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ABSTRACT

Context. Seismic observations with the space-borne Kepler mission have shown that a number of evolved stars exhibit low-amplitude
dipole modes, which is referred to as depressed modes. Recently, these low amplitudes have been attributed to the presence of a strong
magnetic field in the stellar core of those stars. Subsequently, and based on this scenario, the prevalence of high magnetic fields in
evolved stars has been inferred. It should be noted, however, that this conclusion remains indirect.
Aims. We intend to study the properties of mode depression in evolved stars, which is a necessary condition before reaching conclu-
sions about the physical nature of the mechanism responsible for the reduction of the dipole mode amplitudes.
Methods. We perform a thorough characterization of the global seismic parameters of depressed dipole modes and show that these
modes have a mixed character. The observation of stars showing dipole mixed modes that are depressed is especially useful for
deriving model-independent conclusions on the dipole mode damping. We use a simple model to explain how mode visibilities are
connected to the extra damping seen in depressed modes.
Results. Observations prove that depressed dipole modes in red giants are not pure pressure modes but mixed modes. This result,
observed in more than 90% of the bright stars (mV ≤ 11), invalidates the hypothesis that depressed dipole modes result from the
suppression of the oscillation in the radiative core of the stars. Observations also show that, except for visibility, seismic properties of
the stars with depressed modes are equivalent to those of normal stars. The measurement of the extra damping that is responsible for
the reduction of mode amplitudes, without any prior on its physical nature, potentially provides an efficient tool for elucidating the
mechanism responsible for the mode depression.
Conclusions. The mixed nature of the depressed modes in red giants and their unperturbed global seismic parameters carry strong
constraints on the physical mechanism responsible for the damping of the oscillation in the core. This mechanism is able to damp the
oscillation in the core but cannot fully suppress it. Moreover, it cannot modify the radiative cavity probed by the gravity component
of the mixed modes. The recent mechanism involving high magnetic fields proposed for explaining depressed modes is not compliant
with the observations and cannot be used to infer the strength and prevalence of high magnetic fields in red giants.
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1. Introduction

Asteroseismic observations by the CoRoT and Kepler space-
borne missions have provided new insights in stellar and
Galactic physics (e.g., Michel et al. 2008; Miglio et al. 2009;
Chaplin et al. 2011). The ability to derive fundamental stellar
parameters, such as masses and radii, over a wide range of stel-
lar evolutionary states from the main sequence to the asymp-
totic giant branch is certainly one of the strongest impacts of
such measurements (e.g., Kallinger et al. 2010). The rich na-
ture of the red giant oscillation spectrum was largely unexpected
(De Ridder et al. 2009; Mosser & Miglio 2016). Red giant as-
teroseismology has been boosted by the observation of dipole
modes that, because of their mixed nature, probe the stellar
core. They behave as gravity modes in the core and as pres-
sure modes in the envelope. The pressure components carry in-
formation on the mass and radius of stars (e.g., Mosser et al.
2013), while the gravity components of these mixed modes

are directly sensitive to the size and mass of the helium core
(Montalbán & Noels 2013; Lagarde et al. 2016); to the evo-
lutionary stage, which differs according to the nuclear reac-
tion at work (Bedding et al. 2011; Mosser et al. 2011); and to
the mean core rotation (Beck et al. 2012; Mosser et al. 2012b;
Deheuvels et al. 2012, 2014).

Because of the homology of the red giant interior structure,
red giant seismology is characterized by the many scaling rela-
tions between global seismic parameters along stellar evolution
(e.g., Stello et al. 2009; Mosser et al. 2010; Mathur et al. 2011;
Kallinger et al. 2012). Exceptions to these relations are rare and
most often explained by specific features, such as for instance
the damping of the oscillation in close binaries (Gaulme et al.
2014) or very low metallicity (Epstein et al. 2014). However, ob-
servations have revealed that a family of red giants exhibit pe-
culiar dipole modes with low amplitudes (Mosser et al. 2012a).
In some extreme cases, dipole modes are not even detectable.
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Consequently, these dipole modes have been called depressed
modes1.

The first in-depth study of a star with depressed modes
could not explain this phenomenon (García et al. 2014). Then,
Fuller et al. (2015) addressed this issue by using a twofold ap-
proach. First, the authors expressed the dipole mode visibilities
in the limit of full suppression of the oscillation in the red gi-
ant core. In other words, they assumed that the mode energy that
leaks in the radiative interior of red giants is totally lost. As a
consequence, dipole modes are no longer mixed modes but only
lie in the upper (acoustic) cavity of red giants. This assumption
is validated by the authors by means of a comparison between
observed and computed mode visibilities. Second, it is conjec-
tured that the extra loss of the mode energy is caused by a strong
magnetic field, which scatters waves leaking in the core. This
prevents these waves from constructing a standing wave in the
inner resonant cavity of those stars. This has been named the
magnetic greenhouse effect. The angular degree dependence of
the energy leakage has been verified with the quadrupole modes
(Stello et al. 2016a). This appealing scenario has then been taken
for granted by Stello et al. (2016b) and Cantiello et al. (2016) to
infer the prevalence of magnetic fields in the core of oscillating
red giant stars observed by Kepler.

However, before firmly concluding about the presence of a
magnetic field in the core of red giants with depressed modes,
the hypothesis of the suppression of the oscillation in the core
has to be validated. In fact, the nature of the physical mecha-
nism responsible for the reduction of dipole mode visibilities
is not directly inferred by the observation of low mode visi-
bilities. Therefore, the identification of a magnetic field as the
physical mechanism responsible for the suppression of the os-
cillation in the core of those stars demands further direct ob-
servational confirmation. A strong magnetic field is a possible
solution, but it is not the only solution. Fuller et al. (2015) note
that rapid core rotation should have the same effect, but would
require much larger rotation rates than observed in red giants
(Mosser et al. 2012b; Deheuvels et al. 2014). Indeed, any strong
damping in the core, such as radiative damping or gravity wave
reflection that is caused, for instance, by a steep composition
gradient above the hydrogen burning shell, could also explain
the depressed modes (Dziembowski 2012).

In this work, we aim to provide a complete characteriza-
tion of the population of red giants with depressed modes us-
ing Kepler observations. This study is motivated by the obser-
vation of stars showing dipole modes that are both mixed and
depressed. We argue that the full characterization of stars with
depressed visibilities can provide strong constraints on the phys-
ical mechanism responsible for the damping of the oscillation.

