
HAL Id: obspm-02190209
https://hal-obspm.ccsd.cnrs.fr/obspm-02190209v1

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Period spacings in red giants
B. Mosser, C. Pinçon, Kevin Belkacem, M. Vrard, M. Takata

To cite this version:
B. Mosser, C. Pinçon, Kevin Belkacem, M. Vrard, M. Takata. Period spacings in red giants. Astron-
omy and Astrophysics - A&A, 2017, 600, pp.A1. �10.1051/0004-6361/201630053�. �obspm-02190209�

https://hal-obspm.ccsd.cnrs.fr/obspm-02190209v1
https://hal.archives-ouvertes.fr


A&A 600, A1 (2017)
DOI: 10.1051/0004-6361/201630053
c© ESO 2017

Astronomy
&Astrophysics

Period spacings in red giants

III. Coupling factors of mixed modes

B. Mosser1, C. Pinçon1, K. Belkacem1, M. Takata2, and M. Vrard3

1 LESIA, Observatoire de Paris, PSL Research University, CNRS, Université Pierre et Marie Curie, Université Paris Diderot,
92195 Meudon Cedex, France
e-mail: benoit.mosser@obspm.fr

2 Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
3 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal

Received 14 November 2016 / Accepted 23 December 2016

ABSTRACT

Context. The power of asteroseismology relies on the capability of global oscillations to infer the stellar structure. For evolved stars,
we benefit from unique information directly carried out by mixed modes that probe their radiative cores. This third article of the series
devoted to mixed modes in red giants focuses on their coupling factors, which have remained largely unexploited up to now.
Aims. With the measurement of coupling factors, we intend to give physical constraints on the regions surrounding the radiative core
and the hydrogen-burning shell of subgiants and red giants.
Methods. A new method for measuring the coupling factor of mixed modes was implemented, which was derived from the method
recently implemented for measuring period spacings. This new method was automated so that it could be applied to a large sample of
stars.
Results. Coupling factors of mixed modes were measured for thousands of red giants. They show specific variation with mass and
evolutionary stage. Weak coupling is observed for the most evolved stars on the red giant branch only; large coupling factors are
measured at the transition between subgiants and red giants as well as in the red clump.
Conclusions. The measurement of coupling factors in dipole mixed modes provides a new insight into the inner interior structure
of evolved stars. While the large frequency separation and the asymptotic period spacings probe the envelope and core, respectively,
the coupling factor is directly sensitive to the intermediate region in between and helps determine its extent. Observationally, the
determination of the coupling factor is a prior to precise fits of the mixed-mode pattern and can now be used to address further
properties of the mixed-mode pattern, such as the signature of buoyancy glitches and core rotation.

Key words. stars: oscillations – stars: interiors – stars: evolution

1. Introduction

The seismic observations of large sets of stars with the CoRoT
and Kepler missions, from the main sequence (Chaplin et al.
2011) up to the red giant branch (De Ridder et al. 2009), has mo-
tivated intense work in stellar physics, which includes ensemble
asteroseismology (e.g., Kallinger et al. 2010; Mosser et al. 2010;
Huber et al. 2011; Silva Aguirre et al. 2011; Kallinger et al.
2014). Ensemble asteroseismology is efficient for evolved stars
because they host mixed modes that behave as gravity modes
in the core and pressure modes in the envelope. These modes
directly probe the stellar core and, therefore, reveal unique
information.

