspect ratio ε = 0.5.
Transmission is enhanced within the range of frequency ω(i)

− < ω < 2Ω̃,
for which the waves are propagative both in the convective steps and in
the stably stratified interfaces.

4. Conclusions and prospects

4.1. Summary of results

We have studied the transmission of internal waves through a
staircase-like density profile that could be produced by oscilla-
tory double-diffusive convection in giant planet interiors. First,
we analysed the free modes of oscillation of such a density stair-
case in a rotating planet by deriving the dispersion relation that
describes them, generalising Belyaev et al. (2015) to consider
any latitude (they previously considered the effects of rotation
at the pole and the equator). We then analysed the transmission
of a wave through a density staircase consisting of one or mul-
tiple convective steps by extending Sutherland (2016) to include
the complete Coriolis acceleration rather than neglecting its hor-
izontal component, under the so-called ‘traditional approxima-
tion’ which is not appropriate when studying convective layers
of giant planets (Ogilvie & Lin 2004).

We showed that the transmission of internal (inertial or
gravito-inertial) waves is strongly affected by the presence of
a density staircase in a frequency- and wavelength-dependent
manner. This is true even if these waves are initially pure in-
ertial waves. Large wavelength waves (with wavelengths λ �
D = md, where λ is either the vertical or horizontal wavelength
and D is the total size of the staircase) are unaffected by the
staircase. Low-frequency (inertial or gravito-inertial) waves of
any wavelength are perfectly transmitted near the critical lati-
tude θc = sin−1(ω/2Ω) (at which ω = f ), confirming a fea-
ture also obtained by Gerkema & Exarchou (2008). Otherwise,
short-wavelength waves (with λ ∼ d . D) are only efficiently
transmitted if they are resonant with a free mode of the staircase
(these are interfacial gravity or short-wavelength inertial modes,
corresponding to the roots of the dispersion relation), and if not
they are primarily reflected.

The frequency interval around f = 2Ω cos Θ on which
transmission remains close to unity widens when rotation is
increased (see Fig. 11). This means that for fast rotators, we
expect a relatively broad frequency window for which layered

semi-convection has no particular effect upon the propagation of
internal waves near the critical latitude. We note that this perfect
transmission at ω = f can only occur at any latitude if ω < 2Ω,
i.e. only for inertial and sub-inertial gravito-inertial waves. We
do not expect this to happen for higher frequency gravity waves,
since there is no colatitude Θ for which ω = f .

We also found that non-traditional effects could be of major
importance. First, they modify the frequency spectrum of propa-
gation of internal waves, allowing the propagation of sub-inertial
waves inside the convective layers of the staircase. Thus, the
transmission of pure inertial waves can be strongly affected by
the presence of a density staircase. Second, they modify signif-
icantly the transmission near the inertial frequency ω = f , with
bands of perfect transmission departing from this frequency.
These have been physically interpreted as being resonances be-
tween pure inertial waves propagating inside a convective step
whose wavelength fits exactly inside a step, and the incident
wave.

We first modelled the staircase as having infinitesimally thin
interfaces, which we also extended to consider interfaces of fi-
nite size. An analytical expression of the transmission coefficient
has been derived in both set-ups, and its behaviour analysed. In
addition to what was already described with the first model (that
assumed infinitesimally thin interfaces), it has been found that
transmission was significantly enhanced in the frequency range
for which internal waves are propagative in both the convec-
tive steps and the stably stratified interfaces. As a result, per-
fect transmission was obtained near ω = f for any wavelength.
Since this model is more realistic, this means that in reality al-
most any incident IWs or GIWs is perfectly transmitted at a spe-
cial location, the critical latitude (if its frequency is smaller than
2Ω). Otherwise it is strongly affected by the staircase and is only
transmitted if it has a large wavelength.

4.2. Consequences for the seismology of planets

A case from which we can draw relevant astrophysical conclu-
sions is the case of multiple steps embedded in a convective
medium, because gaseous giant planet envelopes are expected
to be mostly convective. It is also relevant for the study of a por-
tion of a more vertically extended staircase. In that case when
ω , f , and the mode is not resonant with a free mode of the
staircase, transmission was found to be inhibited for larger wave-
length incident waves as we increased the number of steps, be-
having somewhat linearly with 1/m (this qualitative behaviour
being the same for the other top and bottom layer properties).
We find that the cut-off (indexed by the subscript “c”) wave-
length below which transmission is less than a given threshold
(when not resonant with a mode of the staircase) increases ap-
proximately linearly with the number of steps; or, alternatively,
is approximately constant when normalised by the size of the
staircase D = md. In Fig. 24, we show λz,c/D as a function of
the number of steps m, with a rotation rate Ω = 0.4N̄, for dif-
ferent transmission thresholds T = 0.9, 0.5, 0.1, at the particular
frequency ω = 0.2N̄. We see that, for a given criteria on the
transmission coefficient, the cut-off vertical wavelength only de-
pends on the total size of the staircase, D, for a large enough
number of steps. For instance, approximately perfect transmis-
sion is obtained in that case for λz > 102D.