The article is organized as follows. Section 2 presents the
theoretical background of mode visibility with an emphasis on
the distinction between full and partial mode damping in the
core of red giants. In Sect. 3, we undertake the characterization
of depressed modes with a mixed character, hereafter named de-
pressed mixed modes. We first explain how they were identified,
then exploit their observations with the determination of their

1 In the following, we use the term depressed for modes exhibiting di-
minished visibilities and keep the term suppressed for the suppression
of the oscillation in the stellar core. As shown in Sect. 2.3, the full sup-
pression of the oscillation in the core induces the mode depression. In
contrast, normal modes have normal visibilities. Suppression implicitly
means full suppression, so that we introduce the term partial suppres-
sion when we have to stress that the supposed suppression is not total.
We do not use the term mode suppression, since it can only correspond
to a null visibility.

global seismic properties. We also consider stars where, owing
to the too low visibility of dipole modes, the gravity-dominated
mixed modes are apparently absent. Global properties of stars
are then used to test the depressed visibilities predicted when the
oscillation is suppressed in the stellar core (Sect. 4). Section 5
is devoted to discussion with particular attention to the nature of
the mechanism responsible for the extra damping of depressed
modes. Finally, Sect. 6 is dedicated to conclusions.

2. Dipole mode visibilities

2.1. General case

The mode visibility is a way to express the mean value of the
squared amplitude of modes with a given degree compared to
radial modes. For a dipole mode, we define

V2
1 =

A2
1

A2
0

Ṽ2
1 , (1)

where Ṽ2
1 includes the contributions of several physical effects: a

geometrical factor that depends on the angular degree, limb dark-
ening, and bolometric correction. The values A0 and A1 are the
intrinsic amplitudes of the radial and dipole modes, respectively.
For stars exhibiting stochastically excited pure acoustic modes,
these amplitudes are supposed to be equal (Belkacem et al.
2008). In such a case, the visibility V2

1 reduces to Ṽ2
1 .

A simple way to address the depressed modes consists in
normalizing the dipole visibility with respect to the nominal ex-
pected value. We therefore use the same definition as Fuller et al.
(2015) for expressing the relative visibility of depressed modes.
In a first step, we consider the individual visibilities of the mixed
modes,

vnm =
V2

1 depressed

Ṽ2
1

, (2)

where the mixed order nm labels the mixed mode (Eqs. (4.60)–
(4.63) of Mosser 2015). Strictly speaking, vnm should be referred
to as a ratio of the squared amplitudes of dipole modes com-
pared to radial modes, since the contribution of the different vis-
ibility terms (aspect ratio of the spherical harmonics and limb-
darkening coefficients) is removed by the ratio to Ṽ2

1 . However,
we keep the term visibility for the sake of simplicity.

For red giants, Ballot et al. (2011) computed Ṽ2
1 ' 1.54, as-

suming that only acoustic modes are present. In evolved stars,
the situation is in fact complicated by mixed modes. The contri-
bution of all mixed modes associated with a given pressure radial
order np can be expressed as

v =
∑

nm∈{N}

vnm . (3)

The sum is made in the ensemble {N} of the N mixed modes
associated with a given pressure radial order. They lie in the ∆ν-
wide frequency range between two radial modes: for the pres-
sure radial order around νmax, N = ∆ν∆Π−1

1 ν−2
max, where ∆ν is

the mean large separation of pressure modes, ∆Π1 is the period
spacing of gravity modes, and νmax is the frequency of maximum
oscillation signal.

The mixed-mode visibility vnm introduced by Eq. (2)
has been investigated in previous work (Dupret et al. 2009;
Benomar et al. 2014; Grosjean et al. 2014), which shows

vnm '

(
Γ0

Γnm

) (
I0

Inm

)2

, (4)
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where Γ0,Γnm (I0, Inm ) are the line widths (inertia) of the radial
and dipole modes, respectively. This equation is valid whether
the dipole mode is resolved or not, but assumes that the driving
is the same for radial and dipole modes. To go further, we have to
examine two cases, depending on the assumption on the dipole
modes.

2.2. Normal dipole mixed modes

Following Belkacem et al. (2015), we may consider that the
work performed by the gas during one oscillation cycle, asso-
ciated with surface damping, is the same for all modes, so that
Eq. (4) is simplified into

vnm '
I0

Inm

'
Γnm

Γ0
, (5)

from which we retrieve that the individual visibilities of mixed
modes are small with smaller mode widths and larger inertia than
radial modes.

From observations, Mosser et al. (2012a) have shown that
the contribution of all mixed modes associated with a given pres-
sure radial order np ensures v = 1. Here, we can demonstrate
this, using the relation between inertia and the function ζ that
governs the mixed-mode spacings and the rotational splittings
(Goupil et al. 2013; Deheuvels et al. 2015; Mosser et al. 2015).
From I0/Inm = 1 − ζ, we have

v =
∑

nm∈{N}

(1 − ζ). (6)

TheN mixed modes in the ensemble {N} between two consecu-
tive radial modes correspond to 1 pure pressure dipole mode and
(N − 1) pure gravity dipole modes. The period difference be-
tween the two radial modes can be estimated in two ways as fol-
lows: either considering the sum (N−1) ∆Π1 for the pure gravity
modes or considering the sum of the mixed-mode period spac-
ings,

∑
nm∈{N}

∆P = (
∑

nm∈{N}
ζ) ∆Π1, according to Mosser et al.

(2015). Hence, we get

v =
∑

nm∈{N}

(1 − ζ) = N − (N − 1) = 1. (7)

This result proves that, despite the mixed nature of the dipole
modes, their total visibility matches the expected visibility of
the corresponding pure pressure mode. So, energy equipartition
is preserved for the normal mixed modes.

2.3. A particular case: suppression of the oscillation
in the core

The possibility of suppression of the oscillation in the core
was first investigated by Unno et al. (1989). Their Eqs. (16.62)–
(16.65) consider the effect of a wave leakage in the core of an
acoustic mode trapped in the convective envelope. The limit of
oscillation suppression in the core implies that only pressure
dipole modes are present since mixed modes are necessarily can-
celed out. In that case, I1 ' I0, so that Eq. (4) is rewritten as

v =
Γ0

Γ1
· (8)

The damping in the core, whatever it is, can be written

v =
Γ0

Γenv
1 + Γcore

1
'

Γ0

Γ0 + Γcore
1

, (9)

where Γenv
1 ' Γ0 and Γcore

1 are the damping contributions in the
envelope and in the core, respectively.