Contrary to pressure modes, evenly spaced in frequency, and
to gravity modes, evenly spaced in period, mixed modes show
a more complicated frequency pattern. Since, for red giants, the
density of gravity modes is large compared to the density of pres-
sure modes, the mixed-mode pattern resembles a pure gravity-
mode pattern perturbed by the pressure-mode pattern. The period
spacings are close to the asymptotic value for gravity-dominated
mixed modes, but are significantly smaller near expected pure
pressure modes (e.g., Mosser et al. 2015). Pressure-dominated
mixed modes have lower inertia than gravity-dominated mixed

modes; hence, the former show larger amplitudes (Dupret et al.
2009; Grosjean et al. 2014). Even with period spacings far from
the asymptotic values, mixed modes allowed us in a first step
to distinguish stars with hydrogen-burning shell from stars with
core helium-burning (Bedding et al. 2011; Mosser et al. 2011a).
In a second step, the asymptotic analysis of the mixed-mode
pattern allowed us to derive precise information on the Brunt-
Väisälä frequency profile in the radiative core (Mosser et al.
2012b). Indeed, the asymptotic expansion (Shibahashi 1979;
Unno et al. 1989; Mosser et al. 2012b; Takata 2016) is a pow-
erful tool for investigating mixed modes in red giants observed
by the space missions CoRoT and Kepler, despite the fact that
observations are not conducted in an asymptotic regime. Ob-
served radial pressure orders are small; in fact, they are too
small to lie in the asymptotic regime, as shown by CoRoT obser-
vations (e.g., De Ridder et al. 2009; Mosser et al. 2010). How-
ever, Mosser et al. (2013b) have demonstrated that the second-
order asymptotic expansion provides a coherent view on the
pressure mode pattern, even for the most evolved red giants
(Mosser et al. 2013a). Conversely, high radial gravity orders are
observed in mixed modes, except in subgiants, so that consider-
ing a first-order expansion for the gravity contribution is relevant
(Mosser et al. 2014).
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This work allowed us to measure asymptotic period spac-
ings and to derive unique information on stellar evolution. The
contraction of the helium core of hydrogen-shell-burning red gi-
ants is marked by the decrease of the asymptotic period spacing.
Moreover, stars with a degenerate helium core (with a mass in-
ferior to about 1.8 M�) on the red giant branch (RGB) show a
close relationship between the large separation and period spac-
ing, which is the seismic signature of the mirror effect between
the core and envelope structures. In the red clump, contrary to
more massive stars, core-helium burning stars with a mass lower
than about 1.8 M� show a tight mass-dependent relation between
the asymptotic large separation and period spacing.

The use of the mixed modes for assessing the inner interior
structure of red giants is, however, still in its infancy. Up to
now, only the period spacings have benefitted from large-scale
measurements (Vrard et al. 2016). Another important parameter,
the coupling factor q, was precisely determined for just a hand-
ful of stars (Buysschaert et al. 2016). This parameter benefitted
from a recent breakthrough since Takata (2016) could derive an
asymptotic expression for dipole modes using the JWKB method
(Jeffreys, Wentzel, Kramers, and Brillouin), taking the perturba-
tion of the gravitational potential into account; but this investi-
gation did not use the weak-coupling approximation, contrary to
the previous work by Unno et al. (1989).

Here, we use the method developed by Mosser et al. (2015,
Paper I of the series) to complete the large-scale analysis of
Vrard et al. (2016, Paper II of the series). We specifically address
the measurement of the coupling factor q of mixed modes. This
parameter plays an important role in the asymptotic expansion:
it expresses the link between the pressure and gravity contribu-
tions to the mixed mode, which is expressed by their phases θp
and θg, respectively. Following Unno et al. (1989), the asymp-
totic expansion is written

tan θp = q tan θg, (1)

with the phases defined as

θg = π
1

∆Π1

(
1
ν
−

1
νg

)
, (2)

θp = π
ν − νp

∆νp
, (3)

where νp and νg are the asymptotic frequencies of pure pressure
and gravity modes, respectively, and ∆νp is the frequency differ-
ence between the consecutive pure pressure radial modes with
radial orders np and np + 1, as defined by Mosser et al. (2015).

