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ABSTRACT

Context. The seismic data provided by the space-borne missions CoRoT and Kepler enabled us to probe the internal rotation of
thousands of evolved low-mass stars. Subsequently, several studies showed that current stellar evolution codes are unable to reproduce
the low core rotation rates observed in these stars. These results indicate that an additional angular momentum transport process is
necessary to counteract the spin up due to the core contraction during the post-main sequence evolution. For several candidates, the
transport induced by internal gravity waves (IGW) could play a non-negligible role.
Aims. We aim to investigate the effect of IGW generated by penetrative convection on the internal rotation of low-mass stars from the
subgiant branch to the beginning of the red giant branch.
Methods. A semi-analytical excitation model was used to estimate the angular momentum wave flux. The characteristic timescale
associated with the angular momentum transport by IGW was computed and compared to the contraction timescale throughout the
radiative region of stellar models at different evolutionary stages.
Results. We show that IGW can efficiently counteract the contraction-driven spin up of the core of subgiant stars if the amplitude
of the radial-differential rotation (between the center of the star and the top of the radiative zone) is higher than a threshold value.
This threshold depends on the evolutionary stage and is comparable to the differential rotation rates inferred for a sample of subgiant
stars observed by the satellite Kepler. Such an agreement can therefore be interpreted as the consequence of a regulation mechanism
driven by IGW. This result is obtained under the assumption of a smooth rotation profile in the radiative region and holds true even
if a wide range of values is considered for the parameters of the generation model. In contrast, on the red giant branch, we find that
IGW remain insufficient, on their own, to explain the observations because of an excessive radiative damping.
Conclusions. IGW generated by penetrative convection are able to efficiently extract angular momentum from the core of stars on the
subgiant branch and accordingly have to be taken into account. Moreover, agreements with the observations reinforce the idea that
their effect is essential to regulate the amplitude of the radial-differential rotation in subgiant stars. On the red giant branch, another
transport mechanism must likely be invoked.
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1. Introduction

The detection of mixed modes in thousands of stars (e.g.,
Mosser et al. 2012b) observed by the satellites CoRoT and
Kepler have provided insights into the internal rotation of
evolved stars. Ensemble asteroseismology notably revealed that
the mean core rotation weakly increases with time on the
subgiant branch (Deheuvels et al. 2012, 2014) before dropping
sharply along the evolution on the red giant branch (Mosser et al.
2012a). These observations have had a major impact since they
question our knowledge about the angular momentum evolu-
tion and redistribution in stellar interiors. Indeed, the current
stellar evolution codes taking transport of angular momentum
by shear-induced turbulence and meridional circulation into ac-
count are not able to reproduce the low rotation rates observed
in evolved stars (Eggenberger et al. 2012; Ceillier et al. 2013;
Marques et al. 2013). These processes are also insufficient to ex-
plain the quasi solid-body rotation observed in the solar radiative
zone (e.g., Brown et al. 1989; García et al. 2007). These discrep-
ancies stress out the need for considering additional transport
mechanisms to efficiently extract angular momentum from the
stellar cores. Among the hypotheses advanced to explain the spin

down of the core, several works investigated the effect of mag-
netic fields (e.g., Spruit 2002; Heger et al. 2005; Cantiello et al.
2014; Rüdiger et al. 2015; Spada et al. 2016) or the influence of
mixed modes (Belkacem et al. 2015a,b). In addition, it has been
known for decades that a possible solution may also come from
internal gravity waves (e.g., Schatzman 1996).

The restoring force of internal gravity waves (IGW) is buoy-
ancy so that they can propagate in radiative zones of stars. In
these regions, they are damped by radiative diffusion and can
deposit (or extract) momentum. They are thus able to trans-
port angular momentum in presence of differential rotation.
The efficiency of this mechanism depends on the wave en-
ergy spectrum whose amplitude and shape results, on the one
hand, from the excitation process, and on the other hand, from
the wave damping. Two processes have been proposed to gen-
erate IGW: turbulent pressure in the convective bulk (Press
1981; Garcia Lopez & Spruit 1991; Zahn 1997; Kumar et al.
1999; Lecoanet & Quataert 2013) or penetrative convection at
the interface between the convective and the radiative zones
(Townsend 1966; Pinçon et al. 2016). For both mechanisms,
excitation models are available to estimate the wave energy flux
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emitted at the base of the convective zone. These models have
already demonstrated the ability of IGW to efficiently affect the
evolution of the internal rotation in the solar case (Zahn 1997;
Talon et al. 2002; Talon & Charbonnel 2005; Fuller et al. 2014;
Pinçon et al. 2016). This reinforces the idea that IGW could be
one important missing ingredient in the modeling of the angular
momentum evolution of stars.

Solving the transport of angular momentum equations in-
cluding the effects of IGW is numerically difficult. Indeed, it
involves very small timescales differing from the stellar evolu-
tion timescale by several orders of magnitude. A first step in the
investigation thus consists in estimating and comparing the ef-
ficiency of the angular momentum transport by IGW with the
other transport processes, for a given stellar equilibrium struc-
ture and at a peculiar evolutionary stage. Since the core con-
traction drives the increase of the inner rotation in current stel-
lar modeling, this is equivalent to compare the characteristic
timescale associated with the transport by IGW to the contrac-
tion timescale. This has already been done in the solar case
by previous works (Zahn 1997; Kumar et al. 1999; Fuller et al.
2014; Pinçon et al. 2016). Such a comparison provides a first in-
dication on the efficiency of the angular momentum transport by
IGW in stars at different evolutionary stages.

Fuller et al. (2014) followed such an approach in the case of
evolved low-mass stars. Considering only turbulent pressure in
the convective zone as the excitation mechanism, they showed
that the inner radiative interior may decouple from the effect of
incoming IGW when stars reach about the middle of the sub-
giant branch. This mainly results from the wave radiative damp-
ing that crucially increases as stars evolve. As a consequence, it
prevents IGW from reaching the innermost layers and therefore,
from modifying their rotation.

However, as shown in Pinçon et al. (2016) in the solar case,
the result of such a study depends both on the wave excitation
mechanism and on the amplitude of the radial-differential rota-
tion in the radiative zone. Here, we consider the effect of IGW
generated by penetrative convection and investigate whether
they can counteract the core contraction and brake the devel-
opment of a strong differential rotation in subgiant and red giant
stars. The influence of both amplitude and shape of the radial-
differential rotation on the transport by IGW toward the central
regions is considered.

The article is organized as follows. Section 2 introduces the
theoretical background. An analytical description of the angu-
lar momentum transport by plume-induced IGW is developed.
Section 3 briefly presents the input physics and stellar models
used in this work. The efficiency of the transport by plume-
induced IGW is investigated in Sect. 4. The study is based on
timescales comparison for 1 M� stellar models covering the
subgiant branch and the beginning of the ascent of the red gi-
ant branch. The influence of the uncertainties on the excitation
model parameters and of the shape of the rotation profile on the
results is widely explored. In Sect. 5, the effect of stellar mass
is analyzed and a comparison with observations is performed.
Section 6 is devoted to discussions. Conclusions are finally for-
mulated in Sect. 7.

2. Characteristic timescales and wave flux
generated by penetrative convection

2.1. Transport timescales

The contraction of the central layers during the post-main se-
quence turns out to be mostly responsible for the strong rotation

contrast between the core and the envelope observed in stellar
evolution codes (e.g., Ceillier et al. 2013; Marques et al. 2013).
To estimate the efficiency of the angular momentum transport by
IGW in stellar interiors, we can thus compare the influence of
IGW versus the contraction or expansion in stars on the evolu-
tion of the internal rotation. The angular momentum transport
in stellar interiors obeys an advection-diffusion equation. Within
the shellular rotation approximation (Zahn 1992) and consider-
ing only the effect of both the contraction or expansion and the
transport by waves, the Lagrangian evolution of the mean rota-
tion rate, Ω(r), in a spherical mass shell, can be written such as
(e.g., Belkacem et al. 2015b)

dΩ

dt
= −2

ṙ
r
Ω −

J̇w

ρr2 , (1)

with

J̇w =
1
r2

∂

∂r

(
r2FJ,w

)
, (2)

where r is the radius, ṙ is the contraction or expansion velocity,
ρ is the density of the equilibrium structure and FJ,w is the mean
radial wave flux of angular momentum.

Following Eq. (1), the local contraction or expansion
timescale at a radius r is given by

tcont ∼

∣∣∣∣∣ r
2ṙ

∣∣∣∣∣ · (3)

It corresponds to the evolution timescale of the rotation rate un-
der the hypothesis of local conservation of angular momentum.
Similarly, the wave-related timescale, or the timescale associ-
ated with the transport of angular momentum by IGW, given a
rotation profile Ω(r), can be estimated by

tw ∼

∣∣∣∣∣∣ρr2Ω

J̇w

∣∣∣∣∣∣ · (4)

It corresponds to the ratio of the density of angular momentum
to the divergence of the radial angular momentum wave flux.
If J̇w(r) < 0, waves tend to increase the rotation rate follow-
ing Eq. (1), otherwise, they tend to decrease it. The effect of the
angular momentum transport induced by IGW on the rotation is
said to be locally more efficient than the influence of the contrac-
tion or the dilatation in the star if ε(r) = tcont/tw > 1. Therefore,
the comparison between Eqs. (3) and (4) provides us with an es-
timate of the efficiency of the angular momentum redistribution
by IGW throughout the radiative zone of the stars.

2.2. Plume-induced wave flux of angular momentum

The computation of Eq. (4) requires the knowledge of the angu-
lar momentum wave flux, and hence the wave excitation rate.
In this work, we consider only the penetration of convective
plumes as the generation mechanism. Convective plumes are
strong, coherent, downwards flows that originate from matter
cooled at the surface of stars. They grow by turbulent entrain-
ment of matter at their edges when descending through the con-
vective zone (Morton et al. 1956). Once they reach the base of
the convective zone, they penetrate by inertia into the under-
lying stably stratified layers at the top of the radiative region
where they are slowed down by buoyancy braking. This is the
so-called penetration zone. There, a part of their kinetic energy
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is converted into waves that can then propagate toward the cen-
ter of the star (e.g., Brummell et al. 2002; Dintrans et al. 2005;
Rogers & Glatzmaier 2005; Alvan et al. 2015). To model this
process, Pinçon et al. (2016) considered the ram pressure exerted
by an ensemble of convective plumes in the penetration region
as the source term in the wave equation. In the solar case, they
found that this mechanism can generate a wave energy flux rep-
resenting about 1% of the solar convective flux at the top of the
radiative zone. In the following, the mean radial wave energy
flux at the top of the radiative zone, per unit of cyclic frequency
ω, for an angular degree l, and for an azimuthal number m, is
estimated by Eq. (39) of their paper, that is

FE,w(rt, ω, l,m) ∼ F0
e−ω

2/4ν2
p

νp

√
l(l + 1)e−l(l+1)b2/2r2

t , (5)

with

F0 = −
1

2π
A

4πr2
t

ρtV3
pSp

2
FR, (6)

where rt is the radius at the top of the radiative zone, νp is the
plume occurrence frequency, b is the plume radius, A is the
plumes filling factor, and Sp = πb2 is the horizontal area occu-
pied by one single plume, in the excitation region. ρt and Vp are
respectively the density and the velocity of the plumes at the base
of the convective zone. The dimensionless quantity FR is equiv-
alent to the Froude number at the top of the radiative region. It
is equal to FR = πVp/rtNt, with Nt the Brunt-Väisälä frequency
at the top of the radiative zone (see Sect. 3.2 for details on its es-
timate). It controls the efficiency of the energy transfer from the
convective plumes into waves inside the penetration region (as it
also does in the case of IGW generated by turbulent pressure).
By writing Eq. (5), we have assumed that the Péclet number at
the base of the convective zone is very high, such that the plumes
suffer a strong buoyancy braking leading to a very small penetra-
tion length. Indeed, using various stellar models on the subgiant
and red giant branches, we have estimated the Péclet number by
Pe ∼ VpHt/Kt, where Vp was computed following Sect. 3.2, Kt is
the radiative diffusion coefficient (see below) and Ht the pressure
scale height in this region. We have found Pe ∼ 106−107 for
all the models, which justifies the latter assumption (see also the
discussion by Dintrans et al. 2005). Moreover, we have assumed
a quasi discontinuous profile for the Brunt-Väisälä frequency in
this region. Since the smoother the transition of the temperature
gradient from an adiabatic to a radiative value at the base of the
convective zone, the higher the wave transmission into the radia-
tive zone, this corresponds to consider a lower limit of the wave
energy flux regarding the transition length.

In the adiabatic limit, the angular momentum luminosity of
each wave component, Lw, is conserved when propagating into
the stellar interior (e.g., Bretherton 1969; Zahn 1997; Ringot
1998), that is

Lw = 4πr2 m
ω̂
FE,w(r, ω̂, l,m) = const., (7)

where
ω̂(r, ω,m) = ω − mδΩ(r) (8)
is the Doppler-shifted intrinsic wave frequency1 with respect to
the excitation site and δΩ = Ω(r)−Ω(rt) is the radial-differential
1 As a convention, we adopt a plane-wave description in the form
of ei(σt−mϕ), with σ and ϕ as the wave frequency and the longitudinal
coordinate in an inertial frame, respectively. The intrinsic wave fre-
quency in a frame co-rotating with the excitation zone is then given
by ω = σ − mΩ(rt). Therefore, prograde waves are such as mδΩ > 0,
while retrograde waves are such as mδΩ < 0.

rotation between the radius r and the top of the radiative zone.
Therefore, using Eq. (7), the wave flux of angular momentum
can be written in each layer of the radiative zone such as

m
ω̂
FE,w(r, ω̂, l,m) =

m
ω

r2
t

r2FE,w(rt, ω, l,m). (9)

Without any dissipative process, we thus recover that J̇w = 0 in
Eq. (1) and that the angular momentum transport by waves is
null.

In the non-adiabatic case, each spectral component of the to-
tal wave energy flux emitted from the top of the radiative zone
undergoes a radiative damping as it propagates toward the center
of the star and so contributes to the transport of angular momen-
tum in presence of differential rotation. The wave flux of angular
momentum as a function of the depth in the radiative zone can
then be derived from the wave energy flux, generated in the ex-
citation region, and modulated by a damping term2 (e.g., Press
1981; Zahn 1997), that is

FJ,w(r) =
∑

l

m=+l∑
m=−l

∫ +∞

−∞

m
ω

r2
t

r2FE,w(rt, ω, l,m)e−τ(r,ω̂,l)dω, (10)

with

τ(r, ω̂, l) = [l(l + 1)]3/2
∫ rt

r
K

NN2
T

ω̂4

(
N2

N2 − ω̂2

)1/2 dr
r3 , (11)

where N is the Brunt-Väisälä frequency, with NT its thermal part
that does not take the gradient in the chemical composition into
account, and K (in units of m2 s−1) is the radiative diffusion co-
efficient (e.g. Maeder 2009). We note that the wave flux of angu-
lar momentum depends on the Doppler-shifted frequency ω̂(r)
only through the wave damping. We also emphasize, following
Eq. (11), that IGW deposit all the angular momentum they carry
just above their critical layers (i.e. where ω̂ = 0) and cannot
propagate further downwards.