2.3.1. Damping and transmission

Equation (9) can be rewritten

v =
1

1 + x
with x =

Γcore
1

Γ0
· (10)

When all energy transmitted in the core is absorbed or damped,
following Unno et al. (1989) we get

x = ωτa

(∫
A

kr dr
)−1 1

4
exp

(
−2

∫
E

κ dr
)
, (11)

where A denotes integration in the acoustic cavity and E in the
evanescent region, kr is the radial wave number, κ2 = −k2

r , ω is
the mode frequency, and τa is the e-folding damping time of the
radial mode amplitude. At first order, the first integral of Eq. (11)
equals ω/2∆ν, where ∆ν is the large separation. Thus, Eq. (11)
becomes

x =
∆ν τa

2
exp

(
−2

∫
E

κdr
)
· (12)

We then introduce the e-folding damping time of the mode en-
ergy, τ0 = τa/2 and get

v =
(
1 + ∆ν τ0 T 2

)−1
, (13)

where the transmission in the evanescent region is defined by

T = exp
(
−

∫
E

κdr
)
. (14)

Equation (13), derived from the relative visibility of depressed
dipole modes with respect to radial modes, is similar to Eq. (2)
of Fuller et al. (2015), which is derived from the ratio between
the depressed and normal dipole modes.

2.3.2. Link with observable parameters

We can match the value of T 2 with the coupling factor q of mixed
modes (Unno et al. 1989),

T 2 = 4q. (15)

The visibility can thus be expressed as a function of the seismic
observables q and Γ0

v =

(
1 + 2q

∆ν

πΓ0

)−1

· (16)

The coupling factor q is obtained from the asymptotic expansion
of mixed modes

tan θp = q tan θg, (17)

where the phases θp and θg refer, respectively, to the pressure-
and gravity-wave contributions (Mosser et al. 2015). The radial
mode width Γ0, which is measured as the full width at half maxi-
mum in the power density spectrum, is related to the radial mode
lifetime by (see Samadi et al. 2015)

Γ0 =
1

2πτ0
· (18)

In fact, Eqs. (15) and (16) are no longer valid when the extent of
the evanescent region is limited, so that strong coupling occurs.
In that case (see Takata 2016a),

T 2 =
4q

(1 + q)2 · (19)

A62, page 3 of 12



A&A 598, A62 (2017)

Fig. 1. Examples of red giant branch stars with low dipole-mode am-
plitudes. Spectra are plotted as a function of the reduced frequency
ν/∆ν − ε, so that radial modes (shown in blue) are close to integer val-
ues; quadrupole modes are plotted in green, octupole modes in cyan;
and mixed modes can be found everywhere but their contribution is
measured in the frequency range plotted in red only. The mean back-
ground component was subtracted. Top: the mixed mode pattern of
KIC 9279486 can be fitted to extract seismic global parameters; mid-
dle: the mixed modes in KIC 6026983 are evidenced but their pattern
cannot be fit; and bottom: the dipole modes of KIC 5810513 have very
small amplitudes but can be unambiguously detected and identified as
mixed modes with the method discussed in Sect. 3.3.

Following Eq. (71) of Takata (2016b), we also have to replace
T 2 by − ln(1 − T 2) in case of full suppression of the oscillation
in the core. So, Eq. (13) becomes

v =

(
1 − ln

[
1 −

4 q
(1 + q)2

]
∆ν

2πΓ0

)−1

· (20)

Contrary to Eq. (13), this expression ensures a null visibility in
case of total transmission (T = q = 1).

3. Seismic observables

Previous observations have reported that the depressed modes in
the red giant KIC 8561221 are mixed (García et al. 2014). Such
observations question the hypothesis of oscillation suppression:
if the low visibility derives from the suppression of the oscilla-
tion in the radiative core, mixed modes cannot be established.
Therefore, we first aim to identify the prevalence of red giants
with depressed mixed modes. Then, we also use different ob-
servations to assess the properties of depressed dipole modes
to determine whether they are mixed or not. Figure 1 illus-
trates the different types of stars we intend to work with: either

Fig. 2. Same as Fig. 1 but for core-helium burning stars. Top: the mixed
mode pattern of the secondary-clump star KIC 8522050 can be fitted
to extract seismic global parameters; and bottom: the depressed mixed
modes in the clump star KIC 2693261 are apparent but their pattern
cannot be fit.

with depressed mixed modes that can be identified, depressed
mixed modes that cannot be fitted, or without clear evidence of
mixed modes. Figure 2 provides examples for core-helium burn-
ing stars.

3.1. Identification of low visibilities

The first step for the search of stars with dipole mixed modes
consists in the measurement of reduced visibilities, as defined
by Eq. (3), with the method of Mosser et al. (2012a). In short,
squared amplitudes are estimated from the integration of the
power spectrum density over the frequency range covering the
different modes, after subtraction of background. We obtained
the total dipole visibilities, V2

1 , for about 12 500 red giants of the
Kepler public data (Fig. 3a), from which we could identify the
population of stars on the red giant branch (RGB) with normal
visibilities and the family of stars with low visibility, in agree-
ment with Mosser et al. (2012a) and Stello et al. (2016a). Red
giants with normal amplitudes have a total dipole visibility of
close to Ṽ2

1 ' 1.54 with a very weak dependence on Teff , log g,
and Z. Using effective temperatures of Huber et al. (2014), we
found that the normal (not depressed) visibilities of red giants,
integrated for one pressure radial order, follow the mean trend

〈Ṽ2
1 〉 ' 1.54 −

Teff − 4850
4100

, (21)

where the brackets indicate the average value derived from a lin-
ear fit with the effective temperature Teff expressed in kelvin.
This result is very close to the predictions of Ballot et al. (2011).

The mean value of the normal visibility was then used to
derive reduced integrated observed visibilities,

v1 =

∑
V2

1

〈Ṽ2
1 〉
, (22)

where, for the numerator, the sum matches all dipole modes as-
sociated with a given pressure radial order and the overbar repre-
sents the mean value for the different radial orders where dipole
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Fig. 3. a) Dipole mode visibility v1 as a function of the large separation ∆ν. The color codes the mass determined with seismic scaling relations.
Small symbols represent Kepler stars of the public data set; and larger symbols represent stars of the data set studied by Vrard et al. (2016).
Diamonds with a dark center are stars showing depressed mixed modes. The dashed line represents the limit defining low visibilities. b) Radial
mode width Γ0 as a function of the large separation ∆ν of the data set studied by Vrard et al. (2016). The right y-axis provides the radial mode
lifetime. c) Same as b) for the period spacings ∆Π1; and d) same as b) for the coupling factor q. The outlying value of q for KIC 6975038 is
discussed in Sect. 5.4.

modes are observed. Now, v1 can be compared to v (Eq. (3)). As
stated by previous work, the limit between normal and low vis-
ibility is clear on the RGB, despite the presence of a few stars
lying in the no man’s land between normal and reduced visibili-
ties; in the red clump, we chose to define low-visibility stars by
v1 ≤ 0.85 − 0.04 ∆ν (with ∆ν expressed in µHz). We tested that
changing the threshold value does not significantly change the
conclusions of the work.