While θp and θg account for the propagation of the wave in
the envelope and core, respectively, the coupling factor comes
from the contribution of the region between the Brunt-Väisälä
cavity and the Lamb profile S ` =

√
`(` + 1) c/r, where the oscil-

lation is evanescent. Hence, studying the coupling factor q pro-
vides a direct way to examine the evanescent region, namely
the physical regions surrounding the hydrogen-burning shell,
where most of the stellar luminosity is produced. This param-
eter also plays a crucial role in examining rotational splittings
(Goupil et al. 2013; Deheuvels et al. 2015) and mode visibilities
(Mosser et al. 2017), so that its thorough examination becomes
crucial in red giant seismology.

The article is organized as follows. Section 2 presents the
framework of our analysis. We use the weak-coupling cases to
illustrate and emphasize how q is linked to stellar interior prop-
erties. We also introduce the strong-coupling case, which is nec-
essary at various evolutionary stages. In Sect. 3, we develop a

Fig. 1. Brunt-Väisälä and Lamb frequency profiles for a 1.3-M� stel-
lar model on the RGB, corresponding to model M1 of Belkacem et al.
(2015, see also Table 3). The horizontal dashed lines delimit the fre-
quency range in which oscillations are expected, around νmax; the verti-
cal dotted lines indicate the locations of the hydrogen-burning shell and
base of the convection zone (BCZ), respectively.

specific method for measuring the coupling factors in an auto-
mated way. Section 4 presents the results derived from the set
of Kepler red giants analyzed by Vrard et al. (2016). The results
are discussed in Sect. 5.

2. Coupling factor of mixed modes

In this section, we show how the coupling factor of mixed modes
can be used to probe the stellar interior. We restrain the analysis
to dipole mixed modes (` = 1).

2.1. Evanescent region

The coupling factor in Eq. (1) measures the decay of the wave in
the region between the cavities delimited by the Brunt-Väisälä
frequency NBV and the Lamb frequency S 1 (Fig. 1). This in-
termediate zone is called the evanescent region. In the JWKB
approximation, thus assuming that the wavelength of the oscil-
lations is much shorter than the scale height of the equilibrium
stellar structure, the radial component of the wave vector κ in the
evanescent region can be written

κ =

√
(S 2

1 − ω
2)(ω2 − N2

BV)

cω
, (4)

where c is the sound speed and ω is the angular frequency.
We assume in the following that the evanescent zone is lo-

cated between the hydrogen-burning shell and the base of the
convective envelope. The Brunt-Väisälä and Lamb frequencies
show similar radial variations in this region probed by the mixed
modes (Fig. 1 and, e.g., Fig. 2 of Montalbán et al. 2012). Both
can be approximated with a power law with similar exponent,

−
dln NBV

dln r
= βN ' β ' βS = −

dln S 1

dln r
· (5)

In fact, the exponent β measures the density contrast between
the core and the envelope: the higher the contrast, the higher β.
We expect β to increase with the evolution and contraction of the
core. In evolved red giants, where the density contrast between
the envelope and the core is high enough to ensure that the local
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Fig. 2. Relationship between the coupling factor q and the ratio α2 =
(NBV/S 1)2 defined under the assumption that both frequencies have
the same slope varying as r−β in the region surrounding the hydrogen-
burning shell; q is computed for three different values of β (1.3, 1.4,
and 1.5) in three cases: very weak (dotted lines, Eqs. (10), (11)), weak
(dashed lines, Eqs. (7)–(9)), or strong coupling (full lines, Eqs. (12)–
(14)). The very weak and weak coupling values hardly depend on β,
unlike the strong-coupling case.

gravity varies as r−2 in the evanescent region, β is expected to be
close to the upper limit of 3/2 (Takata 2016).

As a consequence of the parallel variations of NBV and S 1,
the ratio

α = NBV/S 1 (6)

can be considered as nearly uniform in the region above the
hydrogen-burning shell where the oscillation is evanescent. A
very thin evanescent zone means α is close to unity, whereas a
wide one has a small α. In the following, we use this ratio α as a
measure of the extent of the evanescent region and aim at linking
α and β with q.