In the following, we will neglect wave reflection and will as-
sume that each wave component is lost the first time it reaches
a reflection point near the center (i.e. where N2 = ω̂2). In other
words, it is supposed either to be absorbed into the medium be-
fore or to be so weakly damped in its propagation cavity that it
does not quantitatively contribute to the transport. Moreover, we
stress that the modeling of the transport by IGW represented by
Eqs. (5), (10) and (11) neglects the Coriolis force and the wave
heat flux. The implications of these hypotheses on the results are
discussed a posteriori in Sect. 6.4.

3. Input physics

3.1. Stellar models

We considered evolutionary sequences of 1, 1.15, 1.3 and
1.45 M� models computed with the stellar evolution code CES-
TAM (Marques et al. 2013). The sequences cover the subgiant
branch and the beginning of the ascent of the red giant branch.
The mass range was chosen to be representative of observed
low-mass subgiant and red giant stars (Mosser et al. 2012a;
Deheuvels et al. 2014). Their location in the Hertzsprung-Russel
diagram is displayed in Fig. 1. Their chemical composition is
similar to the solar mixture as given in Asplund et al. (2009),

2 The right-hand side of Eq. (48) in Pinçon et al. (2016) contains a
typo and must be corrected by a factor r2

d/r
2 (here, rd = rt). We note

that the numerical computations properly took this factor into account.
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Fig. 1. Location in the Hertzsprung-Russel diagram of the stellar models
considered in this work (filled circles, see Sect. 3.1 for details). The
evolutionary tracks from the zero-age main sequence to the top of the
red giant branch are represented by the solid lines.

with initial helium and metals abundances Y0 = 0.25 and
Z0 = 0.013. We used the OPAL 2005 equation of states and
opacity tables. Microscopic diffusion, overshooting and rotation
were neglected. The stellar atmosphere was constructed follow-
ing an Eddington gray approximation and the nuclear reaction
rates were deduced from the NACRE compilation, except for
the 14N(p, γ)15O reaction that follows Imbriani et al. (2004). Fi-
nally, convection was modeled using the mixing-length theory
(Böhm-Vitense 1958) with αMLT = 1.65.

3.2. Excitation model parameters

The plume radius b and velocity Vp were estimated using the
semi-analytical model of turbulent plumes by Rieutord & Zahn
(1995), as detailed in Pinçon et al. (2016). The value of the
Brunt-Väisälä frequency at the top of the radiative zone, Nt,
remains difficult to estimate in current stellar models. Since
N approximately follows a power law with respect to the ra-
dius between the hydrogen-burning shell and the outer edge of
the radiative zone (e.g., Mosser et al. 2017), we considered the
value given by the extrapolation of this power law at the base
of the convective zone (i.e., at r = rt). The filling factor A is
a proxy for the number of penetrating convective plumes, with
an upper limit fixed at 0.5 by mass conservation. Realistic 3D
Cartesian numerical simulations of the uppermost convective
layers of evolved red giant stars show values around A ∼ 0.1
(Ludwig & Kučinskas 2012), which is very close to the values
obtained for the Sun (e.g., Stein & Nordlund 1998). This qualita-
tively agrees with numerical simulations of the extended convec-
tive envelope of RGB stars (e.g., Brun & Palacios 2009; Palacios
2012) in which the energy transport by strong cooler downwards
convective plumes is well developed and predominant. We then
chose A ∼ 0.1 as the default value. Finally, given the lack of
knowledge about the plume lifetime, the default value will be
taken around the convective turnover timescale as given by the
MLT, νp ∼ ωc (see Fig. 7). The effect of variations in the model
parameters on the transport by IGW is studied in Sect. 4.2. We
emphasize that Eq. (10) was computed in a frequency range be-
tween 0 and min(Nt, 10 νp) and for angular degrees between
l = 1 and l = 150. These choices were checked a posteriori
to be sufficient for all the considered models.

3.3. Assumptions for the rotation profile

As we can see in Eqs. (1), (2), (10) and (11), the evolution of
the internal rotation and the action of IGW are intricately re-
lated. In particular, the differential rotation, δΩ(r), plays a ma-
jor role in determining the wave flux via the radiative damping
term. On the one hand, it causes the asymmetry between pro-
grade (m > 0) and retrograde (m < 0) waves that is essential for
the extraction of angular momentum (indeed, if δΩ = 0, trans-
port of angular momentum by prograde and retrograde waves
cancel each other out so that J̇w = 0). In the other hand, it con-
trols the magnitude of the wave damping through the dependence
on ω̂−4 and hence, the local deposit of angular momentum into
the medium. As a consequence, it has been shown in the solar
case that its amplitude can have a large impact on the transport
by IGW (Pinçon et al. 2016). Therefore, we will assume a given
rotation profile for each stellar model. We thus implicitly con-
sider that the effect of the centrifugal forces on the equilibrium
structure is negligible. While seismic studies can provide strin-
gent constraints on the mean core rotation rate in subgiant and
red giant stars, little is known about the shape of the rotation pro-
file in these stars and difficulties remain, in some cases, to dis-
criminate between a sharp rotation profile and a smoother one
(Deheuvels et al. 2014). We thus consider two limiting cases for
the rotation profile: a smooth profile and a sharp one.

Smooth profile: seismic observations show evidence that a me-
chanism is able to prevent the core contraction from developing
a large differential rotation in the radiative zone and to efficiently
redistribute angular momentum from the core to the envelope all
along the star lifetime. As a consequence, it seems reasonable to
expect the rotation profile to be smoother than the one obtained
by assuming local conservation of angular momentum. A lin-
early decreasing profile in the radiative zone is the simplest form
we could assume. However, to enforce a null derivative at the
center and at the top of the radiative zone, we prefer considering
a profile with the shape

δΩ(r) = ∆Ω cos2
(
π

2
r
rt

)
for r ≤ rt, (12)

with ∆Ω the maximum amplitude of the differential rotation.
Equation (12) will be considered as the default profile.

Sharp profile: in a second step, we will investigate the effect
of a sharp rotation profile. It will be supposed to be similar to
the one obtained by assuming local conservation of angular mo-
mentum from the beginning of the subgiant branch, but rescaled
with a different amplitude. For initial conditions, we will assume
that the rotation is uniform throughout the radiative zone at the
terminal-age main sequence (TAMS), as supported by observa-
tions in main-sequence stars (e.g., Benomar et al. 2015). The res-
olution of Eq. (1) with J̇w = 0 thus gives

δΩ(r) = ∆Ω
C2(mr) − C2(mr,t)

max
[
C2(mr) − C2(mr,t)

] for r < rt, (13)

with

C(mr) =
r0(mr)
r(mr)

, (14)

where r0(mr) is the radius of the mass element mr at the TAMS
and mr,t is the mass coordinate at the top of the radiative zone.
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Fig. 2. Normalized differential rotation profile according to the radius
normalized by the radius at the top of the radiative zone, rt, for a 1 M�
subgiant model with log Teff = 3.70 and log L/L� = 0.35. We com-
pare the smooth profile given in Eq. (12) (red solid line) with the sharp
variant given in Eq. (13) (green solid line).

Both kind of rotation profiles are represented in Fig. 2 for
a 1 M� model in the middle of the subgiant branch. Consider-
ing such arbitrary shapes for the differential rotation, although
questionable, will give us first hints about the efficiency of the
transport by IGW in subgiant and red giant stars while consider-
ing different values for the amplitude ∆Ω. A comparison with the
differential rotation amplitude inferred by seismic observations
requires accounting for the properties of the gravity-dominated
mixed modes. Following Goupil et al. (2013), the mean seismic
amplitude of the differential rotation, that is its amplitude as
probed by mixed modes, is given by

∆Ω ≈
1
γ

∫ rt

0
δΩ

N
r

dr with γ =

∫ rt

0

N
r

dr, (15)

which have been derived by assuming that the rotation rate
is uniform throughout the convective envelope. Equation (15)
shows that mixed modes probe the mean value of the rotation
in a region confined around the peak of the Brunt-Väisälä fre-
quency, as also noted by Deheuvels et al. (2014). Therefore, a
comparison between the values of the differential rotation as ob-
served by mixed modes and the ones as assumed in this work
will make sense if we consider the mean seismic amplitude, ∆Ω,
computed via Eq. (15).

4. Efficiency of the angular momentum transport
by IGW in subgiant and red giant stars

4.1. Comparison of timescales

4.1.1. Stars at the beginning of the ascent of the RGB

As an illustration, we consider the case of a 1 M� model charac-
terized by log L/L� = 0.92, log g = 3.16, log Teff = 3.67 and
located at the beginning of the ascent of the red giant branch. The
wave-related timescale is compared to the contraction timescale
throughout the radiative zone of the star in Fig. 3. The values for
∆Ω are chosen between 0 and 12 µrad s−1, that is in a range with
an upper limit slightly above the maximum value inferred from
asteroseismology (Mosser et al. 2012a; Deheuvels et al. 2014).

At the very top of the radiative zone, Fig. 3 shows that tw
takes very small values of the order of years. This is due to the

Fig. 3. Top: characteristic wave-related timescale (solid lines), com-
puted using Eq. (4), as a function of the normalized radius in the ra-
diative zone of a 1 M� red giant model, with log Teff = 3.16 and
log L/L� = 0.92. Colors correspond to different values for the ampli-
tude of the differential rotation, ∆Ω. The red and the blue dashed lines
represent the contraction or dilatation timescale and the location of the
hydrogen-burning shell, respectively. Bottom: same caption and legend
as the top panel, but for a 1 M� subgiant model, with log Teff = 3.70
and log L/L� = 0.35.

damping of high-angular degree low-frequency prograde waves
(m > 0, J̇w < 0) that rapidly reach their critical layers. Just below
this region, high-angular degree low-frequency retrograde waves
(m < 0, J̇w > 0) are in turn efficiently damped. Combined with
shear-induced turbulence, this may give rise to a short-period
oscillation of the rotation profile in a region confined around the
top of the radiative zone, the so-called Shear Layer Oscillation
(e.g., Kumar et al. 1999; Talon et al. 2002).

Deeper in the star (i.e., r/rt . 0.8), tw drastically increases
as r decreases. It even gets much larger than the contraction
timescale throughout the helium core, below the hydrogen-
burning shell. Despite the significant influence of the differen-
tial rotation amplitude on tw above the helium core, the result
remains valid for values of ∆Ω consistent with observations.
Unlike main-sequence stars (see Pinçon et al. 2016, for the so-
lar case), IGW generated by penetrative convection are thus not
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Table 1. Characteristics of the six subgiant and early red giant stars
studied by Deheuvels et al. (2014).

M/M� log g ∆Ωobs (µrad s−1)

1.22 3.83 ± 0.04 2.00 ± 0.66
1.27 3.77 ± 0.02 2.92 ± 0.79
1.14 3.76 ±0.04 4.65 ± 0.30
1.26 3.71 ± 0.03 9.04 ± 0.46
1.39 3.68 ± 0.02 7.48 ± 0.26
1.07 3.60 ± 0.02 9.31 ± 0.31

Notes. The mass were obtained with a fitting procedure using the evolu-
tion code CESTAM, log g was determined by seismic scaling relations
and the amplitude of the radial-differential rotation between the center
of the star and the base of the convective zone was inferred from the
OLA method.

efficient enough to affect the innermost rotation of red giant stars.
Indeed, as pointed out by Fuller et al. (2014), the wave radiative
damping increases when stars evolve during the post-main se-
quence. As shown in Appendix A.1, the local characteristic ra-
dial damping lengthscale of the wave energy decreases all over
the radiative zone as the innermost layers contract. This decrease
is so important at the beginning of the RGB that waves are
severely damped before reaching the hydrogen-burning shell for
values of ∆Ω . 12 µrad s−1. Actually, we find that a value of ∆Ω
around 20 µrad s−1 is needed to enable retrograde IGW to reach
the helium core in this model, that is a value much higher than
observations. We find similar conclusions for all the red giant
models considered in Fig. 1. Such a trend is further discussed in
Sect. 4.1.2. We then conclude that IGW generated by penetrative
convection cannot counteract, on their own, the acceleration due
to the core contraction in RGB stars and therefore, are unable
to spin down their innermost layers. Another mechanism must
operate in the core of these stars.

4.1.2. Subgiant stars

As an illustration, we consider the case of 1 M� subgiant
model characterized by log L/L� = 0.35, log g = 3.86 and
log Teff = 3.70. The wave-related timescale is plotted in Fig. 3
as a function of radius in the radiative zone. For low values of
∆Ω, the situation is similar as for RGB stars. IGW are con-
siderably damped and deposit their angular momentum well
above the hydrogen-burning shell. However, unlike RGB stars,
as the amplitude of the differential rotation increases and be-
comes larger than a threshold value, denoted ∆Ωth, tw becomes
smaller than the contraction timescale throughout the radiative
zone. Indeed, as ∆Ω increases, the asymmetry between prograde
(m > 0) and retrograde waves (m < 0) gets more and more pro-
nounced. First, prograde components reach more rapidly their
critical layers where they are dissipated. Second, an increase in
∆Ω results in an increase in the frequency Doppler-shift of ret-
rograde IGW (m < 0, J̇w > 0) so that their damping in Eq. (11)
decreases. They can thus go deeper into the star. In other words,
when ∆Ω increases, retrograde components with lower frequen-
cies are absorbed into the helium core. Since the excitation wave
spectrum decreases as the wave frequencyω increases, they have
higher amplitudes and thus deposit more negative angular mo-
mentum. We refer to the toy model presented in Appendix B
for a more detailed analysis. In the example plotted in Fig. 3,
∆Ωth ∼ 5 µrad s−1. This value is consistent with the mean core

Fig. 4. Theoretical threshold value for the differential rotation ampli-
tude, above which tw < tcont throughout the region below the hydrogen-
burning shell, as a function of log g. The curve obtained with the de-
fault set of plume parameters, νp = ωc and b = bR95 (see Sect. 3.2), and
a smooth rotation profile is represented by the blue thick solid line. The
effect of variations in νp and b is also displayed, as well as the results
obtained with a sharp rotation profile. For each curve, the value of only
one single parameter is changed while keeping the others at their default
values. The vertical red dashed line symbolizes the transition between
the subgiant phase to the beginning of the RGB.

rotation rates observed in subgiant stars (see Table 1). Therefore,
we conclude that IGW generated by penetrative convection are
able to counteract, on their own, the acceleration due to the core
contraction in subgiant stars and therefore, can play a role in the
redistribution of angular momentum along the subgiant branch.

Actually, this result can be extended to the whole subgiant
branch where the same trend can be observed. The theoretical
threshold value, ∆Ωth, is formally defined as the amplitude of the
radial-differential rotation above which IGW can counteract the
acceleration due to the core contraction (tw ≤ tcont) throughout
the region below the hydrogen-burning shell. It was determined
for the 1 M� evolutionary sequence represented in Fig. 1. We
found that ∆Ωth increases as the star evolves (see Fig. 4). Indeed,
as shown in Appendix A.1, the intensity of the radiative damp-
ing increases by more than two orders of magnitude along the
evolution from the subgiant branch to the beginning of the RGB.
Considering this effect is the predominant one during the star
evolution, it would result in a decrease in the efficiency of the
transport by IGW in the innermost layers of the radiative zone
if ∆Ω remained unchanged (i.e., tw > tcont) since waves would
be dissipated into upper layers. Therefore, an increase in the fre-
quency Doppler-shift, and so in ∆Ωth, is necessary to balance the
increase in the magnitude of the radiative damping over time and
enable retrograde IGW to reach the helium core and efficiently
counteract the acceleration due to its contraction (i.e., tw ≤ tcont,
see also Appendix 2.4.7 for a more detailed discussion).