3.2. Fit of the mixed-mode pattern

The systematic search for stars with depressed mixed modes
was derived from the recent work of Vrard et al. (2016), who
have measured the asymptotic period spacing of mixed modes
for about 6100 red giants. We then fitted the asymptotic mixed-
mode pattern in stars with reduced dipole visibilities.

The fit of mixed mode frequencies in red giants is usually
made easy by the use of asymptotic expansion (Unno et al. 1989;
Mosser et al. 2012b), but is more difficult in stars with depressed
mixed modes because of the lower signal-to-noise ratio induced
by low visibilities. However, we managed to optimize this fit-
ting process to obtain complete sets of seismic parameters, in-
cluding rotational splittings δνrot (Mosser et al. 2012b). Recent
methods and results based on four years of Kepler observation

were used to update previous measurements (Mosser et al. 2014,
2015; Vrard et al. 2016). Stellar masses were estimated from
the seismic scaling relation with the method of Mosser et al.
(2013) to have a better calibration than the solar calibration and
to lower the non-negligible noise induced by pressure glitches
(Vrard et al. 2015). Scaling relations have been used with the ef-
fective temperature of Huber et al. (2014).

We were able to fit the asymptotic mixed-mode pattern, in-
cluding the rotational splittings, for 71 red giants (Table A.1,
Fig. 4). This number represents a small fraction of the 1109 stars
with low amplitudes since fitting all parameters of the asymp-
totic mixed-mode pattern is highly demanding when amplitudes
are depressed. Unsurprisingly, owing to the aforementioned ob-
servational bias, our data set with mixed modes on the RGB is
biased toward high visibilities (Fig. 3a). Conversely, as low vis-
ibilities of clump stars are not as low as they are on the RGB,
fitting their mixed modes is easier. With this analysis, we can
establish the properties of stars with depressed mixed modes.

Mass. Stars in our data set with depressed mixed modes present
larger masses than the typical mass distribution of CoRoT or
Kepler red giants showing solar-like oscillations. Their median
mass is 1.6 M�, which is above the median mass of the red

A62, page 5 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629494&pdf_id=3


A&A 598, A62 (2017)

Fig. 4. Examples of complete fits of the asymptotic mixed-mode pat-
tern of red giants with low dipole-mode amplitudes. Échelle diagrams
are plotted as a function of the reduced frequency ν/∆ν − (np + ε), so
that radial modes are close to integer values. The smoothed profile of
mixed modes are plotted in red, quadrupole modes in green, and oc-
tupole modes in cyan. The dashed gray line corresponds to 8 times
the granulation background. Dipole triplets are identified by the asymp-
totic cyclic frequency, in µHz, of the m = 0 component. Top: RGB star,
KIC 7746983; bottom: Clump star, KIC 5339823.

giants observed with Kepler (1.4 M�). This agrees with the mass
distribution found by Stello et al. (2016b) for stars with low-
amplitude dipole modes.

Evolutionary stage. Mosser et al. (2012a) have reported the
identification of low visibilities for stars on the RGB. Here, we

report that stars with depressed mixed modes appear at any evo-
lutionary stages. We identified depressed modes in secondary-
clump stars, located on the same low-visibility branch as RGB
stars (Fig. 3a). Owing to the mass dependence of the low-
visibility stars, depressed modes are in fact over-represented in
the secondary red clump. The situation is less clear for clump
stars, since the low-visibility branch joins the group of normal
visibility stars when ∆ν ≤ 4.5 µHz. We however notice an over-
abundance of red-clump stars with low visibilities; such stars are
much more abundant than stars with visibilities above the nor-
mal value. An example of such a star is given in Fig. 2 (bottom
panel).

Radial mode widths. Radial mode widths Γ0, defined as full
widths as half maximum, were measured following the method
used by Vrard et al. (2015). Results are shown in Fig. 3b and
summarized in Table 1. They are fully consistent with previ-
ous work obtained with CoRoT and Kepler (Baudin et al. 2011;
Corsaro et al. 2012, 2015) and show a clear dependence with
the evolutionary stage and stellar mass, as will be discussed in
a forthcoming paper. In the clumps, Γ0 of stars with depressed
mixed modes behave as for the other stars. On the RGB, these
stars appear to have slightly larger Γ0 than the mean trend. This is
however a mass effect only; Γ0 increases with increasing masses
and low visibility stars show higher mass (Stello et al. 2016b).

Asymptotic period spacing. Asymptotic period spacings
follow the typical distribution identified in previous works
(Mosser et al. 2012c, 2014; Vrard et al. 2016). We could not
identify any departure to the distribution of the ∆ν–∆Π1 rela-
tion (Fig. 3c). On the RGB, stars with depressed mixed modes
show slightly lower values of ∆Π1 than the mean case, in agree-
ment with their mass distribution (Vrard et al. 2016). Values
are normal in the red clump. The large mass range and the
non-degenerate conditions for helium ignition of secondary red
clump stars explains the spread in the distribution of their seis-
mic parameters, so that the spread for stars with depressed modes
does not allow us to draw any conclusions.

Coupling factors. Coupling factors q were measured by Mosser
et al. (in prep.) for about 4000 stars among the data set analyzed
by Vrard et al. (2016). These factors are derived from the opti-
mization of the method introduced by Mosser et al. (2015) for
analyzing mixed modes. Results are shown in Fig. 3d, where
stars with a low dipole-mode visibility are identified. Mosser
et al. (in prep.) provide a discussion of the general trends ob-
served in q as a function of the evolutionary stage. Here, we note
that stars with depressed modes behave as the other stars. This
suggests that the extent of the evanescent region between the
pressure and gravity components is not impacted by the mecha-
nism responsible for the amplitude mitigation, so that it is very
similar as for normal stars (Unno et al. 1989; Takata 2016a).

Rotation. Fitting rotation requires a high signal-to-noise ratio
in the oscillation spectrum, so that the difficulty of this measure-
ment explains the limited number of stars with a complete fit.
It is evidently a bias due to low visibilities. For the same rea-
son, more fits than expected are obtained for the mixed-mode
patterns of stars nearly seen pole-on, which are simpler than
the general case since the rotational multiplets are reduced to
the zonal modes (with an azimuthal order m = 0). In such cases,
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Table 1. Mean mode width and lifetime (defined as the e-folding time
of the mode energy), depending on the evolutionary, for red giants.