2.2. Weak coupling

In the case of weak coupling, the decay of the wave amplitude in
the evanescent region E is expressed by the transmission factor
defined as

T ≡ exp
(
−

∫
E

κ dr
)
, (7)

which is linked to the coupling factor q of the asymptotic expan-
sion (Eq. (1)) by

q =
T 2

4
, (8)

as computed by Shibahashi (1979) and Unno et al. (1989).
Weak coupling is ensured if the transition region between S 1

and NBV is wide enough. Indeed, as shown by Eqs. (7) and (8),
the value of q in the case of weak coupling is necessarily below
1/4. Conversely, a value of q above 1/4 implies that the weak-
coupling approach is insufficient.

With the assumptions made in Sect. 2.1, so with the defini-
tions of α (Eq. (6)) and β (Eq. (5)), the integral term in Eq. (7)
can be rewritten∫
E

κ dr =

√
2
β

∫ 1

α

√
1 − x2

√
x2 − α2 dx

x2 , (9)

where x is the normalized frequency ω/S 1. Consequently, the
coupling factor only depends on α and β, but does not vary in
the frequency range in which modes are observed. Although the
evanescent region is probed at different depths by the different
mixed modes, the wave transmissions through the barrier, hence
q, are the same for each frequency because of the parallel varia-
tions of NBV and S 1. This result confirms that q is directly related
to the interior structure properties (Fig. 2).

In the case of very weak coupling, the influence of the turn-
ing points can be neglected in Eq. (7). In practice, we consider
that S 1 � ω � NBV almost everywhere between the boundaries
of the evanescent region r1 and r2, so that q reduces to a simple
function of these boundaries

q '
1
4

(
r1

r2

)2
√

2

· (10)

Combined with the assumption on the variations of NBV and S 1,
it can be rewritten in terms of the coefficients α and β as follows:

q '
1
4
α2
√

2/β. (11)

This simplified relation shows again that q does not vary in the
frequency range in which mixed modes are observed. It also
proves that q provides another diagnostic parameter of red gi-
ants, complementary to the period spacing ∆Π1 that probes the
Brunt-Väisälä cavity.

2.3. Strong coupling

In the strong coupling case studied by Takata (2016), the expres-
sion of the transmission T is not as simple as Eq. (7) and must
be replaced by a more precise expression. The relation between
q and T becomes

T 2 =
4q

(1 + q)2 · (12)

The factor q is connected to interior structure properties in the
general case

q =
1 −

√
1 − exp(−2πX)

1 +
√

1 − exp(−2πX)
, (13)

following Eq. (133) of Takata (2016). The new variable X de-
fined by Eq. (61) of this paper expresses

X ∝
∫
E

κ dr + XR, (14)

where the additional term XR is only important when the fre-
quencies NBV and S 1 are very close to each other. This term
comes from the gradient of NBV and S 1 in the evanescent region.
In practice, XR takes the reflection of the wave at the boundaries
into account and thereby explains that the transmission cannot be
equal to unity even when NBV and S 1 have very close values. As
a result, a very narrow evanescent region characterized by α ' 1
is not associated with a coupling factor close to one.

The variation of X and the relation between X and q make it
possible to have values of q significantly above the limit of 1/4
fixed by the weak-coupling case (Eq. (8)). Under the assumption
that NBV and S 1 show similar radial variations, the computation
of X, hence q, depends only on α and β. The variations of q
with α2 are shown in Fig. 2, computed with Eq. (A80) of Takata
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(2016). This equation takes into account the perturbation of the
gravitational potential that modifies the values of NBV and S 1.
The comparison of the weak and strong coupling also shows that
the use of the weak-coupling case is relevant for very low values
of q only.

We note that, the lower the β, the larger the correction on q in
the strong-coupling case. Moreover, the observations of q values
larger than 1/4 are associated with β values of less than 1.5. Also,
the correction increases when α increases.