Assuming that the entire gaseous envelope is semi-
convective, Leconte & Chabrier (2012) estimated that the size
of the convective steps should lie in a range

10−9−10−6 .
d

Hp
. 10−4−10−2, (146)
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Fig. 24. Vertical cut-off wave-length λz,c normalised by the size of the
staircase D = md, as a function of the number of steps m, measured
for three criteria on the transmission: T = 0.9 (green), T = 0.5 (red),
T = 0.1 (blue). These results were obtained in the case of a staircase
embedded in a convective medium, with Ω = 0.4N̄ and at the particular
frequency ω = 0.2N̄ which was not a resonant mode.

where Hp is the pressure scale-height, that is expected to be of
the same order of magnitude as the planet’s radius, R, in the deep
interior of giant planets (Hp ∼ R). We note that the hypothesis
of a fully semi-convective envelope gives us an upper limit on
the number of steps. In particular, Vazan et al. (2016) found it to
be unlikely because of the efficiency of upward mixing by over-
turning convection in the upper layers of the envelope. In any
case, it provides us with some order of magnitude estimates. We
also note that local numerical simulations by for example Radko
(2003) show merging of the double-diffusive layers over a finite
time, until only one step remains in the local box. This differs
from the hypothesis of assuming a large number of steps. How-
ever, we stress that those simulations are local and Boussinesq,
so that the long-term evolution of double-diffusive convection in
spherical geometry with a realistic density stratification is still
unknown. Furthermore, the case of the Arctic Ocean on Earth
seems to suggest that a staircase with a large number of steps
can exist (Ghaemsaidi et al. 2016).

Following our reasoning from Eq. (146), this means that
only incident waves coming from above the staircase with a
wavelength

λ & λz,c, (147)

will be efficiently transmitted to deeper regions, where the cut-
off frequency λz,c is estimated to lie in a range[
10−7−10−4

]
m .

λz,c

R
.

[
10−2−1

]
m. (148)

Incident waves with λz < λz,c are expected to be primarily re-
flected at the top of the staircase, unless ω ≈ f or the incident
wave is resonant with a free mode of the staircase. LC12 esti-
mated that the number of steps in giant planet deep interiors lies
in a range[
102−104

]
. m .

[
106−109

]
. (149)

For the bottom estimate m = 102 steps the estimate given by
Eq. (148) yields[
10−5−10−2

]
.
λz,c

R
.

[
1−102

]
. (150)

We note that the top range of the inequality above does not cor-
respond to any wave that could propagate in giant planet in-
teriors, since their wavelength is larger than the radius of the
planet. More restrictive constraints on the layer sizes and their
expected numbers would be needed to provide more precise
estimates. However, the bottom range for λz,c is of interest,
since tidally excited inertial waves (in the presence of a core)
are often thought to be of very short-wavelength (for example
Ogilvie & Lin 2004), so their propagation may be strongly af-
fected by a staircase.

On the other hand, Nettelmann et al. (2015) estimate that
in the helium rain region, convective layers should have a size
d ∼ 0.1−1 km, corresponding to 10 000−20 000 layers. Follow-
ing the discussion above and taking a typical giant planet’s radius
R ∼ 105 km, this suggests that the cut-off vertical wavelength is
approximately given by

λz,c

R
∼ [1−10] (151)

in the helium rain region. Because we expect tidal waves to have
a vertical wavelength that is small compared to the planet’s ra-
dius, Eq. (151) suggests that a region of layered semi-convection
in the helium rain region (as modelled by Nettelmann et al.
2015) would act as a rigid wall for most internal waves propa-
gating inside the planet’s envelope, unless ω ≈ f or the incident
wave is resonant with a free mode of the staircase.

Waves with shorter wavelengths than λz,c will be strongly
reflected and will not penetrate into deeper regions of the gi-
ant planet. This means that a tidally excited wave launched near
the surface of a giant planet that has a region of layered semi-
convection (for example just outside its core), could see the
core’s size artificially enlarged because it can be reflected at the
top of the staircase region (which could have a radial extent of
the order of 103−104 km according to Nettelmann et al. 2015),
rather than be reflected from the core itself (which would happen
in the absence of a density staircase). This could have an impact
on the nature of tidal modes that develop inside giant planets
containing regions of layered semi-convection, and of course on
tidal dissipation.