Evolutionary ∆ν Γ0 τ0
status (µHz) (nHz) (day)
RGB 15 118± 25 15.5± 3.3
RGB 10 121± 23 15.1± 3.0
RGB 6 118± 30 15.6± 3.9
Red clump 4 145± 37 12.6± 3.2
Secondary clump 7 178± 45 10.3± 2.6

the core rotation remains undetermined. When measured, rota-
tional splittings show the typical distributions defined for red gi-
ants (Mosser et al. 2012b; Deheuvels et al. 2014, 2015).

3.3. Prevalence of depressed mixed modes

As the number of stars where the mixed-mode pattern can be
fitted is limited, we checked whether the properties they display
are verified by other stars.

3.3.1. Depressed modes versus pure pressure modes

A large number of oscillation spectra show peaks with a height
much above eight times the background levels. Even in the case
of low signal-to-noise ratio oscillation spectra, such peaks can-
not all be created by noise. When their identification with radial,
quadrupole, or octupole modes is excluded, we must conclude
that depressed dipole mixed modes are obviously present in the
whole spectrum. An example of such a star is given in Fig. 1b.
When smoothed, oscillation spectra of such stars exhibit the typ-
ical mixed-mode pattern (Fig. 5).

In other cases, mixed modes are not apparent or cannot
be distinguished from the noise (Fig. 1c). The identification of
dipole mixed modes then requires different tools than those used
earlier in this paper. In principle, the energy of the dipole modes
peaks at the expected position of pressure dominated modes if
modes are not mixed, but can be shifted by mode coupling.
Hence, measuring this shift provides a way to identify whether
modes are mixed or not. The measurement of the position of the
dipole modes has to fight against the acoustic glitch (Vrard et al.
2015), the noise induced by background contribution, and the
intrinsic shift due to finite lifetimes. We identified bright stars
with high quality spectra on the low RGB, where the conditions
of measurement are made easier (Fig. 1c). The shift of the ac-
tual position of the dipole modes with respect to the asymptotic
expansion is shown in Fig. 6, together with the position shifts
of radial, quadrupole, and octupole modes. The curves for these
modes are remarkably close to each other, even for ` = 3 modes,
whereas dipole modes show a modulation as large as ±0.04 ∆ν.

Synthetic tests were performed to evaluate the noise con-
tribution. We reproduced typical conditions of observation and
measured the location of pure pressure dipole modes. In the con-
servative case of a dipole mode width that is five times larger
than the radial mode width, which is, in turn, much larger than
the dipole width observed in other stars, shifts were less than
0.01 ∆ν away of their expected position. The example shown
in Fig. 6 is representative of any spectrum with a high enough
signal-to-noise ratio. From this study, we conclude that de-
pressed dipole mixed modes are not an exception, but evidently
the rule. Very low visibilities cannot be associated exclusively
with the full suppression of the oscillation in the core.

Fig. 5. Échelle spectrum of the RGB star KIC 9711269. Colored lines,
with the same color code as in Fig. 1, emphasize the structure of the
modes. Plus symbols approximately indicate the period spacings de-
rived from the asymptotic expansion; the fit of the mixed modes, which
would imply the fit of the rotational splittings, is however not possible.

Fig. 6. Evidence of dipole mixed modes provided by the position of
low-degree modes, with respect to the second-order asymptotic expan-
sion of pure pressure modes, for the red giant 5810513 observed by
Kepler (Fig. 1 bottom). The shifts are expressed in ∆ν units. The dashed
lines indicate the region where pure pressure low-degree modes are ex-
pected; the dotted lines provide uncertainties for the positions of the
dipole modes.

3.3.2. Asymptotic period spacings

Asymptotic period spacings can be measured independent of
the identification of the mixed-mode pattern (Vrard et al. 2016).
Since measurements are difficult when dipole modes are de-
pressed, we focused this study on all RGB stars with a magni-
tude brighter than mV = 11, and performed an individual analy-
sis of each oscillation spectra. These individual studies provided
us with the measurement of the asymptotic period spacings in
more than 90% of the cases. As a by-product, this study also con-
firmed that the structure of the excess power near the pressure-
dominated mixed modes cannot result from the simple broaden-
ing of a single dipole pressure mode. This study fully confirmed
that asymptotic period spacings of stars with depressed mixed
modes are normal.
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3.4. Summary of the observations: depressed modes
are mixed

From the observations, we have derived that depressed modes
are mixed and that their seismic properties, including their
asymptotic period spacings, are normal.

– This information was directly obtained for the 71 red gi-
ants where the signal-to-noise ratio is high enough to fit the
mixed-mode spectrum.

– For 96 stars, we measured the individual values of the cou-
pling factors and of the period spacings. Again, these seismic
values are normal. These 96 stars are considered in Sect. 4.

– At very low visibility, estimating the asymptotic period spac-
ing is impossible. However, we showed that the dipole modes
are shifted with respect to the expected position of pure pres-
sure modes.

– The previous cases represent a small fraction of the
1109 stars with low amplitudes, but we showed that more
than 90% of the stars with depressed modes brighter than
mV = 11 on the RGB have a mixed-mode pattern with a nor-
mal period spacing. This prevalence can be extrapolated to
fainter stars since we do not expect any bias with magnitude.
The situation for clump stars is comparable.

4. Observed versus predicted visibilities

As shown above, the observation of many red giants with de-
pressed mixed modes invalidates the hypothesis of full suppres-
sion of the oscillation in the core for explaining low visibilities.
This opens questions on the validity of Eq. (13) to explain the
low visibility. Hence, we need to check whether the prediction
of Eq. (13) is sustained. As our analysis is based on observations,
we aim to check Eq. (13) through Eq. (20). Therefore, we first
justify the validity of using Eq. (20), then test various hypotheses
introduced by Fuller et al. (2015) to explain low visibilities.

4.1. Global seismic parameters

Using Eq. (20) for testing the observed visibilities requires infor-
mation on the coupling factors q and on the radial mode widths
Γ0. The set of red giants with a low visibility, and for which all
parameters of Eq. (20) are measured, is composed of 96 stars. We
assumed that the mechanism responsible for the extra damping
does not modify the stellar interior structure, so that q is repre-
sentative of the transmission T . This assumption is theoretically
justified by the analysis that is presented in Takata (2016b) and
is observationally verified: as seen above, all stars have similar
q and similar Γ0, regardless of their visibility (Figs. 3b and d).
In that respect, the stars with depressed mixed modes provide
us indirectly with relevant tests and Eq. (20) can be used to test
Eq. (13).