4.2. Impact of the parameter uncertainties and of the shape
of the rotation profile

Uncertainties remain in the determination of the plume char-
acteristics. First, their estimation relies on simplified analytical
models. Second, they have been supposed to be unique for all the
plumes at a given evolutionary stage while, in reality, they should
be distributed around mean values. In this section, we vary the
parameters of the excitation model around the default values
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Fig. 5. Effect of variations in the plume parameters and of a sharp ro-
tation profile as given in Eq. (13) on the wave-related timescale in the
radiative zone of the subgiant model considered in Sect. 4.1.2. For each
curve, the value of only one single parameter is changed while keeping
the others at their default values. The value of the differential rotation
amplitude is maintained constant at ∆Ωth. The red and the blue dashed
lines have the same meaning as in Fig. 3.

used in the previous sections and investigate their influence on
the efficiency of the angular momentum transport by IGW. We
also explore the effect of a sharp rotation profile on the results.

Wave flux amplitude F0. As shown by Eqs. (2), (4) and (5), a
decrease in F0 by any factor results in an increase in tw by the
same factor. This parameter depends on the plume velocity at the
base of the convective zone Vp, the plume radius via the term Sp,
the filling factor (or the number of penetrating plumes), and the
efficiency of the energy transfer from the plumes to the waves
via the parameter Nt. Given that F0 depends on Vp to the power
four, the uncertainty on Vp can result in a large uncertainty in
the efficiency of the transport by IGW for a given value of ∆Ω.
However, as shown in Fig. 3, tw is very sensitive to the am-
plitude of the differential rotation below the hydrogen-burning
shell (see Appendix 2.4.8 for an explanation). Therefore, a major
variation in F0 leads only to a moderate variation in the thresh-
old ∆Ωth. For instance, in the subgiant case in Fig. 3, if Vp is
decreased by a factor of three, tw increases by about a factor
of hundred, but ∆Ωth increases from 5 µrad s−1 to only about
6 µrad s−1. However, near the top of the radiative zone (i.e.,
r/rt & 0.5), the efficiency of the transport by IGW is more af-
fected. Indeed, an increase in ∆Ωth leads to an increase in tw in
this region. Nevertheless, the main conclusions remain unmod-
ified since this region is in expansion (ṙ > 0 in Eq. (1)) and so
spins down. Therefore, the conclusions made in Sect. 4.1.2 for
the subgiant stars hold despite strong variations in F0. For the
red giant case in Fig. 3, tw varies so sharply that the conclusions
made in Sect. 4.1.1 also do not change even if F0 is multiplied
by a factor of hundred. We conclude that, although its effect is
quantitatively not negligible, variations in F0 does not qualita-
tively modify the results obtained in both subgiant and red giant
cases.

Plume width, b.We modify the plume radius by factors of a third
and three. The result is plotted in Figs. 4 and 5. As we can see in

Fig. 5, the sensitivity of tw to the value of b is moderate through-
out the radiative zone. Above the hydrogen-burning shell, tw is
multiplied by about factors of nine and a ninth, respectively. This
trend directly comes from the change in the area occupied by
one single plume, Sp in Eq. (6). Below the hydrogen-burning
shell, the situation is more complex. Indeed, the wave energy
flux, Eq. (5), is maximum for an angular degree lmax ∼ rt/b
(Pinçon et al. 2016). A smaller value of b then favors the ex-
citation of high-angular degrees and results in a larger width of
the wave spectrum with respect to the angular degree. Neverthe-
less, this must compete with a larger damping at the very top of
the radiative zone and a decrease in Sp. Without going more into
details, Fig. 4 shows that b has only a small influence on ∆Ωth.

Plume occurrence frequency, νp. In a similar way to the plume
radius, we modify the plume lifetime by factors of a third and
three. Figure 5 shows that variations in νp have important con-
sequences on the value of tw. In the subgiant case, increasing
(decreasing) νp by a factor of three, while keeping the value of
∆Ω constant, leads to decrease (increase) tw by more than two or-
ders of magnitude throughout the radiative zone. However, given
the abovementioned sensitivity of tw to ∆Ω below the hydrogen-
burning shell, the induced variation in the threshold value ∆Ωth is
much more limited than for tw. Figure 4 indicates that it is lower
than a factor of two. Hence, the conclusions made in Sect. 4.1
again qualitatively hold. Figure 4 also shows that the higher νp,
the lower ∆Ωth, whatever the value of log g. Indeed, following
Eq. (5), an increase in νp enhances the amplitude of the waves
whose frequencies are higher than νp at the expense of the ones
whose frequencies are lower than νp. The part of the wave spec-
trum with high enough energy to efficiently modify the inner-
most rotation is thus extended toward higher frequencies. There-
fore, a lower value of the frequency Doppler-shift and so of ∆Ωth
is needed for these waves to counteract the radiative damping,
reach the innermost layers and efficiently extract angular mo-
mentum from them.

Effect of a sharp rotation profile. We also tested the impact
of a sharp rotation profile as defined by Eq. (13). As shown in
Figs. 4 and 5, such a profile strongly prevents IGW from reach-
ing the helium core, unless the amplitude of the differential ro-
tation is very large. Compared to a smooth rotation profile (see
Fig. 2), retrograde IGW are more importantly damped above the
hydrogen-burning shell because of a lower frequency Doppler-
shift, unlike the prograde ones that can go deeper into the star.
At a given value of ∆Ω, the asymmetry between prograde and
retrograde components is thus reduced compared to the case
of a smooth profile. Therefore, once IGW reach the hydrogen
burning-shell, the retrograde waves that more efficiently deposit
angular momentum into the medium are shifted toward higher
frequencies. Since the wave spectrum is a decreasing function
of frequency, they deposit much less momentum than in the
smooth case. Figure 4 shows that ∆Ωth must be in general very
large to enable IGW to decelerate the core rotation, with val-
ues much higher than the observations on both subgiant and red
giant branches. We can see that ∆Ωth is very small only at the
very beginning of the subgiant branch where a strong rotation
gradient has not developed yet. Therefore, we conclude that a
sharp rotation profile, with a large gradient in the vicinity of the
hydrogen-burning shell, prevents IGW from reaching the inner-
most layers and to modify the inner rotation rate as soon as the
beginning of the post-main sequence (i.e., in both subgiant and
red giant stars).
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Fig. 6. Theoretical threshold for the amplitude of the radial-differential rotation as a function of the log g for the considered evolutionary sequences.
It is computed using the default values of the parameters given in Sect. 3.2 and assuming a smooth rotation profile as defined in Eq. (12). The
observations in subgiant stars, ∆Ωobs, are represented with error bars and masses in units of solar mass (Deheuvels et al. 2014, see Table 1).
The vertical red dashed line symbolizes the transition between the subgiant phase to the beginning of the RGB. The maximum amplitude of the
differential amplitude on the RGB as expected from the observations by Mosser et al. (2012a) is indicated by the horizontal thick black line.

In summary, variations in the plume parameters F0, b and
especially νp have quantitative impacts on the transport by IGW
throughout the radiative zone of stars. Nevertheless, they do not
qualitatively modify the conclusions made in Sect. 4.1 for sub-
giant stars, as well as for red giant stars. Indeed, given the strong
sensitivity of tw on ∆Ω below the hydrogen-burning shell (see
Appendix 2.4.8 for an explanation), large variations in the pa-
rameters have only moderate effects on ∆Ωth that remains within
an order of magnitude from the observations in subgiants. We
have also demonstrated that a sharp rotation profile, with a large
rotation gradient near the hydrogen-burning shell, prevents IGW
from spinning down, on their own, the helium core in the post-
main sequence.

5. Observational evidence for a wave-driven
regulation mechanism in subgiant stars?

5.1. Influence of the stellar mass

We also investigated the influence of the stellar mass on the re-
sults provided in Sect. 4. To do so, we considered the 1, 1.15,
1.3 and 1.45 M� models represented in Fig. 1. This mass range
is typical of subgiant stars observed with Kepler. For all the con-
sidered models, the wave-related timescale was computed as-
suming a smooth rotation profile, Eq. (12), and using the default
values for the plume parameters as described in Sect. 3.2. In all
cases, we find a similar qualitative behavior to the one depicted
in Fig. 3. Whatever the mass, IGW can efficiently spin down
all the region below the hydrogen-burning shell if the amplitude
of the differential rotation is higher than a given threshold. This
theoretical threshold ∆Ωth is displayed in Fig. 6 as a function of
log g and the mass.

5.2. Comparison with the observations

The theoretical thresholds are compared to the amplitude of the
differential rotation observed in six Kepler subgiant and early red
giant stars studied by Deheuvels et al. (2014, see Table 1) and the
upper value of the core rotation observed in more evolved red gi-
ant stars by Mosser et al. (2012b). The influence of the mass on
the threshold value, as well as the comparison with the observa-
tions, differ according to the evolutionary status.

Red giant stars (log g & 3.55). Figure 6 shows that ∆Ωth is
larger than about 10 µrad s−1 in this mass range, which is well
above the core rotation rates observed in red giants. We conclude
that IGW are unable to affect, on their own, the internal rotation
of these stars whatever the mass. Again, a large magnitude of
the radiative damping is the cause. Moreover, Fig. 6 shows that,
at a given log g, ∆Ωth converges toward the same value for all
masses. Indeed, stars on the RGB are ascending the Hayashi line
in the Hertzsprung-Russel diagram (see Fig. 1) and therefore,
share similar properties at a given value of log g. Their inter-
nal structures are comparable, and so are the magnitude of the
radiative damping, the contraction timescale and the convective
plumes parameters Vp, b/rt and νp ∼ ωc. This is illustrated in
Fig. 7. Therefore, angular momentum transport by IGW must
have a similar influence on the internal rotation of these stars, so
that ∆Ωth takes very close values whatever the mass for a given
log g.

Subgiant and early red giant stars (log g . 3.55). Figure 6
shows that the theoretical threshold for the differential rota-
tion amplitude, ∆Ωth, is in good agreement with the observed
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Fig. 7. Occurrence frequency (dotted lines) and width of the convective
plumes normalized by the radius at the top of the radiative zone (solid
lines), estimated at the base of the convective zone and plotted as a
function of log g. The plume occurrence frequency, νp, is assumed to
be equal to the convective turnover frequency, ωc, which was estimated
via the mixing-length theory. Each color is associated with a mass.

amplitude of the differential amplitude in subgiant and early
red giant stars. We find that ∆Ωth . 10 µrad s−1 for these stars.
Therefore, the conclusions made in Sect. 4.1.2 hold for the con-
sidered mass range. Figure 6 also shows that the higher the
mass, the lower the theoretical threshold in these stars. Indeed,
as shown in Fig. 7, the higher the mass, the higher the turnover
convective frequency (and also νp) and the ratio rt/b, so that, as
demonstrated in Sect. 4.2, the more efficient the angular momen-
tum transport by IGW. Therefore, the mass dependence of ∆Ωth
at given log g on the subgiant branch can be explained simulta-
neously by the increase in νp and rt/b as the mass increases.

5.3. IGW-driven regulation of the core rotation in subgiant
stars

More than comparable orders of magnitude, the theoretical
threshold values closely match the observations. Although the
1.26 M� star slightly deviates from the theoretical curve, it is
however not far enough to hinder the global agreement. Indeed,
such a mismatch can be simultaneously explained by a small er-
ror in the estimate of the log g, a moderate decrease in νp or in
rt/b (see Sect. 4.2), as well as uncertainties on stellar modeling.
Thus, this agreement supports the idea that angular momentum
transport by plume-induced IGW could operate as a regulating
actor of the core rotation evolution in subgiant and early red gi-
ant stars.

The scenario can be presented as follows. During the evolu-
tion on the subgiant branch, the internal structure of stars (or the
magnitude of the radiative damping) and the characteristics of
the convective plumes (i.e., F0, νp and b) imposes a threshold
value for the differential rotation, ∆Ωth, above which plume-
induced IGW can counteract the spin up of the innermost layers
due to their contraction. As the core contracts, the wave radiative
damping increases throughout the radiative zone, resulting in an
increase in the value of the threshold over time (see Sect. 4.1.2
and Appendix 2.4.7). Since the amplitude of the differential rota-
tion obtained considering only local conservation of angular mo-
mentum is much higher than the observations (e.g., Ceillier et al.
2013, see Fig. 8), we deduce that the increase in ∆Ωth occurs
on a characteristic timescale much longer than the contraction

timescale. Furthermore, in the limit of slow rotators, we can as-
sume that rotation does not modify the equilibrium structure, so
that variations in the instantaneous amplitude of the differential
rotation ∆Ω have no consequences on ∆Ωth at a given evolution-
ary stage. In this framework, let us consider a star initially at
the end of the main sequence with an amplitude of the differen-
tial rotation ∆Ω0. At this stage, the system can evolve follow-
ing two ways. If ∆Ω0 ≤ ∆Ωth, then the core contraction domi-
nates and ∆Ω increases with a timescale of tcont. Otherwise, IGW
spin down the core of the star and ∆Ω decreases on characteris-
tic timescales lower than the contraction timescale. Therefore,
since the threshold value evolves on much larger timescales in
both cases, ∆Ω becomes closer and closer to ∆Ωth in a first tran-
sient phase. After a reasonable time span, a stable steady state
is reached in which the amplitude of the differential rotation is
close to the threshold (i.e., ∆Ω ∼ ∆Ωth), independently of the
initial conditions ∆Ω0. The stability of the steady state is the
consequence of the combined effects of the core contraction and
of the angular momentum transport by IGW, which will counter
any departure from this equilibrium. Finally, since the contrac-
tion timescale is much smaller than evolution timescale on the
subgiant branch, the steady state is reached well before the be-
ginning of the red giant branch. Therefore, the dynamical equi-
librium between the core contraction and the transport by IGW
holds over time so that ∆Ω follows ∆Ωth during the subgiant
evolution, whence the observational agreement.

6. Discussion

6.1. Comparison with the transport by turbulence-induced
IGW

Fuller et al. (2014) followed a similar approach as we used
in this work, but considering angular momentum transport by
turbulence-induced IGW. They assumed that IGW are generated
by convective motions in the overshooting region and used the
excitation model proposed by Lecoanet & Quataert (2013). As
a result, they showed that the evolution of the helium core rota-
tion should decouple from the influence of convectively-excited
IGW when stars reach about the middle of the subgiant branch.
As explained in their paper and discussed in Appendix A, this is
the consequence of the increase in the wave radiative damping
as the innermost layers contract. However, our conclusions differ
from their results since we observe that the decoupling happens
later, at the beginning of the ascent of the RGB. This difference
can be explained by the two main following points.