As in the weak-coupling case, q does not show variation in
the frequency range in which modes are observed. This is the
consequence of parallel variations of NBV and S 1. In the follow-
ing, we consider that the variation of q with frequency is small
enough, so that fitting the whole mixed-mode spectrum with a
fixed coupling factor makes sense.

3. Method

In previous work (Mosser et al. 2012b, 2014), coupling factors
in red giants were derived from the fit of the oscillation pattern.
This fitting method, even if made precise and easy with the new
view exposed in Mosser et al. (2015), cannot be automated and,
therefore, we have to provide a new method for dealing with the
amount of Kepler data.

3.1. Correlations between mixed-mode parameters

The method of Vrard et al. (2016) developed for measuring the
period spacing ∆Π1 offers an efficient basis for obtaining a rel-
evant measure of q. According to Eq. (1), the measurements of
the mixed-mode parameters q and ∆Π1 are a priori independent:
∆Π1 measures the period spacings between the mixed modes
whereas q measures the deformation of these spacings close to
the pure pressure modes (see, e.g., Fig. 2 of Vrard et al. 2016).
When buoyancy glitches, rotational splittings, or simply noise,
locally modify the frequency interval between two consecutive
mixed modes; this independence is however not ensured. In fact,
buoyancy glitches introduce a crosstalk between the determina-
tion of q and ∆Π1, which induces spurious fluctuations of q when
computing ∆Π1. Vrard et al. (2016), who considered q a free pa-
rameter when measuring period spacings ∆Π1, obtained q with
large uncertainties. In order to get q in a robust manner, we first
had to circumvent this crosstalk. To do so, we chose to measure
q and ∆Π1 in an independent manner. For measuring q, we con-
sidered first ∆Π1 as a fixed parameter, adopting the values of
Vrard et al. (2016).

3.2. Measuring q

In practice, the first step of the method consists in a stretching
of the power spectrum P(ν) by using the change of variable in-
troduced by Mosser et al. (2015). The frequency ν is replaced by
the stretched period τ according to

dτ =
1
ζ

dν
ν2 , (15)

where the function ζ is obtained from the interpolation of the
values obtained for the dipole mixed-mode frequencies νm,

ζ(νm) =

[
1 +

1
q
ν2

m∆Π1

∆νp

cos2 θg

cos2 θp

]−1

· (16)

The way to obtain a precise continuous function of ζ is ex-
plained by Mosser et al. (2015). It importantly depends on the

Fig. 3. Variation of the stretching function ζ with q. The locations of
the local minima of ζ, which correspond to the expected pure pressure
modes, do not depend on the value of q.

Fig. 4. Variation of the signal Q with the coupling factor qtest used in the
stretching function ζ considered as a free parameter, for a typical clump
star (KIC 1717994). The region with maximum Q values (full symbols)
is used to define the optimum value of q and the associated uncertainty
δq. The dotted lines delimit the range q ± δq.

correct location of the pure dipole modes, which is carried out
by the use of the red giant universal pattern (Mosser et al. 2011b;
Corsaro et al. 2012).

The power spectrum P(τ) expressed as a function of the
stretched period τ is composed of M blended comb-like pat-
terns, whereM is the number of visible azimuthal orders. For a
star seen equator-on,M = 2, only 1 when the star is seen pole-
on, and 3 in the intermediate case.

The regularity of theM comb(s) is optimized when the value
of ζ used for stretching the spectrum matches the correct cou-
pling (Fig. 3). So, we varied the coupling factor qtest to obtain a
varying correction ζ and searched to optimize the regularity of
the comb. The optimum signal is inferred from the maximum of
the Fourier transform of P(τ), noted Q (Fig. 4). As is clear from
Fig. 3, the regularization is only slightly affected by q, so that the
measurement is only possible for high signal-to-noise spectra.