4.2. A significant disagreement

Assuming that q measured from mixed modes can replace the
T value (Eq. (19)) and using observed Γ0, we were able to com-
pare the relation between the reduced observed visibilities v1 and
the calculated depressed visibility v predicted by Eq. (20). Con-
trary to previous work, the estimated visibilities do not match
the observed visibilities, where modeled values are significantly
smaller than the observed values (Fig. 7). We stress that the dis-
crepancy is not due to the use of the formalism correct for strong
coupling introduced by Takata (2016a,b). In fact, the difference

Fig. 7. Observed visibilities v1 for the Kepler public data set of red gi-
ants, as a function of νmax. Values for stars showing depressed mixed
modes are emphasized with large diamonds and compared to the
computed visibilities: large dark triangles for the low-coupling case
(Eq. (16), as in Unno et al. 1989; Fuller et al. 2015) are very close to
black squares for the strong-coupling case (Eq. (20)). Gray lines con-
nect the observed and modeled values.

is as high as a factor of 4 for the term τ0 T 2 of Eq. (13). Relative
uncertainties on q and Γ0 cannot explain such a high difference.
However, the disagreement is consistent with partial suppres-
sion of the oscillation in the core since observed visibilities are
larger than modeled values. This evidence is ascertained by the
fact that, as made clear by Fig. 7, not only stars with depressed
mixed modes have observed visibilities that are much larger than
predicted by the model. The discrepancy certainly indicates that
previous analysis were based on inappropriate estimates of T .

5. Discussion

5.1. Depressed modes are mixed

Important facts were inferred from the observations presented
in the previous sections: first, depressed modes are identified
as mixed modes for all stars observed with a sufficient signal-
to-noise ratio; second, period spacings of stars with depressed
modes resemble normal period spacings; and third, core rotation
rates also follow the normal distribution. We consider these three
pieces of information next.

5.1.1. Depressed mixed modes

Mixed modes were directly or indirectly observed in many stars
showing low visibilities. As already stated, the hypothesis of full
suppression of the oscillation in the core is invalidated, since
mixed modes result from the coupling of pressure waves in the
envelope and gravity waves in the core. This observational re-
sult breaks the statement that the observation of low visibilities
implies the suppression of the oscillation in the core. A mech-
anism able to damp the oscillation only partially is needed for
explaining the low visibilities.

As a result, the mechanism proposed by Fuller et al. (2015)
is not fully adequate since it relies on the total suppression of
the dipole modes in the core. Furthermore, the equivalence be-
tween low visibility and magnetic greenhouse effect accepted
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in follow-up papers (Cantiello et al. 2016; Stello et al. 2016b) is
questionable.

5.1.2. Period spacings of depressed mixed modes

The measurement of normal period spacings in stars with de-
pressed modes allows us to derive further information, since
such spacings imply that the resonant cavity of gravity modes
is not perturbed by the suppression mechanism. The mechanism
responsible for the damping cannot modify the Brunt-Väisälä
cavity at the high level of precision reached with seismology.

In that respect, the scattering process associated with the
magnetic greenhouse effect is invalidated since it would modify
the resonance condition of dipole modes with a smaller resonant
cavity for the gravity waves (Fig. 1 of Fuller et al. 2015) and,
hence, larger period spacings. Larger period spacings are not ob-
served for depressed mixed modes. This proves that the mag-
netic greenhouse effect cannot explain the many cases where de-
pressed mixed modes are observed. This mechanism may work
in some other cases, but proving it then requires more informa-
tion than simply having the visibilities of dipole modes. In any
case, at this stage, the magnetic greenhouse effect cannot be a
general solution for explaining depressed modes, and it is im-
possible to conclude the identity of the mechanism able to lower
the dipole mode amplitude.

5.1.3. Rotational splittings of depressed mixed modes

The identification of the normal rotational splittings in stars with
depressed modes provides us with similar conclusions. If there
were a strong magnetic field in the cores of the stars with de-
pressed modes, then Cantiello et al. (2016) predict that an extra
magnetic splitting, which is comparable to the gravity mode pe-
riod spacing in RGB stars, would be observed. As the core rota-
tion rates inferred from the mixed-mode pattern follow a similar
distribution to the reference set of stars, we can rule out the pres-
ence of the extra, magnetic splitting.

5.2. From individual visibilities to extra damping

The study of the widths of dipole mixed modes can provide
promising information on the way amplitude are distributed in
mixed modes. We illustrate this potential with the comparison
of two twin stars with very close ∆ν and ∆Π1. The star with
normal visibility is used as a reference for the other with de-
pressed modes. The resemblance of their mixed-mode pattern
allowed us to compare their individual visibilities vnm (Fig. 8).
The simplifications introduced either for normal stars (Sect. 2.2)
or in the extreme case of full suppression of the oscillation in the
core (Sect. 2.3) do not hold any more for the star with depressed
modes. We have to rewrite Eq. (4) in case of an extra damping.
For radial modes, we have

Γ0I0 = −
1
ω0

∮
δW0, (23)

where ω0 is the radial frequency and the cyclic integral repre-
sents the work during one radial oscillation. For a mixed mode,
we have an extra damping, so that

Γnm Inm = −
1
ωnm

∮
δWnm ' −

1
ωnm

∮
(δW0 + δWextra), (24)

Fig. 8. Comparison of the smoothed spectra of two stellar twins,
KIC 5295898 (with depressed modes; blue curve) and KIC 2157650
(with normal modes, nearly seen pole on; purple curve printed upside
down). The width of the smoothing filter is 0.05 µHz, which is much
smaller than the expected width of dipole modes if not mixed. A small
shift in frequency is needed to superimpose the peaks.

assuming that the normal dipole work is similar to the radial
work, except for the extra damping (e.g., Dupret et al. 2009;
Benomar et al. 2014; Grosjean et al. 2014). Since radial and
non-radial frequencies are close to each other, we have

Γnm Inm = Γ0I0 (1 + x), (25)

with a similar definition for x as in Eq. (10); x represents the
relative contribution of the extra damping.

From Eq. (4), we obtain a new expression for the mixed
mode visibility,

vnm '
I0

(1 + x) Inm

'
Γnm

(1 + x)2 Γ0
, (26)

which demonstrates the capability of mixed modes to measure
the relative extra damping x.

If we simply assume that x has limited variation in frequency,
the total contribution v of the individual visibilities provides an
estimate of the extra damping,

x '
1 − v
v
· (27)

According to this relation, the magnitude of this relative extra-
damping significantly decreases with stellar evolution. Very low
visibilities observed for stars on the low RGB are due to a large
absorption (x ' 9 when v1 = 0.1), but x ' 0.7 only when v1 =
0.6. For KIC 5295898 shown in Fig. 8, x ' 2.6.