Firstly, the amplitude and the shape of the wave excita-
tion spectrum considered in both studies are different. The
turbulence-induced wave spectrum is a decreasing power law
with respect to frequency whereas the plume-induced one has a
Gaussian profile. Moreover, turbulence-induced IGW have most
of their energy in low angular degrees following the model of
Lecoanet & Quataert (2013). Since the wave radiative damping
is in addition proportional to l3, Fuller et al. (2014) considered
l ∼ 1, |m| = 1 wave components only. Conversely, plume-
induced IGW are preferentially excited at higher angular de-
grees. Indeed, the size of the plumes is three to ten times smaller
than the size of the biggest convective eddies as described by
the MLT along the evolutionary tracks that we have considered.
Therefore, the effect of angular degrees l & 2 must be taken into
account in this case.

Secondly, Fuller et al’s diagnosis is based on the compari-
son of the contraction timescale with the characteristic timescale
on which IGW can modify the total angular momentum inside
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a sphere of radius r. It is therefore representative of the mean
effect induced by the transport by IGW on each mass shell over
this region and does not account for local effects. The authors
argued in favor of this timescale because it does not depend on
the rotation profile below the radius r, which is generally un-
known. However, we stress that it depends on the rotation pro-
file above the radius r. Indeed, the differential rotation creates
the asymmetry between prograde and retrograde waves and op-
erates like a wave filter via the wave damping in Eq. (11) (see
the difference between the results obtained considering either a
smooth or a sharp rotation profile in Fig. 5). Furthermore, we
have seen in Sects. 4 and 5 that its influence on the transport by
IGW is predominant in the innermost layers of stars. Therefore,
we preferred to use the local wave-related timescale, as defined
in Eq. (4), and assumed a given rotation profile. To compensate
our lack of knowledge about the rotation profile, we considered
a smooth and a sharp shape for the profile. Although both ap-
proaches are complementary, the one used in this work has the
advantage of taking into account the amplitude of the differential
rotation whose value can be constrained by seismic observations.

In this framework, it is worth investigating the efficiency of
the angular momentum transport by turbulent-induced IGW us-
ing the comparison between the contraction timescale and the
local wave-related timescale as given in Eq. (4). We consid-
ered four models on the subgiant branch with log g ∼ 3.75
and masses of 1, 1.15, 1.3 and 1.45 M�. We used the generation
model by turbulent pressure as described in Kumar et al. (1999),
with wavefunctions estimated in the WKB approximations, and
considered a smooth rotation profile as given in Eq. (12). Finally,
we found that turbulence-induced IGW can counteract the spin
up of the region below the hydrogen-burning shell if the am-
plitude of the differential rotation is higher than 12, 10, 8 and
6 µrad s−1 for 1, 1.15, 1.3 and 1.45 M�, respectively. These val-
ues are well above observations at this value of log g. This result
is in agreement with the conclusions of Fuller et al. (2014). They
are also higher than the threshold amplitudes obtained by consid-
ering IGW generated by penetrative convection. Therefore, we
can conclude that plume-induced IGW are more efficient than
turbulence-induced ones on the subgiant branch. Unlike plume-
induced IGW, turbulence-induced IGW seem unable, on their
own, to explain the observations in subgiant stars.

6.2. Extraction mechanism and influence of the differential
rotation amplitude in the inner radiative region

In the theoretical framework used in this work, IGW and rota-
tion are intricately related. The role of the amplitude of the dif-
ferential rotation on the transport by IGW has been shown to be
essential. Nevertheless, the interpretation of the behavior of tw
with ∆Ω in Sect. 4.1.2 is not straightforward. Indeed, following
Eq. (10), the angular momentum transport by IGW is the conse-
quence of the competition between three main physical ingredi-
ents: the magnitude of the radiative diffusion, the excitation wave
spectrum and the oscillation frequency Doppler-shift. In order
to grasp the extraction mechanism by IGW, a semi-analytical
toy model has been developed and is described in Appendix B.
Hereafter, we summarize the main points learned from the toy
model.

The efficiency of the angular momentum transport in-
duced by IGW in Eq. (1) is represented by the divergence
of the wave flux, J̇w. This latter can be approximated
by J̇w(r) ≈ τ(r)Fr,w(rt)e−τ(r)/r, with Fr,w given by Eq. (10),
τ(r) ∼ r/LD(r) and LD the local radial wave damping length-
scale (see Appendix A for details). Therefore, the radiative

damping must be neither too high nor too low for J̇w to be high
enough. Consequently, the balance is reached and IGW are effi-
ciently absorbed into the medium if the wave radiative damping
in Eq. (11), or the acoustic damping depth, is close to unity (i.e.,
τ ∼ 1). From this statement, we can deduce several features of
the transport by IGW whittled down to the four following points:

1. Since the wave frequency Doppler-shift is quasi null at
the top of the radiative zone (i.e., δΩ(rt) ≈ 0), very low-
frequency high-degree IGW rapidly satisfy τ ∼ 1 as they
travel downwards. They are then absorbed just below the
base of the convective zone. As mentioned in Sect. 4.1.1, the
wave-related timescale is very low in this region. IGW are
thus able to modify the rotation rate on very short timescales.

2. Deeper in the star, the retrograde IGW (m < 0) satisfying
τ ∼ 1 have lower frequencies ω than progade ones (m > 0)
at given |m| and l. Since the excitation wave spectrum is a de-
creasing function of ω, retrograde IGW deposit more angu-
lar momentum than prograde ones. As a result, the net wave
flux of angular momentum is negative, J̇w > 0 in Eq. (1)
and IGW can therefore counteract the spin up due to the core
contraction.

3. At given l, |m| and ω, an increase in ∆Ω leads to a decrease
in the wave radiative damping in Eq. (11) for the retrograde
IGW that can therefore go deeper into the star. In other
words, in a given layer, the higher ∆Ω, the lower the wave
frequencies absorbed into the medium and thus the higher
the momentum transferred into the mean flow. As a conse-
quence, an increase in the amplitude of the differential rota-
tion results in an increase in the efficiency of the transport by
IGW, and so a decrease in the wave-related timescale in deep
layers of the radiative zone.

4. The absorption condition τ ∼ 1 in the helium core can be
satisfied by IGW with high angular degrees on the condition
that the Doppler-shift |m|∆Ω is large enough and that their
frequencies ω are high enough to overcome the damping at
the top of the radiative zone (where δΩ(r) ≈ 0). Moreover,
since the wave excitation spectrum Eq. (5) is maximum for
lmax ∼ rt/b � 1, high-l high-|m| retrograde IGW can be re-
sponsible for the larger deposit of angular momentum in the
helium core. This is what is observed in the subgiant models
considered in this work when the amplitude of the differ-
ential rotation is of the order of magnitude of the threshold
value (see also discussions in Sect. 6.4 and Appendix 2.4.6).
This statement goes against the commonly adopted view in
which only low-degrees IGW can affect the rotation of the
inner layers because of the wave damping depending on l3.

Therefore, simple arguments based on the condition of absorp-
tion given by τ ∼ 1 enable us to understand the influence of
the differential rotation amplitude on the efficiency of the trans-
port by IGW. It is also worth mentioning the high sensitivity
of the wave-related timescale in the helium core to the value of
the differential rotation amplitude. An explanation is given in
Appendix 2.4.8. Such features are consistent with the behavior
observed in Sect. 4. We refer to Appendix B for a more thorough
and technical analysis.

6.3. Uncertainties related to the generation of IGW
in evolved stars

The modeling of the transfer of energy from convective plumes
into waves relies on simplifying assumptions. Here, we briefly
address the main issues concerning the generation model and
refer to Pinçon et al. (2016) for a more detailed discussion.
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As a first check, we found that the estimate of the wave en-
ergy flux induced by penetrative convection at the base of the
convective zone is lower than 1% of the stellar energy flux for
all the considered models, that is well lower than the plume ki-
netic energy flux. The assumption of no feedback from the waves
on the plumes in the penetration region is thus verified, as well
as the conservation of energy.

Following Eq. (5), the model also depends on several param-
eters. Considering a wide range of values for the model parame-
ters, we have shown in Sect. 4.2 that the uncertainties related to
their estimate do not qualitatively modify the conclusions made
from the timescales comparison in Sect. 4.1.

Lastly, the generation model neglects the effect of the
Coriolis force on the waves in the excitation region. This hy-
pothesis is valid for wave frequencies verifying ω & 2Ω(rt), with
Ω(rt) the rotation rate at the top of the radiative zone. Near the
top of the radiative zone, Deheuvels et al. (2014) found rotation
rates going from about 1 to 0.5 µrad s−1 for values of log g going
from 3.85 to 3.6 on the subgiant branch. This is in the same order
of magnitude as the convective turnover frequency, and so, by
assumption, as the plume occurrence frequency νp (see Fig. 7).
Therefore, a non-negligible part of the wave excitation spectrum
at low frequencies, say forω below more or less 1 µrad s−1 for all
the considered models, is affected by rotation. However, the low-
frequency waves such as ω . 2Ω(rt) are expected to be absorbed
just below the base of the convective zone, so that only the up-
permost layers of the radiative zone are concerned by the uncer-
tainties related to this point. Indeed, as discussed in Sect. 6.4,
this range of low frequencies is not responsible for the deposit
of angular momentum below the hydrogen-burning shell and,
therefore, has no effect on the results obtained in this region.

6.4. Influence of the Coriolis force on the propagation of IGW

For the sake of simplicity, the modeling of the angular momen-
tum transport by IGW and the derivation of Eq. (10) also ne-
glect the effect of the Coriolis force on the propagation of the
waves (e.g., Mathis 2009), as well as the wave heat flux (e.g.,
Belkacem et al. 2015a,b). Such approximations remain valid if
the wave intrinsic frequency with respect to the co-rotating
frame is higher than twice the rotation rate, or in other words,
ω − mδΩ(r) & 2Ω(r). While this is justified in the case of mixed
modes with high oscillation frequencies, this is verified neither
for waves near their critical layers (i.e., where ω = mδΩ), nor for
low-frequency waves. However, it turns out a posteriori that the
retrograde IGW (m < 0) that efficiently deposit angular momen-
tum into the medium below the hydrogen-burning shell, when
the differential rotation amplitude is equal to about the threshold
∆Ωth, respect the condition ω + |m|δΩ(r) & 2Ω(r) throughout
the radiative zone, or equivalently ω + (|m| − 2)δΩ(r) & 2Ω(rt)
whatever r. Indeed, at the very beginning of the subgiant branch
where ∆Ωth . νp, we find that retrograde IGW such as ω &
7 µrad s−1 and l ∼ |m| ∼ 1 are mainly responsible for the deposit
of angular momentum below the hydrogen-burning shell. Later
on the subgiant branch where ∆Ωth & νp, we find this time that
retrograde IGW such as 2 . ω . 6 µrad s−1 and l ∼ |m| & 20 effi-
ciently transport angular momentum into the helium core. Such
high azimuthal numbers are possible because the wave energy
flux generated at the base of the convective zone, Eq. (5), is max-
imum for lmax ∼ rt/b � 1 (see Fig. 7). Such types of behavior are
confirmed and discussed through the toy model in Appendix B.4.
Moreover, since the rotation rate at the top of the radiative zone,
Ω(rt), is about or lower than 1 µrad s−1 over the subgiant branch
from the observations by Deheuvels et al. (2014; see discussion
in Sect. 6.3), we checked in all the considered cases that these

wave components satisfy ω+ (|m|−2)δΩ(r) & 2Ω(rt) whatever r.
This suggests that the results of the timescales comparison in the
helium core of the considered models is only slightly impacted
by the effect of the Coriolis force. Therefore, although further
work is needed to properly tackle the issue, neglecting the Cori-
olis force seems reasonable for a first estimate.

7. Conclusions and perspectives
In this work, we explored the efficiency of the angular momen-
tum transport induced by IGW from the subgiant branch to the
beginning of the red giant branch of low-mass stars. We con-
sidered several models chosen at different evolutionary stages
and assumed a given internal rotation profile for each of them.
The wave flux of angular momentum was estimated using the
semi-analytical generation model by penetrative convection as
proposed in Pinçon et al. (2016). As a result, the local timescale
associated with the transport induced by IGW, tw, was computed
and compared to the contraction timescale, tcont, throughout the
radiative zone of the considered models.

We found that IGW can counteract the spin up due to the con-
traction of the layers throughout the helium core (i.e., tw < tcont)
when the amplitude of the radial-differential rotation between
the center of the star and the top of the radiative zone is higher
than a threshold value. Indeed, an increase in the differential
rotation amplitude lowers the radiative damping of retrograde
IGW that can thus reach deeper layers and extract more angu-
lar momentum from the helium core. In subgiant stars, we ob-
tained theoretical thresholds for the radial-differential rotation
amplitude that are consistent with the values of the differen-
tial rotation observed by Deheuvels et al. (2014). We also found
that the angular momentum transport by plume-induced IGW is
more efficient than the one by turbulence-induced IGW. We then
conclude that plume-induced IGW are able to hinder, on their
own, the establishment of a strong differential rotation driven by
the core contraction along the evolution on the subgiant branch.
Unlike subgiant stars, the theoretical thresholds obtained in red
giant stars turned out to be well above the core rotation rates
inferred by Mosser et al. (2012b). This mainly results from an
excessive magnitude of the radiative damping in these stars (see
also Fuller et al. 2014, for turbulence-induced IGW). This dis-
crepancy leads to the conclusion that IGW are unable, on their
own, to affect the innermost rotation of red giant stars. An ad-
ditional mechanism must be found to efficiently spin down their
core. In both cases, the results remain valid under the assumption
of a smooth rotation profile between the base of the convective
zone and the center of the star. We also checked that these con-
clusions qualitatively hold for a wide range of values considered
for the excitation model parameters.

The theoretical thresholds for the radial-differential rotation
amplitude were shown to match in a noteworthy way the obser-
vations in the six Kepler subgiant and early red giant stars stud-
ied by Deheuvels et al. (2014). Such similarities are interpreted
as the result of a regulation process driven by plume-induced
IGW during the subgiant stage. In this scenario, the combined
effects of the core contraction (inducing a spin up of the core)
and of the transport by IGW (inducing a spin down of the core)
lead to a stable steady state in which the radial-differential rota-
tion amplitude remains close to the threshold values (see Sect. 5
and Fig. 6). If such a wave-driven process is further confirmed,
it will have several consequences. First, the existence of a sharp
rotation profile, with a strong gradient in the vicinity of the
hydrogen-burning shell, will be excluded since it prevents IGW
from reaching the innermost layers of stars. Second, the increase
in the number of observations in subgiant stars will provide a
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diagnosis to constrain the parameters of the generation model
by penetrative convection. Indeed, the matching between the ob-
served amplitudes of the differential rotation and the theoretical
thresholds will bring information on the plume parameters and
will give us the interesting opportunity to indirectly probe the
convective plumes at the base of the convective zone along the
subgiant branch. Even though this interpretation is based on a
comparison with only six observed subgiant stars, such a regu-
lation mechanism is promising and stresses out the major role
that IGW can play in the rotation history of stars. Additional ob-
servational constraints, as well as more exhaustive computations
are needed in future to asses the relevance of this process.