3.3. Individual check and limitations

The robustness of the method was verified with individual
checks based on typical red giant oscillation spectra observed
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at various evolutionary stages. This check first allowed us to
verify that more than 96% of the prior values of ∆Π1 automat-
ically measured by Vrard et al. (2016) are safe. Wrong initial
values of ∆Π1 were identified by spurious measures of q. For
oscillation spectra with a low signal-to-noise ratio, measuring
the period spacing ∆Π1 still remains possible, but identifying
the small variations due to the coupling is demanding. For high
signal-to-noise ratio oscillation spectra, we identified three ma-
jor cases providing us with incorrect measurements for q: pres-
sure glitches, buoyancy glitches, and rotation. All these effects
perturb the regularity of the function ζ.

3.3.1. Pressure glitches

Pressure glitches occur when rapid variations of the sound speed
modify the regularity of pressure modes. They contribute by
adding a small modulation to the pressure mode pattern. The
shift remains less than 2% of ∆ν, as measured in the radial modes
of a large set of red giants by Vrard et al. (2015). The modula-
tion of the pure dipole pressure modes is similar to that of radial
modes, so that the location of pressure-dominated mixed modes
are shifted. As a result, the local minima of the stretching func-
tion ζ are shifted (Fig. 7 of Mosser et al. 2015). This change may
induce a spurious variation of Q, so that the method fails. More
importantly, the method often produced very low or very large
spurious values of q in that case.

3.3.2. Buoyancy glitches

Buoyancy glitches occur when rapid variations of the
Brunt-Väisälä frequency modify the regularity of the gravity-
mode pattern. This effect was theoretically investigated by
Cunha et al. (2015); it affects mixed modes since it locally mod-
ifies the period of the stretched spectrum, with a clear signature
on the function ζ (Figs. 8 and 10 of Mosser et al. 2015). Measur-
ing a mean period spacing in the presence of buoyancy glitches
is often possible, but measuring its optimization for deriving q is
more challenging, since variations of the period spacings due to
the buoyancy glitch mimic variations because of an inadequate
value of q. This situation most often occurs for red clump stars
and may explain part of the large spread of q observed for these
stars.

3.3.3. Rotational splittings

Rotational splittings also perturb the measurements of q. In
the case of low rotation (Mosser et al. 2012a), each family of
stretched peaks associated with a given azimuthal order m pro-
vides a comb spectrum with a period close to ∆Π1 (Fig. 6 of
Mosser et al. 2015), so that the identification of ∆Π1 and of q
is clearly derived from the optimization of the Fourier analy-
sis of P(τ). However, the signature of the period spacings be-
tween the different peaks with different azimuthal orders some-
times dominates and hampers the measurement of q. This most
often appears on the RGB, when the rotational splittings of
the largest peaks near νmax are comparable to a simple frac-
tion of the frequency differences between two consecutive mixed
modes.

Individual checks based on the fit of the mixed-mode pattern
and on échelle diagrams were performed on 5% of the target to
correct spurious values.

3.4. Threshold and uncertainties

The examination of various stars at different evolutionary stages
allowed us to define a relevant threshold value Q ≥ 25, char-
acterizing a reliable measurement of q. Since we noticed that
very low or very high values of q are artefacts, we introduced
a penalty function for those values. Uncertainties were empiri-
cally derived from the examination of the power spectrum Q of
the stretched spectrum P(τ) and by comparison with individual
fittings. Variations of Q less than 4% of the maximum value were
used to derive an estimate of the uncertainties δq (Fig. 4). This
is a conservative value.

We are aware that a more sophisticated statistical analysis is
desirable for deriving stronger estimates of the uncertainties on
q, as recently carried out by Buysschaert et al. (2016). These au-
thors chose three bright stars seen pole-on, so with a high signal-
to-noise ratio oscillation pattern free of any rotational splitting.
Despite these favorable conditions, their analysis was computa-
tionally very demanding (Buysschaert, priv. comm.). An analy-
sis aiming at measuring precise uncertainties for a large set of
stars is beyond the scope of our work, which is mainly intended
to provide a coherent view of a large set of stars.