5.3. No man’s land

For completeness, we fitted the stars in the no man’s land be-
tween normal and low-visibility stars (Figs. 3a and 7). We
checked that these stars behave as other stars with similar seis-
mic parameters. The presence of such stars is crucial for at least
two reasons. First, they show that intermediate values between
normal and low visibilities are possible. Second, those stars rep-
resent the intermediate case between normal and low visibil-
ity. This reinforces the fact that stars in which depressed mixed
modes could be fully characterized are representative of all stars
with low-amplitude dipole modes.

A62, page 9 of 12

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201629494&pdf_id=8


A&A 598, A62 (2017)

Fig. 9. Spectrum of the RGB star KIC 6975038 showing a strong gradi-
ent of the dipole mode amplitudes. Dipole modes have very low ampli-
tudes below the radial order 11 and normal amplitudes above.

5.4. Visibility gradient

Three stars of our data set exhibit a clear visibility gradient:
KIC 6975038 (Fig. 9), 7746983, and 8561221.

– The case of KIC 6975038 is investigated in Mosser et al.
(in prep.). This star shows atypical seismic parameters: ∆Π1
is very low and q is unusually large compared to the general
trend on the RGB (Mosser et al. 2015; Vrard et al. 2016).
This star deserves a precise modeling beyond the scope of
this work.

– KIC 8561221 was identified by García et al. (2014) as the
least evolved observed star with depressed dipole modes
among red giants observed with Kepler. It shows a very
low dipole-mode visibility (Table A.1). However, mixed
modes can be firmly identified. The asymptotic period spac-
ing ∆Π1 ' 114.8 s is typical for ∆ν ' 29.8 µHz, but the
core rotation of this star seems very high. We measure a core
rotation rate of about 2.6 µHz in contradiction with the val-
ues extracted from ` = 2 and ` = 3 modes by García et al.
(2014).

– Compared to the two previous stars, the seismic parameters
of KIC 7746983 are close to the values obtained on the RGB;
only the dipole mode visibility is atypical. This gradient ap-
pears to be helpful for characterizing the mixed mode pat-
tern; after KIC 8561221, this star is the second least evolved
in our data set with low-dipole visibility.

The change of visibility with frequency was used by Fuller et al.
(2015) as a further argument in favor of a large magnetic field for
explaining the suppression of the oscillation, since the variation
of the visibility with frequency matches their prediction. A more
conservative analysis consists in remarking that the physics of
oscillation damping has to be frequency dependent. Red giants
showing a gradient of dipole visibility are certainly useful bench-
mark stars for understanding the nature and physics of the extra
damping of the oscillation.

6. Conclusion

We performed a thorough study of red giants showing low
dipole-mode visibility, based on the identification of their dipole
mode pattern and the characterization of their global seismic
properties. We have shown that these stars share the same global
seismic parameters as other stars, regardless of the value of the
dipole mode visibilities. This analysis sustains the fact that the
mechanism responsible for the damping does not significantly
impact the stellar structure and does not change the property of
the cavity where gravity waves propagate.

We were able to determine that dipole depressed modes are
mixed, even at very low visibilities. The existence of these de-
pressed mixed modes implies that oscillations cannot be fully
suppressed in the radiative core. Also, the observed visibilities
are significantly higher than predicted from the modeling assum-
ing full suppression in the core, which is consistent with partial
suppression of the core oscillation only. Furthermore, the obser-
vations of normal period spacings in stars with depressed mixed
modes indicate that the radiative core of these stars is not affected
by the suppression mechanism.

These precise seismic signatures indicate that the magnetic
greenhouse effect cannot explain the observed low visibilities of
dipole modes (Fuller et al. 2015). This effect supposes the full
suppression of the oscillation, which is discarded by the fact that
depressed modes are mixed. Even if the mechanism could work
with partial suppression only, the scattering process induced by
the magnetic field in the radiative core is dismissed by the ob-
servation of the period spacings. As a result, inferring high mag-
netic fields in red giant from low visibilities (Stello et al. 2016b;
Cantiello et al. 2016) is at least premature. This conclusion ap-
plies in the vast majority of stars that show low visibilities.

The low integrated visibilities reflect an extra mode damp-
ing but, at this stage, carry no direct information on the nature
of this damping. Another damping mechanism must be found.
This mechanism, which partially damps the dipole mixed modes,
could be characterized by the measurement of the mixed mode
widths.
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Appendix A: Additional table

Table A.1. Seismic properties of 71 stars showing depressed mixed modes.

KIC Evolutionary νmax ∆ν ∆Π1 q M Γ0 δνrot v1 v v
stage (µHz) (µHz) (s) (M�) (µHz) (nHz) Low Strong
(1) (2) (3) (4)