The (vertical and horizontal) wavelengths are related to the
wave’s frequency through the dispersion relation. Thus, an iner-
tial wave that propagates in the convective envelope of a giant
planet towards the centre has a frequency that is set by Eq. (15).
This means that the cut-off wavelengths λ⊥,c and λz,c define a
frequency cut-off through the dispersion relation of pure inertial
waves,

ωc =

 ( f̃λz,c + fλ⊥,c)2

λ2
⊥,c + λ2

z,c

1/2

· (152)

In the presence of layered semi-convection, potentially observ-
able modes of different frequencies will see a different size of
the core. This observation could be a signature of layered semi-
convection just outside the rocky/icy core of giant planets.

On the other hand, if density staircases are also present in
the helium rain region, the spherical shell contained between that
and the core could act as a trap for pure inertial waves in a certain
frequency range, modifying the nature of the modes that can be
sustained in that particular region. However, this could not be
observed by seismology of the planet’s surface.

Finally, we have seen that new modes can potentially be ob-
served when invoking layered semi-convection compared to a
fully convective envelope. These are the free modes of the stair-
case, first given by BQF15 and extended here to the case with
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Fig. 25. Sketch presenting an illustrative summary of our motivations,
results and future work. North-west quarter: how density staircases are
possibly created (see Sect. 1). South-west quarter: main properties of the
transmission of internal waves (see Sects. 3 and 4.2). South-east quar-
ter: additional modes that could potentially be observed thanks to the
seismology of planets (see Sect. 4.2). North-east quarter: the question
we address in our second paper.

rotation for any latitude through Eq. (101). This includes the
gravito-inertial modes with a sufficiently large radial wavelength
that the staircase is seen as a stably stratified medium charac-
terised by the mean buoyancy frequency N̄.

4.3. Perspectives

Our results help us to understand the impact of layered semi-
convection on the propagation of internal waves at a qualitative
level. In order to make quantitative predictions, one should ex-
tend this study to spherical geometry relevant for planets and
stars. In particular, it could be interesting to analyse probabili-
ties of excitation of free modes of the staircase. This could allow
us to determine for example what fraction of tidal waves are per-
fectly transmitted through the staircase region, but this is beyond
the scope of our paper.

In addition, we have considered a density staircase estab-
lished by the double-diffusive instability, as described by e.g.
Leconte & Chabrier (2012). We note, however, that it would
be important in the near future to take into account the im-
pact of rotation (Moll & Garaud 2017), differential rotation
(Worthem et al. 1983) and magnetic fields on the formation of
such a structure. Waves will also be affected by differential rota-
tion (Mathis 2009; Mirouh et al. 2016) and magnetic fields (for
example Mathis & de Brye 2011; Wei 2016). Moreover, non-
linear effects such as the feedback of waves on the background
should be taken into account.

Finally, a synthetic sketch of our results is shown in Fig. 25.
Based on this first study, we will explore in our second paper the
tidal response and dissipation of a giant planet or star containing

a staircase-like density profile resulting from the presence of lay-
ered semi-convection.
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Appendix A: Derivation of the Poincaré equation

The linearised system we consider, when we adopt the Boussi-
nesq approximation, is given by Eqs. (8)–(12). The aim of
this appendix is to demonstrate the Poincaré equation, used in
Sect. 2.3.

First, taking the combination ∂y(10)– ∂z(9) gives

∂

∂t

(
∂w

∂y
−
∂v

∂z

)
− ( f · ∇)u =

∂b
∂y
, (A.1)

where f = (0, f̃ , f ). Then, taking the combination ∂z(8)– ∂x(10)
and using Eq. (11) gives

∂

∂t

(
∂u
∂z
−
∂w

∂x

)
− ( f · ∇)v = −

∂b
∂x
· (A.2)

Then, taking the combination ∂x(9) − ∂y(8) and using Eq. (11)
gives

∂

∂t

(
∂v

∂x
−
∂u
∂y

)
− ( f · ∇)w = 0. (A.3)

Then, by taking the combination ∂t

(
∂y(A.1) − ∂x(A.2)

)
and us-

ing Eqs. (11), (12) and (A.3), we finally obtain an equation on
the vertical component of the velocity w

∂2

∂t2
∇2w + ( f · ∇)2w +

[
N2∇2

⊥

]
w = 0, (A.4)

where ∇2
⊥ ≡

∂2

∂x2
+

∂2

∂y2
·
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