The study performed in this work demonstrates that the an-
gular momentum transport by plume-induced IGW in subgiant
and early red giant stars is efficient and calls for more sophisti-
cated investigations. The next step is to properly implement the
transport by IGW generated by penetrative convection with the
other transport mechanisms in a 1D stellar evolution code. While
the timescales comparison as it is used in this work gives a hint
about the global influence of IGW on the innermost layers of
stars, the resulting conclusions ignore effects induced by IGW
in very localized regions of the radiative zone, as well as the
coupling between the various transport processes. For instance,
we do not exclude that IGW that are responsible for the large
deposit of angular momentum above the hydrogen-burning shell
in red giant stars (tw/tcont � 1 in Fig. 3) could interact with
another transport process, for instance the meridional circula-
tion, and could indirectly boost the extraction of angular mo-
mentum from the core. As another example, we have shown
that IGW can efficiently slow down the rotation mean flow in
the vicinity of the center in the subgiant stars (tw/tcont � 1 in
Fig. 3, see also Appendix A.3 for explanations). This trend has
already been observed in previous numerical computations (e.g.,
Talon & Charbonnel 2005; Charbonnel et al. 2013; Mathis et al.
2013). We can thus wonder how this could influence the global
evolution over time of the rotation profile throughout the radia-
tive zone of subgiant stars. Modeling the dynamical evolution of
the rotation profile with the interactions between all the trans-
port processes along stellar lifetimes is needed to answer such
questions and is a necessary step toward a full and complete un-
derstanding of the rotation history of stars.

On a long term, investigations will have to go beyond the
simplifying assumptions used for the description of the convec-
tive plumes and the propagation of internal waves. The influ-
ence of the interaction with the upflow and of the sphericity
in evolved stars will have to be included in the estimate of the
plume parameters. Further theoretical efforts are also necessary
to describe the plume destruction process, which remains still
poorly known. In this framework, 3D numerical simulations of
extended convective envelopes with more realistic Prandtl and
Reynolds numbers (or in a regime from which we can scale to
the realistic dimensionless numbers in stars) would help to con-
strain the plume parameters. Moreover, the coupling between
IGW and shear-induced turbulence near the critical layers (see
Alvan et al. 2013, for an exhaustive description) and the effect
of the over-transmission or reflection processes on the transport
by IGW will have to be investigated. Also, the contribution of
the wave heat flux to the angular momentum transport equation
(e.g., Belkacem et al. 2015b), as well as the effect of the Coriolis
force and of the rotation gradient on the propagation of the waves
(e.g., Mathis 2009), will have to be properly taken into account.
Undertaking a global study of the transport by internal waves in
stellar radiative interiors that tackles with the abovementioned
issues is challenging since it requires a 2D description of the

internal waves and of the plume dynamics throughout an ex-
tended convective envelope.
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Appendix A: Wave radiative damping

In the following, we describe the behavior of the wave damping
throughout the radiative zone of stars as well as its evolution over
time. Guided by stellar models, we propose a simple modeling
that enables us to investigate the angular momentum transport by
IGW in a tractable way. This model will be used in Appendix B.

A.1. Spatial behavior and time evolution

To discuss the behavior of the wave damping, it is convenient
to define the local radial damping lengthscale of the wave en-
ergy, LD. It is defined by

LD(r, ω̂, l) ≈
ω̂4r3

[l(l + 1)]3/2KN2NT
, (A.1)

so that Eq. (11), or the damping acoustic depth, can be rewritten

τ(r, ω̂, l) =

∫ rt

r

dr′

LD(r′, ω̂, l)
, (A.2)

with ω̂ the wave intrinsic frequency defined in Eq. (8), r the ra-
dius, l the wave angular degree, K the radiative diffusivity, N
(NT) the Brunt-Väisälä frequency with (without) the gradient of
the chemical composition, and rt the radius at the top of the ra-
diative zone. LD is plotted in Fig. A.1 for the subgiant and the red
giant 1 M� models that are considered as examples in Sect. 4.1.
For both models, the radial damping lengthscale decreases by
more than five orders of magnitude from the top of the radia-
tive zone to the hydrogen-burning shell where it is minimum.
A value of the ratio LD/r much lower than unity indicates that
τ � 1. This means that the wave is locally absorbed into the
medium and cannot reach deeper layers. In both examples dis-
played in Fig. A.1, the considered wave component, character-
ized by l = 1 and ω̂ = 1 µrad s−1, is considerably dissipated
immediately after the top of the radiative zone. Nevertheless,
following Eq. (A.1), an increase in the intrinsic wave frequency
(i.e., following Eq. (8), an increase in ω or in −mδΩ) leads to
a increase in LD such that the wave can go deeper into the star.
In turn, a value of LD/r much higher than unity means that the
wave will not be damped enough to locally deposit momentum
into the medium. Figure A.1 also shows that LD is more than
two orders of magnitude lower for a red giant than for a subgiant
star. Indeed, as the core starts contracting at the end of the main
sequence, the Brunt-Väisälä frequency increases in the radiative
zone and the radius of a given mass shell decreases, resulting in
an important decrease in Eq. (A.1). Incoming waves are there-
fore more rapidly damped in red giant than in subgiant stars for
a given value of the wave intrinsic frequency. We refer the reader
to the discussion in Appendix 2.4.7 for more details about the
impact of the radiative damping on the transport by IGW.

To derive Eq. (A.1), we note that we have supposed that the
factor N/(N2− ω̂2)1/2 in the integrand of Eq. (11) is always close
to unity. This is true far away from a reflexion point (i.e., where
N2 = ω̂2). When ω2 ∼ N2, we can show by a first-order ex-
pansion that the integral Eq. (11) does not diverge and that the
contribution near this point to the total integral remains small.
Therefore, waves are not dissipated into the medium near a re-
flection point, unlike at critical layers (i.e., where ω̂ = 0).

A.2. An approximate for LD

Estimates of LD for stellar models show that it is possible to
approximate Eq. (A.1) with the help of power laws. We can then

Fig. A.1. Ratio of the characteristic radial damping lengthscale of the
wave energy as given in Eq. (A.1) to the radius for both 1 M� models
considered in Sect. 4.1. It is plotted as a function of the radius normal-
ized by its value at the top of the radiative zone, rt, for a degree l = 1
and an intrinsic wave frequency ω̂ = 1 µrad s−1. The vertical dotted
lines localizes the hydrogen-burning shell in both models. The profile
assumed in Appendix A.2 is represented by the red dashed line for the
subgiant model.

assume that

LD ≈


ω̂4r3

t

[l(l + 1)]3/2KtN3
t

(
r
rt

)β
if rHS < r < rt,

R

[l(l + 1)]3/2

(
ω̂

1 µrad s−1

)4

if r < rHS,

(A.3)

where the subscript t refers to quantities evaluated at the top
of the radiative zone, β is a rational number, rHS is the ra-
dius at the hydrogen-burning shell and R is a constant so that
LD(r−HS) ≥ LD(r+

HS). We note that Eq. (A.3) does not take the gra-
dient in the chemical composition into account, so that N = NT.
All these quantities can be provided by a stellar model. A com-
parison with the 1 M� subgiant model, considered in Sect. 4.1,
is plotted in Fig. A.1. For our purpose, the discontinuity in the
modeling at the hydrogen-burning shell does not matter. Indeed,
since LD sharply increases below the hydrogen burning-shell,
the contribution of this region to the total wave damping inte-
gral is negligible at first approximation compared to the one of
the region around the hydrogen-burning shell. The useful phys-
ical quantities extracted from the model are listed in Table A.1.
This set of parameters will be used as inputs for the toy model
presented in Appendix B.

A.3. Transport by IGW near the center (r . rHS )

Without going in more details, it is already possible to deduce
from the description given in Sect. A.2 how the transport by IGW
behaves in the vicinity of stellar centers. Indeed, since rHS � rt
in evolved stars, we can assume that δΩ has already reached its
maximum amplitude ∆Ω when r . rHS, so that ω̂ ≈ ω − m∆Ω.
Therefore, following Eq. (A.3), LD can be supposed to be con-
stant for r . rHS. As a result, Eq. (A.2) can be rewritten as

τ(r, ω̂, l) ≈
[l(l + 1)]3/2

ω̂4

(rHS − r)
R

+

∫ rt

rHS

dr′

LD(r′, ω̂, l)
, (A.4)
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Table A.1. Parameters extracted from the 1 M� subgiant model consid-
ered in Sect. 4.1, with log g = 3.86 and log L/L� = 0.35.

1 M� subgiant model parameters

Nt/2π 85 µHz β 5

rt 6.6 × 108 m rt/b 19.2

rHS 3.1 × 107 m ∆Ωth/2π 780 nHz

Kt 2.8 × 103 m2 s−1 νp ∼ ωc 0.6 µHz

R 2.1 × 103 m Vp 174 m s−1

Al=1 3.4 × 10−11 Nt/∆Ωth 109

provided that ω̂ > 0. Using Eq. (10), we thus find that Eq. (2)
is almost proportional to 1/r2 when r . rHS. Therefore, tak-
ing ρ ≈ ρ(r = 0) and Ω ∼ Ω(r = 0) in this region, the wave-
related timescale, Eq. (4), becomes proportional to r4. As a con-
sequence, the influence of the transport by IGW on the rotation
increases as r . rHS and r tends to zero, and the wave-related
timescale can become much lower than the contraction timescale
in the vicinity of the center. Such a trend is well reproduced by
numerical computations (see Fig. 3). It results from the fact that
the moment of inertia of a mass shell behaves as r2 as r de-
creases, and that the wave flux increases as 1/r2 as it focuses
toward the center. This result holds true on the condition that δΩ
is constant in the vicinity of the center.

To go further, a more detailed analysis of the wave spectrum
and the amplitude wave flux requires accounting for the wave
damping from the base of the convective zone to the hydrogen-
burning shell and modeling the rotation profile. This will be sub-
ject to the next section.

Appendix B: Angular momentum transport by IGW
in a semi-analytical toy model

In this section, we present simplified analytical expressions of
the wave damping integral (or the damping acoustic depth), τ,
and of the divergence of the angular momentum wave flux, J̇w,
between the hydrogen-burning shell and the base of the convec-
tive envelope. The following developments rely on two basic as-
sumptions. Firstly, the differential rotation is supposed to lin-
early vary throughout the radiative zone of the star,

δΩ(r) = ∆Ω

(
1 −

r
rt

)
for r ≤ rt, (B.1)

where ∆Ω > 0 is the maximum amplitude and rt is the radius
at the top of the radiative zone. Secondly, the radial damping
lengthscale of the wave energy is approximated by power laws
as given by Eq. (A.3). Such a toy model enables us to easily
identify the important parameters of the transport by IGW and to
investigate their influence on its efficiency. In particular, it high-
lights the role of the amplitude of the differential rotation and
facilitates the interpretation of the results delivered in the main
text.

B.1. Wave damping integral above the hydrogen-burning
shell (rHS . r ≤ rt)

The above assumptions make the computation of the wave
damping integral possible in a semi-analytical way. Using

Eqs. (B.1) and (A.3) for rHS < r < rt, Eq. (A.2) can be expressed
as

τ(r, ω̂, l) = Al χ
4
|m| I

β

(
r
rt
,

ω

m∆Ω

)
, (B.2)

provided that ω > mδΩ(r) and where we have defined

Al =
[l(l + 1)]3/2Kt

r2
t Nt

(B.3)

χ|m| =
Nt

|m|∆Ω
(B.4)

Iβ (z, X) =

∫ 1

z

y−β

[X − (1 − y)]4 dy. (B.5)

If ω < mδΩ(r), the waves have already been dissipated in up-
per layers (cf. critical layers). The damping process is thus con-
trolled by two main parameters, Al and χ|m|. The first one is rep-
resentative of the intensity of the radiative diffusion whereas the
second one measures the frequency Doppler-shift.

B.1.1. Exact solution for Iβ(z,X)

The solutions of Eq. (B.5) can be expressed in different ways
depending on the exponent β and the quantity a = X − 1.

Case when β ∈ N: Iβ is directly deduced by a recurrence rela-
tion. We found, following Gradshteyn et al. (2007),

Iβ(z, X) =
1

1 − β

[ y1−β

a(a + y)3

]1

z
+
β + 2

a
Iβ−1(z, X)

 , (B.6)

with the initial condition for β = 1 given by

I1(z, X) =

[
11a2 + 15ay + 6y2

6a3(a + y)3 −
ln |a + y| − ln y

a4

]1

z
· (B.7)

Case when β < N: then, if a ≥ −1,

Iβ(z, X) =

− 2F1

(
β, β + 3, β + 4; a

y+a

)
(β + 3)(y + a)β+3


1

z

, (B.8)

which is also valid when β is an integer, or otherwise

Iβ(z, X) =

−y1−β 2F1

(
4, 1 − β, 2 − β;− ya

)
a4(β − 1)


1

z

, (B.9)

where 2F1 is the hypergeometric function.
As an illustration, the integral is displayed in Fig. B.1 for

β = 5 with z = r/rt and X = ω/m∆Ω. Two values of z are
considered. Negative values of X correspond to retrograde IGW
(m < 0) and positive values of X correspond to prograde IGW
(m > 0), on the condition that they have not been dissipated near
their critical layers yet (i.e., such as X > 1 − r/rt or, similarly,
ω̂/m∆Ω > 0).
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Fig. B.1. Left: damping integral I5(z, X) as defined in Eq. (B.5) for retrograde IGW (m < 0) and as a function of X = ω/m∆Ω (solid lines). The
dashed lines represent the approximate expressions given in Eqs. (B.10) and (B.11). Right: damping integral I5(z, X) for prograde IGW (m > 0)
as a function of X − 1 + r/rt = ω̂/m∆Ω (solid lines). The dashed and the dashed-dotted lines respectively represent the approximate expressions at
high and low values for ω̂/m∆Ω as given in Eq. (B.12). Both panels: two values of z = r/rt are considered, r/rt = 0.9 (blue color) and r/rt = 0.1
(green color). The vertical dotted lines indicates the values at the transition of regime, Xt, as defined in Appendix B.1.2.

B.1.2. Approximate solutions for Iβ

We now search for approximate expressions of the wave damp-
ing integral. Considering different assumptions on the values of
z and X leads us to distinguish three cases:

1. Retrograde IGW (m < 0, X < 0) for z ∼ 1:

Iβ(z, X) ≈


1

β − 1
z−β+1 − 1
|X|4

if |X| & Xt = 3(1 − z)

1
3|X|3

otherwise.

(B.10)

2. Retrograde IGW (m < 0, X < 0) for z � 1:

Iβ(z, X) ≈


1

β − 1
z−β+1 − 1
(|X| + 1)4 if |X| & Xt =

(
(β − 1)/3
z−β+1 − 1

)1/3

1
3|X|3

otherwise.

(B.11)

3. Prograde IGW (m > 0, X > 1 − z) for 0 < z < 1:

Iβ(z, X)≈


1

β − 1
z−β+1 − 1

(X − 1 + z)4 if X & Xt =
3(z − zβ)
β−1

+1−z

1
3

z−β

(X − 1 + z)3 otherwise.

(B.12)

In all cases, the values of transition, Xt, were obtained by equat-
ing both approximate expressions at small and large |X| values.
These approximations are validated in Fig. B.1 by a comparison
with the exact solution.