2573092 RC 35.3 4.08 293.8 0.24 1.48 0.14 35 0.60 0.181 0.178
2858129 RC2 40.5 4.22 320.9 0.26 1.93 0.16 80 0.58 0.181 0.178
2992350 RC 45.9 4.72 242.8 0.26 1.59 0.12 35 0.58 0.134 0.132
3443483 RGB 132.2 10.71 71.8 0.15 1.71 0.13 230 0.16 0.113 0.112
3532734 RGB 145.2 11.83 75.3 0.12 1.63 0.09 0 0.23 0.095 0.095
3660245 RC 33.3 4.22 297.0 0.25 1.19 0.15 35 0.65 0.181 0.178
3758505 RGB 157.4 12.06 80.6 0.15 1.84 0.13 500 0.14 0.100 0.099
4180939 RC2 65.2 5.80 241.0 0.24 2.29 0.11 50 0.55 0.114 0.112
4587050 RGB 191.2 14.47 73.8 0.10 1.60 0.08 530 0.26 0.080 0.080
4761301 RC 30.8 4.49 338.3 0.30 0.76 0.25 65 0.63 0.229 0.224
4772722 RC 37.3 4.30 310.0 0.31 1.42 0.18 38 0.67 0.175 0.170
5007332 RGB 96.9 8.44 68.7 0.10 1.76 0.14 310 0.37 0.204 0.204
5179471 RC2 47.0 4.56 256.0 0.28 2.17 0.10 110 0.64 0.109 0.106
5295898 RGB 142.9 11.39 75.3 0.10 1.72 0.10 210 0.23 0.123 0.123
5306667 RC 39.5 4.28 268.0 0.28 1.77 0.14 25 0.67 0.158 0.154
5339823 RC 40.4 4.28 317.2 0.45 1.76 0.16 80 0.45 0.115 0.108
5620720 RC2 57.0 5.35 264.7 0.29 2.14 0.14 45 0.45 0.124 0.121
5881079 RGB 67.2 6.14 68.3 0.10 1.96 0.17 0 0.62 0.303 0.302
5949964 RC 37.8 4.29 316.3 0.35 1.50 0.23 40 0.59 0.194 0.187
6037858 RC 43.3 4.57 244.4 0.25 1.76 0.16 50 0.45 0.178 0.174
6130770 RC 35.1 4.13 322.9 0.30 1.48 0.12 40 0.62 0.132 0.128
6210264 RC 40.7 4.78 290.0 0.25 1.60 0.17 60 0.63 0.183 0.180
6232858 RC2 50.0 4.90 235.8 0.28 1.87 0.11 55 0.51 0.115 0.112
6610354 RC2 46.9 4.57 209.3 0.28 2.44 0.11 65 0.55 0.119 0.116
6975038 RGB 128.4 10.61 57.9 0.35 1.44 0.14 280 0.27 0.056 0.054
7512378 RC 32.5 3.84 310.0 0.32 1.34 0.16 45 0.70 0.170 0.165
7515137 RGB 67.2 6.75 61.1 0.12 1.32 0.09 0 0.55 0.149 0.148
7693833 RGB 31.8 4.02 56.6 0.10 1.05 0.11 0 0.55 0.301 0.300
7746983 RGB 188.6 14.74 83.3 0.18 1.40 0.09 190 0.17 0.050 0.049
8009582 RC 35.2 4.21 282.4 0.22 1.36 0.08 30 0.56 0.120 0.118
8025383 RC 36.1 4.14 313.5 0.25 1.41 0.16 25 0.58 0.195 0.192
8283646 RGB 67.2 6.15 66.5 0.10 1.93 0.14 100 0.38 0.263 0.263
8391175 RGB 87.4 7.77 69.0 0.12 1.72 0.10 0 0.36 0.144 0.144
8396782 RC2 82.3 7.04 241.8 0.30 2.00 0.20 200 0.42 0.129 0.126
8432219 RC 42.3 4.59 283.2 0.30 1.66 0.24 45 0.55 0.215 0.210
8476202 RGB 109.7 9.42 71.7 0.12 1.57 0.09 0 0.27 0.110 0.110
8522050 RC2 75.5 6.72 188.1 0.30 2.06 0.16 60 0.59 0.108 0.105
8564277 RC 31.9 4.00 307.0 0.31 1.09 0.23 25 0.47 0.226 0.220
8564559 RC 45.8 4.70 240.9 0.25 1.79 0.15 40 0.62 0.167 0.164
8636174 RC2 43.9 4.51 305.7 0.25 2.00 0.16 35 0.58 0.182 0.179
8687248 RGB 170.0 13.10 77.8 0.12 1.59 0.14 0 0.32 0.123 0.122
8689599 RC 30.4 3.93 299.3 0.32 1.17 0.14 35 0.63 0.149 0.144
8771414 RC 38.6 4.23 274.0 0.25 1.82 0.11 28 0.58 0.139 0.137
8827934 RGB 55.0 5.37 63.8 0.15 1.80 0.14 0 0.51 0.214 0.213
9115334 RC2 67.5 6.09 179.2 0.30 2.00 0.19 220 0.38 0.137 0.134
9176207 RC2 59.2 5.41 314.6 0.24 1.96 0.15 100 0.57 0.157 0.154
9229592 RGB 72.0 6.85 67.2 0.15 1.62 0.14 230 0.51 0.173 0.172
9279486 RGB 132.4 10.89 76.8 0.12 1.59 0.15 200 0.30 0.149 0.149
9291830 RC2 47.5 4.41 261.8 0.30 2.50 0.15 70 0.44 0.151 0.147
9581849 RC 34.6 4.08 270.5 0.37 1.43 0.20 30 0.66 0.172 0.165
9650046 RC2 68.2 6.02 283.5 0.25 2.42 0.17 90 0.51 0.147 0.144
9711269 RGB 64.1 6.44 64.2 0.10 1.39 0.12 0 0.43 0.219 0.218
9719858 RC2 47.8 4.48 285.8 0.25 2.62 0.15 90 0.68 0.174 0.171
9947511 RC 30.7 3.75 349.5 0.33 1.35 0.22 30 0.69 0.218 0.212

10029821 RC2 64.6 5.90 259.3 0.29 2.08 0.16 50 0.61 0.129 0.126
10091729 RC2 72.8 6.34 295.3 0.23 2.18 0.20 60 0.54 0.175 0.173
10420655 RC 37.5 4.26 298.6 0.28 1.39 0.21 50 0.64 0.217 0.212
10422589 RC2 50.2 5.04 223.1 0.24 2.15 0.17 60 0.62 0.181 0.178
10469976 RC2 52.7 4.81 258.0 0.30 2.35 0.14 30 0.49 0.132 0.129
10528917 RGB 76.4 7.52 73.1 0.13 1.36 0.08 220 0.56 0.111 0.111
10653383 RC 40.1 4.42 248.5 0.26 1.60 0.13 30 0.53 0.151 0.148
10854564 RC 29.9 4.26 293.5 0.22 0.69 0.26 30 0.66 0.304 0.300
11413158 RC2 58.1 4.99 210.6 0.28 2.86 0.15 80 0.68 0.149 0.146
11462972 RC2 29.9 4.26 318.0 0.26 1.89 0.13 30 0.49 0.154 0.151
11519450 RGB 72.8 6.87 68.1 0.14 1.65 0.10 180 0.54 0.139 0.138
11598312 RC2 48.0 4.82 281.5 0.22 1.96 0.13 50 0.47 0.161 0.159
12058556 RGB 105.0 9.35 72.7 0.15 1.40 0.11 0 0.31 0.110 0.109
12070510 RC 35.3 4.06 304.9 0.23 1.36 0.14 50 0.52 0.191 0.188
12109388 RC 40.9 4.25 245.3 0.26 1.82 0.13 50 0.60 0.152 0.149
12453551 RC2 51.2 5.02 270.8 0.29 2.04 0.19 70 0.60 0.170 0.166
12691734 RC2 46.8 4.34 338.5 0.31 2.73 0.15 50 0.69 0.151 0.147

Notes. (1) RGB: red giant branch; RC: red clump; RC2: secondary red clump. (2) Uncertainties on q are of about ±0.027 for stars on the RGB
and ±0.057 in the red clump. (3) Uncertainties on Γ0 are of about 30%. (4) A null value for δνrot indicates that the rotational splitting could not be
measured because the star is seen pole-on.
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