4. Results

4.1. Data set

We used the data of Vrard et al. (2016), namely a catalog
of about 6100 red giants with measured period spacings and
duly identified evolutionary stages. We also considered 33 sub-
giants, defined as subgiants according to the seismic criterion
(∆ν/36.5 µHz)(∆Π1/126 s) > 1 introduced by Mosser et al.
(2014). This latter work also provided us with the criteria
necessary to identify the other evolutionary stages (RGB and
clump stars). Stellar masses were estimated with the method of
Mosser et al. (2013b), which uses the homology of red giant os-
cillation spectra to lower the uncertainties induced by pressure
glitches that are present at all evolutionary stages (Vrard et al.
2015). This procedure benefits from a calibration on a large set of
stars and has proved to be less biased than similar methods only
calibrated on the Sun. The calibration does not depend on the
evolutionary stage, which can lower its precision (Miglio et al.
2012). Recent studies all converge to state that seismic masses
are slightly overestimated by about 5–15% (e.g., Epstein et al.
2014; Lagarde et al. 2015; Gaulme et al. 2016); such a result
does not invalidate the relevance of the seismic estimate.

4.2. Iterations for the RGB and the red clump

An iteration process allowed us to correct values of q affected
by an initial incorrect estimate of ∆Π1. Finally, we obtained
5200 values of q, corresponding to a maximum Q value that is
higher than 25. High-quality values characterized by Q ≥ 50
were obtained for about 3700 stars. The results are shown in
Fig. 5, where the RGB and clump stars can be easily identified
since they show different variations with stellar evolution. The
mass dependence visible in Fig. 5 is a consequence of the evo-
lution dependence, so that its study requires some attention (see
Sect. 5).

The mean value of q on the RGB decreases with stellar evo-
lution from 0.18 to 0.12. Coupling factors in the red clump are
most often in the range [0.2–0.45], with a mean value of about
0.32; more than 70% of the red-clump values are above 1/4.
This indicates that weak coupling (Eq. (8)) does not hold at this
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Fig. 5. Coupling factor q as a function of the large separation ∆ν. Asymptotic values of ∆ν and ∆Π1 come from Vrard et al. (2016). The color
codes the mass, which is determined with seismic scaling relations. The right vertical axis provides the corresponding values of the transmission
factor T .

Fig. 6. Coupling factor q as a function of the mixed-mode density
N = ∆ν/(∆Π1 ν

2
max). The vertical dashed lines indicate the transition

from subgiants to red giants defined by Mosser et al. (2014). Triangles
indicate subgiants; squares indicate stars on the RGB (small squares for
long-cadence Kepler data and big squares for short-cadence data). Three
values of q obtained for a synthetic 1.3-M� evolutionary sequence are
also shown with × (see Sect. 5.3 and Table 3).

evolutionary stage. For interpreting observed coupling factors of
clump stars, a theoretical study of strong coupling must be con-
sidered (Takata 2016).

When the threshold level of the detection is increased, the
spread in q decreases for clump stars. We observed that low Q
values are often associated with unevenly spaced period spectra,

regardless of the signal-to-noise ratio of photometric time series.
As a result, low or high q values are most often related to buoy-
ancy glitches, as observed in Mosser et al. (2015).