B.1.3. Two regimes controlled by the Doppler-shift

In the three abovementioned cases, Fig. B.1 as well as
Eqs. (B.10)–(B.12) show that the wave damping integral is
composed of two regimes depending on whether the value of

|X| = ω/|m|∆Ω is greater than a transition value, denoted Xt, or
not. This transition value depends on the radius in the star, and
so on the distance already traveled by IGW. Above the transition
|X| > Xt, the wave damping integral is dominated by the damp-
ing that IGW suffer in the vicinity of the layer at radius r, which
is far enough of their critical layers for prograde IGW. Below
the transition |X| < Xt, the wave damping integral is dominated
either by the damping they have suffered in the layers at the top
of the radiative zone for retrograde IGW (i.e., where r ∼ rt), or
by the one they suffer near their critical layers for prograde IGW
(i.e., where r ∼ rt[1 − ω/m∆Ω]).

Therefore, at a given radius in the star, the magnitude of the
oscillation frequency Doppler-shift, m∆Ω, selects the wave fre-
quency at the transition between the two regimes. Figure B.1
and Eqs. (B.10)–(B.12) also show that a decrease in the radius r,
leading to an increase in the distance traveled by the waves, re-
sults in a decrease in the frequency at the transition. Indeed, the
contribution of the local damping becomes dominant for a larger
range of wave frequencies. We note that it also leads to a global
increase in the damping integral for all frequencies, since the
distance covered by the waves increases.

B.2. Divergence of the wave flux J̇w

It remains to express the divergence of the angular momen-
tum wave flux. To do so, we assume that IGW are excited in
a frequency range between 0 and Nt, with Nt the value of the
Brunt-Väisälä frequency at the top of the radiative zone. Using
Eqs. (5)–(11), the change of variable σ = ω/Nt, and assuming a
monotonously decreasing rotation profile, Eq. (2) can be rewrit-
ten in the following general form

J̇w(r) =

+∞∑
l=1

+l∑
m=1

(
Fl,|m|(r)

r

∫ 1

0
S (σ; B)Dl,|m| (σ, r) d lnσ

)
,

(B.13)
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with

Fl,|m|(r) =
|m|
νp

r2
t

r2 2F0
√

l(l + 1)e−
√

l(l+1)b2/2r2
t (B.14)

S (σ; B) = e−σ
2/4B2

, B =
νp

Nt
(B.15)

Dl,|m| (σ, r) = D̃l,+|m|(σ, r) − D̃l,−|m|(σ, r), (B.16)

where we have separated in Eq. (B.16) the retrograde (−|m|) and
prograde (+|m|) parts and defined

D̃l,m (σ, r) = H (σ̂m)
r

LD
e−τ (B.17)

σ̂m(r) =
ω̂

Nt
=
ω

Nt
− m

δΩ(r)
Nt

, (B.18)

and where LD is given by Eq. (A.1). The Heaviside function, H,
has been introduced to take into account that the prograde IGW
that have already reached their critical layers (i.e. such as ω̂ < 0)
have been totally dissipated.

Using the assumptions made in the toy model, Eqs. (A.3),
(B.3) and (B.4) for rHS ≤ r ≤ rt, Eq. (B.17) can be formulated
such as

D̃l,m(σ, r) = Alχ
4
|m|

( rt

r

)β−1 e−τ[
σχ|m| − sgn(m) (1 − r/rt)

]4 , (B.19)

with τ given by Eq. (B.2)

τ = Al χ
4
|m| I

β

(
r
rt
, sgn(m) σχ|m|

)
, (B.20)

provided thatσχ|m| > sgn(m) (1−r/rt) and where (sgn) is the sign
function. At this stage, the set of equations Eqs. (A.4), (B.2)–
(B.9) and (B.13)–(B.20) enables us to study in a tractable way
the transport of angular momentum induced by IGW throughout
the radiative zone of stars, as well as the role of the oscillation
frequency Doppler-shift. As shown by Eq. (B.13), the transport
induced by IGW is the consequence of a balance between wave
driving, through the S and Fl,|m| functions, and wave damping,
through the damping termDl,|m|. While S and Fl,|m| are described
in simple forms by the generation model, the behavior of the
damping term Dl,|m| is much less easy to grasp. Moreover, J̇w
depends on ∆Ω throughDl,|m| only, so that a more detailed anal-
ysis of this term is necessary. For our purpose, we will focus in
the following on the case r/rt ∼ rHS/rt � 1. In other words, we
will restrain the study to a region located around the hydrogen-
burning shell, at the surroundings of the helium core.

B.3. Damping term Dl,|m| near the H-burning shell

B.3.1. Example with l = |m| = 1

As a first illustration, we focus on the damping term D1,1 as
defined in Eq. (B.16) with l = |m| = 1. Using the values of
the physical quantities as given in Table A.1 and a radius such
as r/rt = 0.05, that is near the hydrogen-burning shell, it is
plotted as a function of the normalized frequency σ and χ1
in Fig. B.2. For indication purposes, the frequency wave spec-
trum given in Eq. (B.15) is represented in the same figure with
B = νp/Nt ∼ 0.001, as expected from Table A.1.

Figure B.2 shows that the wave damping is efficient for only
two ranges of frequencies. Indeed,D1,1 is composed, on the one
hand, of a negative extremum associated with retrograde IGW
(m = −1), and in the other hand, of a positive one associated

Fig. B.2. Top: dimensionless damping term defined in Eq. (B.16) with
l = |m| = 1, as a function ofσ and χ1. It is plotted for the subgiant model
parameters given in Table A.1 at a radius r/rt = 0.05, i.e., near the
hydrogen-burning shell. The vertical orange dashed line corresponds to
σ = 2B as given in Eq. (B.15). The vertical dark dashed line indicates
the frequency at the separation between the retrograde and prograde
parts of the damping term, σsym

1 , which was estimated using Eq. (B.25).
The dotted line represents the retrograde transition frequency as defined
in Eq. (B.21). Bottom: cut sections for different values of χ1. The orange
dashed line represents the Gaussian wave frequency spectrum defined
in Eq. (B.15). The vertical dark dashed line has the same signification
as in the top panel.

with prograde IGW (m = 1) located at higher frequencies. The
locations and amplitudes of both extrema depend on χ1. What-
ever χ1, they are positioned on both sides of a characteristic fre-
quency, denoted σsym

1 . It corresponds to the frequency at the ex-
tremum of both retrograde and prograde damping terms defined
in Eq. (B.19) when ∆Ω tends to zero (i.e., when retrograde and
prograde IGW are symmetrically damped; see Eq. (B.38) for a
definition).

We note that the effects of a change in the angular degree
l or in the value of Al=1 can be easily deduced from D1,1 as

A31, page 16 of 22

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201730998&pdf_id=10


C. Pinçon et al.: Angular momentum transport by plume-induced IGW

displayed in Fig. B.2. Indeed, following Eqs. (B.16), (B.19) and
(B.20), a map of the Dl,|m| function in the (σ, χ|m|) plane asso-
ciated with a parameter A′l is deduced from the one associated
with the parameter Al, such as Al < A′l , through a horizontal
dilatation of the σ-axis by a factor α = (A′l/Al)1/4 and a verti-
cal contraction of the χ|m|-axis by a factor 1/α (i.e., ensuring
Alχ

4
|m| = cst.). In logarithmic scales, it corresponds to a transla-

tion [0.25 logα,−0.25 logα] (see Fig. 3 for an illustration). This
explains our choice to first consider l = |m| = 1 as example and
to represent the effect of the variation in χ1 only.

In the following, we use the approximate expressions given
in Sect. B.1.2 to discuss the dependence of the damping
term Dl,|m| on both parameters Al and χ|m|. The case l = 1 dis-
played in Fig. B.2 is used as an illustration. Retrograde and pro-
grade IGW are treated separately.

B.3.2. Retrograde IGW (m < 0)

Near the hydrogen-burning shell, z = r/rt � 1 and the retro-
grade part of Eq. (B.16) can thus be estimated with the help of
Eq. (B.11). Recalling that |X| = ω/|m|∆Ω in Eq. (B.11), the tran-
sition frequency between the two regimes given in Eq. (B.11)
can be rewritten

σR
t ∼

 Alχ|m|/3

Alχ
4
|m| (rt/r)β−1 /(β − 1)

1/3

. (B.21)

Therefore, this makes us to consider the two following cases.

Case 1: Wave frequencies such as σ > σR
t . As discussed

in Sect. B.1.3, this range of frequencies corresponds to the
wave frequencies for which the wave damping integral is dom-
inated by the local damping. Using Eq. (B.11) with σ > σR

t in
Eq. (B.20), the wave radiative damping can be approximated by

τ ≈
Alχ

4
|m|

(β − 1)
(rt/r)β−1

(σχ|m| + 1)4 , (B.22)

and Eq. (B.19) for retrograde IGW (m < 0) can be rewritten

D̃l,m ≈ (β − 1)τe−τ, (B.23)

where we have neglected r/rt compared to σχ|m| + 1 in the de-
nominator. Therefore, D̃l,m is minimum for τ ≈ 1. Its peak
amplitude is thus equal to (β − 1)/e. Following Eq. (B.22), the
frequency of retrograde IGW at maximum damping satisfying
τ ≈ 1 is given by

σR
max ≈ σ

sym
l −

1
χ|m|

, (B.24)

provided that σR
max > σ

R
t and where we have defined

σ
sym
l =

(
Al

β − 1

( rt

r

)β−1
)1/4

· (B.25)

This latter frequency corresponds to the frequency satisfying
τ = 1 when χ|m| → +∞ (i.e., when the prograde and retro-
grade IGW suffered a symmetrical damping). We note that we
can show that the full width at half maximum of the retrograde
peak is about 0.6 σsym

l around σR
max. Equations (B.24) and (B.25)

show that an increase either in Al (i.e., in the magnitude of the
radiative diffusion) or in rt/r (i.e., in the distance covered by the
waves) results in a shift of σsym

l and σR
max toward higher val-

ues. Equation (B.24) also tells us that a decrease in χ|m| (i.e.,

an increase in the Doppler-shift) results in a shift of the retro-
grade damping peak toward lower frequencies. More precisely,
Eq. (B.24) makes us to distinguish three qualitative regimes:

1. Case σsym
l � 1/χ|m|: the retrograde damping peak is closely

located near σsym
l , or in other words, σR

max ∼ σ
sym
l . Using the

values in Table A.1 and l = 1, we found ωsym
l=1 /Nt ∼ 0.034, in

agreement with Fig. B.2.
2. Case σsym

l ∼ 1/χ|m|: σR
max migrates toward lower frequencies

as χ|m| decreases (or |m|∆Ω increases).
3. Case σsym

l � 1/χ|m|: σR
max becomes lower than σR

t . The wave
frequencies such as σ & σR

t have not suffered an efficient
damping yet since τ ≈ (σsym

l χ|m|)4 � 1 from Eq. (B.22).
Therefore, following Eq. (B.23), the retrograde damping
term D̃l,m rapidly vanishes as χ|m| decreases.

These three regimes are well observed in Fig. B.2.

Case 2: wave frequencies such as σ < σR
t . This range of

frequencies corresponds to the wave frequencies for which the
wave damping integral is dominated by the contribution of the
top of the radiative zone. Using Eq. (B.11) with σ < σR

t in
Eq. (B.20), we obtain

τ ≈
(σtop

σ

)3
, (B.26)

with

σtop ≈

(
Alχ|m|

3

)1/3

=

(
[l(l + 1)]3/2Kt

3r3
t

rt

m∆Ω

)1/3

· (B.27)

This latter is representative of the magnitude of the wave damp-
ing at the top of the radiative zone and of the competing effect
between the radiative diffusion and the Doppler-shift in this re-
gion. The larger the radiative diffusion (i.e., Kt) at the top of
the radiative zone, the larger σtop and τ. Conversely, the larger
the gradient in the wave intrinsic frequency (i.e., m∆Ω/rt), the
lower σtop and τ since ω̂ increases more rapidly as retrograde
IGW propagate downwards.

If σ < σR
t , we can assume σχ|m| < σR

t χ|m| � 1 using
Eq. (B.21) with r/rt � 1. Then, by approximating the denomi-
nator of Eq. (B.19) by unity, we obtain

D̃l,m ≈ Alχ
4
|m|

( rt

r

)β−1
exp

−σ3
top

σ3

 · (B.28)

Therefore, using Eqs. (B.21), (B.24), (B.25) and (B.27), we can
notice that

σR
t =

σtop

(χ|m|σ
sym
l )4/3

=
σtop

(χ|m|σR
max + 1)4/3

, (B.29)

and we find using again Eq. (B.25) that Eq. (B.28) is approxi-
mately equal to

D̃l,m(σ < σR
t , r) ≈ (β − 1)

(
σtop

σR
t

)3

exp

−σ3
top

σ3


. (β − 1)

(σtop

σ

)3
exp

−σ3
top

σ3

 · (B.30)

Equation (B.30) is thus a decreasing function of σ that drasti-
cally vanishes as σ becomes smaller than σtop. Indeed, follow-
ing Eq. (B.26), the wave damping integral is much higher than
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unity for frequencies such that σ . σtop (i.e., τ � 1). Thus,
this range of low frequencies have already been significantly ab-
sorbed into the layers at the top of the radiative zone. We note
that if σsym

l ≥ 1/χ|m|, or equivalently σR
max ≥ 0, Eq. (B.29) shows

that σR
t ≤ σtop. As a result, Eq. (B.30) tends rapidly to zero as

soon as σ ≤ σR
t . Otherwise, in the case σsym

l ≤ 1/χ|m|, or equiv-
alently σR

max ≤ 0, retrograde IGW such as σtop ≤ σ ≤ σ
R
t have

not suffered an efficient damping yet since they verify τ ≤ 1.
We note also that if σsym

l ≥ 1/χ|m|, we always have σsym
l ≥ σR

t
following Eq. (B.21) with r/rt � 1. With the parameters of
subgiant model given in Table A.1, we find σtop ≈ 8 × 10−4 and
σR

t ≈ 7 × 10−4 for χ|m| = 30, in agreement with Fig. B.2.
In summary, retrograde IGW deposit momentum into the

deep layers of the radiative zone where their damping acoustic
depth satisfy τ ≈ 1 provided that σ & σR

t . This also implies that
σ

sym
l χ|m| & 1. IGW such as σR

t & σ or σsym
l χ|m| � 1 either have

already been absorbed at the top of the radiative zone or are not
damped enough to locally deposit momentum.

B.3.3. Prograde IGW (m > 0)

The prograde part of Eq. (B.16), D̃l,m, can be estimated using
Eq. (B.12). In the case r/rt � 1, the transition frequency be-
tween the two regimes for prograde waves, σP

t , can be defined
by

σP
t χ|m| − 1 + r/rt ∼

3
(β − 1)

r
rt
· (B.31)

Then, injecting Eq. (B.12) into Eq. (B.20), we obtain forσ > σP
t ,

τ ≈
Alχ

4
|m|

β − 1
(rt/r)β−1

(σχ|m| − 1 + r/rt)4 , (B.32)

and for σ < σP
t ,

τ ≈
Alχ

4
|m|

3
(rt/r)β

(σχ|m| − 1 + r/rt)3 , (B.33)

on the condition that σχ|m| > 1 − r/rt (which is imposed by the
presence of critical layers). For our purpose, it is convenient to
remark that σP

t ∼ 1/χ|m| with r/rt � 1, so that the transition
frequency is very close to the frequency of the waves at their
critical layers. In this framework, it is sufficient to consider only
the case σP

t . σ and the expression Eq. (B.32). In this case,
Eq. (B.19) for prograde IGW (m > 0) can be rewritten such as

D̃l,m ≈ (β − 1) τe−τ. (B.34)

Therefore, we conclude that the prograde part of the damping,
D̃l,m, is maximum when τ ≈ 1 and that its peak amplitude is
equal to (β − 1)/e. The frequency at the maximum is thus equal
to

σP
max ≈ σ

sym
l +

(1 − r/rt)
χ|m|

, (B.35)

with σ
sym
l given by Eq. (B.25). Equation (B.35) shows that an

increase in Al or rt/r leads to an increase in the frequency at
the maximum. Similarly, the prograde peak migrates toward
higher frequencies as χ|m| decreases (i.e., m∆Ω increases), un-
like the retrograde peak according to Eq. (B.24). Moreover, for
χ|m|σ

sym
l � 1, Eqs. (B.24) and (B.35) show that the prograde and

retrograde peaks overlap around σsym
l . Since they have identical

values, both terms in Eq. (B.16) progressively cancel each other

out as χ|m| tends to infinity. Finally, for χ|m|σ
sym
l � 1, the pro-

grade damping peak is associated with the waves that are dis-
sipated close to their critical layers such as σP

max ∼ σ
P
t ∼ 1/χ|m|.

All these features can be observed in Fig. B.2.
In summary, prograde IGW are absorbed into the deep layers

of the radiative zone where they satisfy τ ≈ 1, that is either at
frequencies around σsym

l if χ|m|σ
sym
l � 1 or at frequencies near

their critical layers if χ|m|σ
sym
l � 1.

B.4. Key points for the transport by IGW near
the hydrogen-burning shell

The analysis of the previous sections enables us to discuss in
simple words the behavior of the transport by IGW in the vicinity
of the hydrogen-burning shell. We summarize here the key points
learned from the toy model.

To begin with, we remind that the rotation profile is supposed
to linearly decrease with respect to the radius and that the ra-
dius of the hydrogen-burning shell, rHS, is assumed to be much
smaller than the radius at the top of the radiative zone, rt, so that
the differential rotation is nearly maximum in this region (i.e.,
δΩ(r . rHS) ≈ ∆Ω).

B.4.1. Divergence of the wave flux

The angular momentum transport induced by IGW in Eq. (1) is
carried out by the divergence of the wave flux of angular mo-
mentum, J̇w. Following Eq. (B.13), this latter results from the
correlation between the wave excitation spectrum, represented
by S and Fl,|m|, and the wave radiative damping, represented by
Dl,|m|. Following Eqs. (1)–(2), (5)–(6) and (10) and the conven-
tion adopted in the footnote 1 with δΩ(r) > 0, retrograde IGW
(m < 0) carrying negative angular momentum downwards tend
to slow down the rotation since J̇w(m < 0) > 0, while prograde
IGW (m > 0) carrying positive angular momentum downwards
tend to increase the rotation rate since J̇w(m > 0) < 0.

B.4.2. Damping efficiency and absorption criterion.

To modify the rotation in a mass shell of radius r � rt, IGW
must be sufficiently damped to locally deposit angular momen-
tum into the medium while having conserved enough energy
during its travel from the top of the radiative zone to be effi-
cient. Following Eqs. (B.24) and (B.35), the damping is efficient
at a depth r � rt for the wave components whose the damping
acoustic depth is close to unity

τ ≈

∫ rt

r

[l(l + 1)]3/2KN3

(ω − m∆Ω)4

dr
r3 ∼ 1, (B.36)

with −l ≤ m ≤ +l. At fixed l and |m|∆Ω, lower frequencies such
as τ � 1 have already been partly absorbed into upper layers
whereas higher frequencies such as τ � 1 have not suffered an
efficient damping yet during their travel. Moreover, since the ro-
tation profile is assumed to decrease with the radius (∆Ω > 0),
the prograde IGW (m > 0) that are efficiently absorbed have al-
ways higher frequencies than the retrograde ones (m < 0). For a
given value of ∆Ω, since retrograde (prograde) IGW carry neg-
ative (positive) angular momentum, the damping term, Dl,|m| is
therefore composed of a negative extremum associated with ret-
rograde IGW and a positive one associated with prograde IGW
located at a higher frequency. This is illustrated in Fig. B.2 for
l = 1 and |m| = 1.
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To summarize, the prograde and retrograde IGW that are ef-
ficiently absorbed near the hydrogen burning shell satisfy τ ∼ 1.

B.4.3. Low cut-off frequency for retrograde IGW

For retrograde IGW, the condition of absorption represented by
Eq. (B.36) applies if the wave frequency is higher than a cut-off
frequency, denoted ωinf

m in the following. In the framework of the
toy model and Eq. (B.21), it is found to be equal to

ωinf
m (r) ≈ α(r)|m|∆Ω with α(r) =

 (β − 1)
3

(
r
rt

)β−11/3

·

(B.37)

It is defined as the wave frequency below which τ is domi-
nated by the damping near the top of the radiative zone, and
above which τ is dominated by the local damping. Therefore, if
ω . ωinf

m , either IGW have already been absorbed by the medium
at the top of the radiative zone, or they are not damped enough to
efficiently deposit momentum into the local medium. Therefore,
the damping function Dl,|m| drastically vanishes for the frequen-
cies lower than ωinf

m (see Fig. B.2 for an illustration).
Retrograde IGW meeting the condition τ ∼ 1 must also

satisfy ω & ωinf
m to be efficiently absorbed near the hydrogen-

burning shell. This defines the conditions of absorption for ret-
rograde IGW. Conversely, prograde IGW are efficiently damped
provided only that τ ∼ 1.

B.4.4. Effect of the frequency Doppler-shift on the wave
damping

To describe the role of the differential rotation amplitude in the
wave damping process, it is convenient to define the characteris-
tic frequency, ωsym

l , for which τ = 1 is satisfied with |m|∆Ω = 0,
that is

ω
sym
l (r) ≡

(∫ rt

r
[l(l + 1)]3/2KN3 dr

r3

)1/4

. (B.38)

The condition τ ∼ 1 can then be rewritten as ωsym
l ∼ (ω − m∆Ω),

which makes us to consider four cases (see Fig. B.2 for an ex-
ample):

1. Case ∆Ω = 0: In this limiting case, both prograde and retro-
grade damping peaks (i.e., where τ ∼ 1) of theDl,|m| function
overlap at ω = ω

sym
l . Since retrograde and prograde IGW are

supposed to be symmetrically generated, they transport an
opposite amount of angular momentum. Hence, the compo-
nents cancel each other out such as Dl,|m| = 0 whatever l
and |m|; therefore, J̇w = 0 and the angular momentum trans-
port by IGW vanishes, as expected (see also discussion in
Sect. 2.2).

2. Case |m|∆Ω � ω
sym
l : as ∆Ω slightly increases, both peaks

of the Dl,|m| function gradually separate but remain closely
located on both sides of ωsym

l in this regime.
3. Case |m|∆Ω � ω

sym
l : in this regime, the Doppler-shift is

so important that the wave damping is not efficient and
Eq. (B.36) cannot be satisfied for retrograde IGW (τ � 1).
Only prograde IGW near their critical layers, such as
ω ∼ |m|∆Ω, are locally absorbed.

4. Case |m|∆Ω ∼ ω
sym
l : when |m|∆Ω is of the order of ωsym

l and
gradually increases, the asymmetry between the prograde
and retrograde damping peaks becomes more and more pro-
nounced, as illustrated in Fig. B.2. Indeed, the retrograde

IGW satisfying τ ≈ 1 at given |m| and l are shifted toward
lower frequencies than ω

sym
l , while the prograde ones mi-

grate toward higher frequencies. In other words, at fixed ω, l
and |m|, an increase in ∆Ω leads to a decrease in the damp-
ing of retrograde IGW; they are thus absorbed into deeper
layers of the star. In this regime, retrograde IGW are ab-
sorbed in the frequency range ωinf

m . ω . ω
sym
l . We note

that for |m|∆Ω . ωsym
l , we always have ωinf

m � ω
sym
l with

r � rt in Eq. (B.37), so that both conditions τ ≈ 1 and
ωinf

m . ω . ω
sym
l can always be simultaneously satisfied in

this regime. Conversely, an increase in ∆Ω results in an in-
crease in the damping of prograde IGW; they are thus ab-
sorbed into upper layers at frequencies ω & ωsym

l .

The condition of absorption τ ∼ 1 for retrograde IGW implies
|m|∆Ω . ωsym

l . When |m|∆Ω � ω
sym
l , only prograde IGW near

their critical layers are absorbed. An increase in ∆Ω leads to
a shift of the retrograde (prograde) IGW that are absorbed to-
ward lower (higher) frequencies; the asymmetry between pro-
grade and retrograde IGW is thus accentuated.

B.4.5. Transport by IGW resulting from a balance
between damping and driving

In the following, we will assume that νp � ω
sym
l=1 ≤ ω

sym
l what-

ever l. Since νp is chosen around ωc, this is verified in almost all
the models considered in the main text, except maybe at the very
beginning of the subgiant branch (see Figs. 1 and 7).

Sign of J̇w. Following Eq. (B.13), the angular momentum trans-
port by IGW and its efficiency depends on the correlation be-
tween the wave excitation spectrum and the wave damping. Ex-
citation models show that the wave spectrum at the top of the
radiative zone, S in Eq. (B.13), is decreasing with the wave fre-
quency, whatever the generation mechanism (turbulent pressure
or penetrative convection). When |m|∆Ω . ωsym

l at given l and
|m|, the retrograde IGW that are absorbed into a given layer of
the helium core have lower frequencies than the prograde ones
whose frequencies are always higher than ωsym

l . Given that S is a
decreasing function of ω, they have higher amplitudes compared
to prograde IGW. Since they carry negative angular momentum,
the total deposit of angular momentum is negative. Moreover,
even if |m|∆Ω � ω

sym
l and both opposite absorption peaks are

in the vicinity of ωsym
l , the amplitude of the retrograde IGW

that are absorbed remains much higher than the amplitude of
the prograde ones. Indeed, the full width at half maximum of
the absorption peaks is about 0.6 ωsym

l (see Appendix B.3.2).
Therefore, the separation in frequency between both prograde
and retrograde peaks is large enough for the difference of am-
plitudes to remain important since the S function sharply de-
creases in this range of frequency with νp � ω

sym
l . Finally, when

|m|∆Ω � ω
sym
l , only the prograde IGW near their critical layers

are absorbed into the medium. However, since these waves are
such that ω ∼ |m|∆Ω≫ νp in this regime, the S function drasti-
cally vanishes and their amplitude is quasi null, and so does their
transport efficiency.

The transport of angular momentum near the hydrogen-
burning shell is ensured only by retrograde wave components.
Therefore, the net wave flux of angular momentum directed
downwards is negative, J̇w & 0 in Eq. (1) and retrograde IGW
tend to counter the contraction-driven spin up of the helium core,
as expected.
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Influence of ∆Ω on the transport by one wave component.
At given l and |m|, the higher ∆Ω, the lower the frequencies of
the retrograde IGW that efficiently deposit momentum provided
that ωsym

l & |m|∆Ω, and the higher the frequencies of the pro-
grade ones. Since the excitation wave spectrum is a decreasing
function of frequency, an increase in ∆Ω leads to an increase
in the amount of negative angular momentum absorbed into the
medium. The effect on the rotation is thus more important.

At given l and |m|, the efficiency of the transport by retro-
grade IGW increases as the amplitude of the Doppler-shift in-
creases while remaining lower than about ωsym

l .

Influence of ∆Ω on the whole spectrum. The previous scenario
holds true if |m|∆Ω remains lower than ωsym

l . Actually, to prop-
erly understand the influence of the differential rotation ampli-
tude on the transport by IGW, we need to take the collective
effect of the whole wave angular degrees l and azimuthal num-
bers such as 1 ≤ |m| ≤ l into account, as well as their energy
distribution represented by Fl,|m|. We remind that the angular
degree at the maximum of the Fl,|m| function can be estimated
by lmax ∼ rt/b. Following Table A.1, lmax ∼ 20 in the subgiant
model used as example in this appendix. As an illustration, it is
instructive to represent the sum of the damping terms over a few
distinct values of l. Here, we consider only four angular degrees
l = 1, 25, 100 and 400. The result is displayed in Fig. 3 as a
function of σ and χ|m|. As already discussed in Appendix B.3.1,
we retrieve that an increase in l results in a shift of the related
damping pattern toward lower χ|m| values and higher frequen-
cies. In the following discussion, we assume that νp � ω

sym
l=1 and

that the deposit of angular momentum is ensured only by retro-
grade IGW satisfying the absorption conditions, such as τ ∼ 1
(which implies |m|∆Ω . ωsym

l ) and ω & ωinf
m . As a result, follow-

ing Eqs. (B.13) and (B.16), and using Eq. (B.23) with τ ∼ 1,
the contribution of each of these components to the divergence
of the wave flux is about proportional to the product Fl,mS(ω).
Therefore, Fig. 3 makes us to consider three regimes classified
by ascending value of ∆Ω:

1. Very low-∆Ω regime: The case |m|∆Ω ∼ ω
sym
l ∼ l3/4ωsym

l=1 ,
as described in Appendix B.4.4, can be satisfied (with
|m| ≤ l) by angular degrees and azimuthal numbers such as
l ≥ |m| & (ωsym

l=1 /∆Ω)4. This also implies ωinf
m ≈ α|m|∆Ω ∼

αl3/4ωsym
l=1 . Therefore, in this first regime, we assume that

the amplitude of the differential rotation is so low that
|m|∆Ω ∼ ω

sym
l is only satisfied for very high values of l such

as l � lmax and ωinf
m � ω

sym
l=1 (see for example l = 400 in

Fig. 3), that is

∆Ω � ω
sym
l=1 min

(
l−1/4
max , α

1/3
)
. (B.39)

In turn, angular degrees such as l . (ωsym
l=1 /∆Ω)4 can sat-

isfy only the case |m|∆Ω � ω
sym
l with a peak of absorption

around the frequency ωsym
l .

On the one hand, since Fl,|m| and S sharply decrease be-
yond lmax and νp respectively, the amplitude of the wave
components satisfying |m|∆Ω ∼ ω

sym
l , such as l � lmax and

ωinf
m & ω

sym
l=1 � νp in this regime, as well as the conditions of

absorption τ ∼ 1 and ω & ωinf
m , is negligible compared to the

low degrees l ∼ 1 satisfying |m|∆Ω � ω
sym
l , τ ∼ 1 and so

ω ∼ ω
sym
l=1 .

On the other hand, among the other wave components satis-
fying |m|∆Ω � ω

sym
l , as well as τ ∼ 1 with ω ∼ ωsym

l , the de-
posit of angular momentum into the medium is again mainly
ensured by retrograde IGW with low angular degrees l ∼ 1

such as ω ∼ ωsym
l=1 since the product Fl,|m|S(ωsym

l ) sharply in-
creases as l decreases. Indeed, given that νp � ω

sym
l=1 ≤ ω

sym
l ,

we can show for l . lmax that the decrease in Fl,|m| as l de-
creases can be largely outweighed by the increase in S eval-
uated at ω ∼ ωsym

l .
Therefore, low angular degrees l ∼ 1 with frequencies
around ω ∼ ω

sym
l=1 provide, in this regime, the main contri-

bution to the total divergence of the wave flux, J̇w.
2. Moderate-∆Ω regime: As ∆Ω increases, |m|∆Ω ∼ ω

sym
l ∼

l3/4ωsym
l=1 with |m| ≤ l can be satisfied by lower and lower

azimuthal numbers at a given l, as well as by lower and
lower angular degrees with lower and lower cut-off frequen-
cies since ωinf

m ≈ α|m|∆Ω ∼ αl3/4ωsym
l=1 in this case.

In a first step, we consider only the wave components such
as ω & νp or l & lmax. Among these wave components satis-
fying |m|∆Ω ∼ ω

sym
l , τ ∼ 1 and ωinf

m . ω, the lowest angular
degrees with |m| ∼ l and ω ∼ ωinf

l have the highest ampli-
tude. Indeed, on the one hand, S decreases with frequency,
so that the waves with frequencies ω ∼ ωinf

m have the largest
amplitude at given l and |m|. On the other hand, the prod-
uct Fl,|m|S(ωinf

m ) with ωinf
m ∼ αl3/4ωsym

l=1 sharply increases as l
decreases if ω & νp or l & lmax, since the variations in the
Gaussian terms of Fl,|m| or S predominate. Hence, the low-
est degrees among the components satisfying |m|∆Ω ∼ ω

sym
l ,

so with |m| ∼ l, have the highest amplitude. Therefore, when
∆Ω becomes large enough, the conditions l∆Ω ∼ ω

sym
l , τ ∼ 1

and ω ∼ ωinf
l can be satisfied by angular degrees such as

the product Fl,lS(ωinf
l ) & F1,1S(ωsym

l=1 ), so that they have a
higher amplitude than the components l ∼ 1 with ω ∼ ωsym

l=1 .
These components thus start giving the most effective contri-
bution to the angular momentum transport: this corresponds
to the transition from the very low-∆Ω to the moderate-∆Ω
regime. Using the inequality Fl,lS(ωinf

l ) & F1,1S(ωsym
l=1 ) with

νp � ωinf
l=1, we find that this regime corresponds to values of

∆Ω such as3

ω
sym
l=1 max

 νp

ω
sym
l=1 lmax

1/4

, α1/3

 . ∆Ω . ωsym
l=1 , (B.40)

with the upper limit obtained in the limiting case where the
conditions l∆Ω ∼ ω

sym
l is satisfied for l = 1. In this regime,

with in addition the condition ω & νp or l & lmax, the trans-
port of angular momentum is thus ensured by retrograde
IGW such as

|m| ∼ l, ω ∼ ωinf
l ∼ αl3/4ωsym

l=1 , l ∼
ωsym

l=1

∆Ω

4

·

In this case, a gradual increase in ∆Ω extends the domain
of the (l,ω) plan satisfying the conditions of absorption to-
ward lower and lower angular degrees and wave frequencies.
Therefore, the sum in Eq. (B.13) as well as the total amount
of angular momentum deposited into the medium increases
since the product Fl,lS(ωinf

l ) increases as l decreases in this
case.
In a second step, we consider only the wave components such
asω . νp and l . lmax (see for example l = 1 in Fig. 3). These
components can satisfy the case |m|∆Ω ∼ ω

sym
l as soon as4

ω
sym
l=1 max

l−1/4
max ,

ωsym
l=1 α

νp

1/3 . ∆Ω. (B.41)

3 We also used the relations ω ∼ αl3/4ω
sym
l=1 and l ∼ (ωsym

l=1 /∆Ω)4 (ob-
tained with |m| ∼ l).
4 We note that since νp � ω

sym
l=1 , Eq. (B.41) is included in Eq. (B.40).
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When l . lmax and ω . νp, the product Fl,mS(ωinf
m ) de-

creases as l decreases since the decrease in the quadratic term
of Fl,|m| predominates. Therefore, this time, the wave com-
ponents with the highest l satisfying τ ∼ 1, |m|∆Ω ∼ ω

sym
l

and ω ∼ ωinf
m ∼ αl3/4ωsym

l=1 , with |m| ≤ l, are expected to keep
the highest amplitude as ∆Ω decreases. Under the condition
l . lmax and ω . νp, the angular momentum transport is then
ensured by wave components such as

ω ∼ min
[
νp, αl3/4maxω

sym
l=1

]
and l ∼ min

[
(νp/αω

sym
l=1 )4/3, lmax

]
.

In this case, the amount of angular momentum deposited into
the medium must remain almost constant as ∆Ω decreases.
In summary, the transition from the very low-∆Ω to the
moderate-∆Ω regime is associated with an increase in the an-
gular degrees of IGW that mostly contribute to the transport.
Their angular degrees are such as

l ∼ max

min

 νp

αω
sym
l=1

4/3

, lmax

 , ωsym
l=1

∆Ω

4 , (B.42)

and their frequencies are such as

ω ∼ max

min
[
νp, αl3/4maxω

sym
l=1

]
, αω

sym
l=1

ωsym
l=1

∆Ω

3 · (B.43)

In this regime, an increase in ∆Ω results in an increase in
the transport efficiency through the contribution of wave
components with lower and lower frequencies and angular
degrees.

3. Very high-∆Ω regime: As ∆Ω becomes such as

ω
sym
l=1 � ∆Ω (B.44)

and keeps on increasing, more and more wave components
start satisfying the case |m|∆Ω � ω

sym
l and thus cannot be

absorbed anymore into the medium. The conditions of ab-
sorption are thus satisfied in a smaller and smaller domain
in the (l, ω) plan reduced to higher and higher degrees and
higher and higher frequencies, with |m| � l since l∆Ω ∼ ω

sym
l

has already been satisfied for a lower value of ∆Ω.
Therefore, as ∆Ω becomes such as ∆Ω � ω

sym
l=1 and keeps

on increasing, J̇w and the efficiency of the transport by IGW
gradually decreases.

The previous analysis is sufficient to qualitatively understand
the influence of ∆Ω on the efficiency of the angular momentum
transport by IGW a well as the features of the most efficient wave
components. A quantitative estimate taking the whole spectrum
over the frequency, the angular degrees, as well as the sum over
azimuthal numbers into account requires a numerical computa-
tion, as done in the main text. For all the considered models and
values of the differential rotation amplitude, we found that only
the low-∆Ω and moderate-∆Ω regimes were reached in this work
and that their above qualitative description agrees with numeri-
cal results. In both regimes, an increase in ∆Ω leads to an in-
crease in the efficiency of the transport by IGW in the helium
core, as observed in Sect. 4.1.

2.4.6. Absorbed wave components for a differential
rotation amplitude close to the threshold

Using the value of the threshold amplitude for the differential
rotation obtained with a numerical computation, we can crudely

Fig. 3. Sum of the dimensionless damping terms defined by Eq. (B.16)
over l = 1, 25, 100 and 400, as a function of χ|m| and σ = ω/Nt. The
legend is the same as in the top panel of Fig. B.2. The dotted line rep-
resents ωinf

m /Nt as defined in Eq. (B.37). The angular degree associated
with each pattern is indicated.

estimate the characteristics of the wave components that partic-
ipate the most efficiently to the angular momentum transport
into the helium core. As an example, we consider again the
subgiant model whose parameters are provided by Table A.1.
For this model, computations presented in the main text give
∆Ωth ≈ 5 µrad s−1. We supposed that this model is in the
moderate-∆Ω regime (see Appendix B.4.5) and that the absorbed
waves have frequencies such as ω & νp. Therefore, we can first
estimate the angular degrees of IGW that deposit angular mo-
mentum near the hydrogen burning shell. In this regime (with
ω & νp), the most efficiently absorbed wave components must
satisfy τ ∼ 1, |m| ∼ l and ω ∼ ωinf

l . Given that ωinf
l � ω

sym
l fol-

lowing the point 4 in Appendix B.4.4, we must have ω � l∆Ω
to satisfy τ ∼ 1. Thus, we obtain using the condition τ ∼ 1

l ∼
∫ rt

r

KN3

∆Ω4
th

dr
r3 ∼

KtN3
t

4r2
t ∆Ω4

th

(
rt

rHS

)4

∼ 60. (B.45)

Using this value, the low cut-off frequency defined by Eq. (B.37)
is then equal to about ωinf

l = 6 µrad s−1 � νp and so is rep-
resentative of the wave frequency ω that deposits the more
angular momentum into the medium. To conclude, we verify
a posteriori the validity of the assumptions of the moderate-
∆Ω regime given in Eq. (B.40) and ω & νp for ∆Ω = ∆Ωth
since ω

sym
l=1 ∼ 18 µrad s−1 and α1/3 ∼ νp/lmaxω

sym
l=1 ∼ 0.2 (using

Table 1). We checked that these values of l and ω are in good
agreement with the numerical computation for the considered
subgiant model.

This emphasizes that high-l, high-|m| retrograde IGW with
ω � νp can be responsible for the deposit of angular momentum
into the helium core of the low-mass stars on the subgiant and
early red giant branch.

2.4.7. Influence of the damping magnitude

The magnitude of the damping is represented by the ratio
[l(l + 1)]3/2KN3/r3 (see Appendix A). If this latter increases
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at a given value of |m|∆Ω, the wave frequencies satisfying the
absorption conditions will increase for both retrograde and pro-
grade IGW. The part of the wave spectrum that is suscepti-
ble to locally affect the rotation in a given mass shell will be
thus shifted toward higher frequencies. Since the wave excita-
tion spectrum is a decreasing function of ω, the amplitude of the
wave components absorbed into the medium and the transport
efficiency (J̇w) will decrease. Nevertheless, we have shown in
Appendix B.4.4 that, for retrograde IGW at given l, |m| and ω,
an increase in the magnitude of the damping can be counterbal-
anced by an increase in the amplitude of the differential rotation
(provided also that |m|∆Ω . ωsym

l and ω & ωinf
m ). Thus, for simi-

lar wave excitation spectra Fl,|m| and S in Eq. (B.13) (i.e., similar
plume parameters), the higher the magnitude of the damping, the
higher the value of ∆Ω required to conserve the same value of
J̇w and thus of tw in Eq. (4) near the hydrogen-burning shell.
For the 1 M� evolutionary sequence considered in this work,
tcont remains quasi constant around 0.5 Gyr and the radius of the
hydrogen-burning shell only slightly changes from the subgiant
to the early red giant branch (see Fig. 3). Nevertheless, Fig. 7
show that νp increases by about a factor of two and that lmax de-
creases by about a factor of ten. If we assume that the magnitude
of the radiative damping does not change over time, the results
obtained in Sect. 4.2 show that such variations in νp and lmax
cannot explain the increase in the value of ∆Ω by about a factor
of five that is required to conserve tw ∼ tcont in the helium core
during this time span (see Figs. 4 and 6). Therefore, we con-
clude that an increase in the magnitude of the radiative damping
is needed to explain such a trend. This increase is well observed
in stellar models (see Appendix A).

The increase in the threshold value for the differential ro-
tation amplitude over time, as observed in Fig. 6, mainly re-
sults from the increase in the magnitude of the radiative damping
along the evolution.

2.4.8. Sensitivity of J̇w to the differential rotation amplitude

The high sensitivity of the wave-related timescale to ∆Ω
observed in Sect. 4 can be explained by two main points. First,

since the wave radiative damping depends on the wave intrin-
sic frequency to the power minus four, the full width at half
maximum of the absorption peaks for given values of l and |m|
is quite low so that they remain confined around the wave fre-
quency satisfying τ = 1. Second, a small change in ∆Ω can lead
to a huge variation in the wave spectrum functions evaluated at
the maximum of absorption. Indeed, guided by numerical com-
putations and the analysis in Appendix 2.4.6, we can assume to
be in the moderate-∆Ω regime and that the absorbed wave com-
ponents are such as ω & νp or l & lmax. In this regime, IGW
that the most efficiently participate to the transport in a given
layer of radius r satisfy τ ∼ 1, |m| ∼ l and ω ∼ ωinf

l ∼ αl∆Ω (see
Appendix B.4.5). This also implies l∆Ω ∼ ω

sym
l or equivalently,

l1/4∆Ω ∼ ω
sym
l=1 . Hence, it is possible to express ω and l of the

absorbed wave components as a function of ∆Ω only to obtain

ω ∼ αω
sym
l=1

ωsym
l=1

∆Ω

3

(B.46)

l ∼
ωsym

l=1

∆Ω

4

· (B.47)

Therefore, the frequency ω and the degree l of the most effi-
ciently absorbed components are quite sensitive to the value of
∆Ω. A small relative variation in ∆Ω thus can lead to a huge
variation in the S (or Fl,|m|) function at the maximum of absorp-
tion if ω & νp (or l & lmax) since it depends on exp[−ω2/4ν2

p]
(or exp[−l2/2l2max]). Equivalently, since the sensitivity of tw is
linked to S and Fl,|m|, we deduce that a small variation in νp or
b at fixed ∆Ω must result in a huge variation in tw. This is con-
firmed in Fig. 5. For this model, we observe that the effect of a
variation in νp is much larger than the one induced by a varia-
tion in b. This is expected since ω � νp and l ∼ lmax for the
most efficient wave components (see Appendix 2.4.6) so that the
variation in S is larger.

Therefore, a small increase in ∆Ω can result in a huge in-
crease in J̇w and so in the efficiency of the angular momentum
transport by IGW in the helium core.

A31, page 22 of 22


	Introduction
	Characteristic timescales and wave flux generated by penetrative convection
	Transport timescales
	Plume-induced wave flux of angular momentum

	Input physics
	Stellar models
	Excitation model parameters
	Assumptions for the rotation profile

	Efficiency of the angular momentum transportby IGW in subgiant and red giant stars
	Comparison of timescales
	Stars at the beginning of the ascent of the RGB
	Subgiant stars

	Impact of the parameter uncertainties and of the shape of the rotation profile

	Observational evidence for a wave-driven regulation mechanism in subgiant stars?
	Influence of the stellar mass
	Comparison with the observations
	IGW-driven regulation of the core rotation in subgiant stars

	Discussion
	Comparison with the transport by turbulence-induced IGW
	Extraction mechanism and influence of the differential rotation amplitude in the inner radiative region
	Uncertainties related to the generation of IGWin evolved stars
	Influence of the Coriolis force on the propagation of IGW

	Conclusions and perspectives
	References
	Wave radiative damping
	Spatial behavior and time evolution
	An approximate for LD
	Transport by IGW near the center (r  rHS)

	Angular momentum transport by IGW in a semi-analytical toy model
	Wave damping integral above the hydrogen-burning shell (rHS  r  rt)
	Exact solution for I(z,X)
	Approximate solutions for I
	Two regimes controlled by the Doppler-shift

	Divergence of the wave flux w
	Damping term Dl,|m| near the H-burning shell
	Example with l = |m| = 1
	Retrograde IGW (m < 0)
	Prograde IGW (m > 0)

	Key points for the transport by IGW nearthe hydrogen-burning shell
	Divergence of the wave flux
	Damping efficiency and absorption criterion.
	Low cut-off frequency for retrograde IGW
	Effect of the frequency Doppler-shift on the wave damping
	Transport by IGW resulting from a balancebetween damping and driving
	Absorbed wave components for a differentialrotation amplitude close to the threshold
	Influence of the damping magnitude
	Sensitivity of w to the differential rotation amplitude