4.3. Subgiants

Subgiants were also considered. In that case, coupling factors
were not measured with the aforementioned method, but were
directly determined from the fit of the mixed-mode pattern. The
validity of the asymptotic expression is questionable for mixed
modes with low-radial gravity orders observed in red giants. It
however provides period spacings that fully agree with modeled
values (Benomar et al. 2013, 2014; Deheuvels et al. 2014). In
fact, even if the density of gravity modes expressed by the num-
ber N = ∆ν/(ν2

max∆Π1) is small, the distribution of the period
spacings is well reproduced by the asymptotic expression and is
sensitive to q. From the quality of the fit of the mixed mode, we
could measure this parameter and estimate relative uncertainties
that are smaller than 20%. The identification of high q values
is especially clear: in such cases, the period spacings hardly de-
pend on the nature of the mixed mode (Fig. 3). In Fig. 6, q is
plotted as a function of the mixed-mode densityN instead of ∆ν
to emphasize the change of physics when a subgiant evolves into
a red giant. The strongest values of q, close to unity, are obtained
at the transition from subgiants to red giants.

4.4. Outliers

A limited number of stars have coupling factors significantly dif-
ferent from the mean behavior. We stress that their identification
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Fig. 7. Échelle diagram of the very low metallicity RGB star KIC
4671239, with the stretched period τ modulo ∆Π1 on the x-axis and
frequency on the y-axis. All dark symbols indicate dipole modes with a
height above 5 times the local stellar background; their sizes depend on
the mode height. When the azimuthal order can be automatically iden-
tified, triangles correspond to m = −1, squares to m = 0, diamonds to
m = +1. Light gray symbols correspond to unidentified modes: most of
these are located in the region of pressure-dominated mixed modes; a
few unidentified modes may also be ` = 3 modes. All components of
the rotational multiplets intersect at 112 µHz; the m = ±1 components
intersect at 91 µHz. The oscillation spectrum is plotted in gray top to
bottom in the background of the figure to link the stretched periods and
the mixed-mode frequency.

in this work dedicated to ensemble asteroseismology is certainly
incomplete; outliers are however rare. The stars we identified
deserve future attention.

4.4.1. KIC 4671239

KIC 4671239 has been identified by Thygesen et al. (2012) as
one of the less metallic red giants observed by Kepler, with
[Fe/H] = −2.45 and Teff = 4900 K. The seismic parameters
of this star are highly atypical. Apart from the high coupling
value for an RGB star at a similar evolutionary stage (q ' 0.25
instead of less than 0.15), the analysis of its mixed-mode pat-
tern has revealed a period spacing ∆Π1 ' 66.6 s, which is much
smaller than for RGB stars with similar ∆ν (Mosser et al. 2014;
Vrard et al. 2016), and a much higher core rotation (Mosser et al.
2012a) with δνrot ' 830 nHz. These parameters translate in a
complex mixed-mode pattern, in which the different azimuthal
orders show intricate structures. Disentangling this pattern is
only possible with an échelle diagram constructed with stretched
periods (Fig. 7), following Mosser et al. (2015) and Gehan et al.
(2016).

4.4.2. KIC 6975038

KIC 6975038 also shows atypical seismic parameters, with
∆Π1 ' 57.9 s, which is much smaller than comparable stars with
∆ν = 10.61 µHz, and q ' 0.35, which is much above the val-
ues observed on the RGB. The low value of ∆Π1 and the high
value of q may both indicate a larger radiative cavity, hence a
smaller region where modes are evanescent, than in other stars
with similar ∆ν.

4.4.3. Massive stars

Stars in the secondary clump, more massive than 1.8 M�, show
lower q compared to less massive stars burning their core he-
lium. The difficulty of fitting their mixed-mode spectrum does
not resemble the difficulty met in presence of buoyancy glitches
(Mosser et al. 2015). A better fit of the data can be obtained with
a gradient in q as a function of frequency. According to the study
conducted in Sect. 2, this gradient may result from the fact that
the NBV and S 1 profiles are not parallel in the evanescent region
of such stars.

This effect appears for stars as KIC 4372082 or 6878041,
which are more massive than the secondary-clump stars stud-
ied by Deheuvels et al. (2015). Such objects are rare and, de-
spite low-quality spectra, certainly deserve detailed study and
modeling.

5. Discussion

The variation of the coupling factor with the large separation
∆ν can be used to derive direct information concerning the ex-
tent of the evanescent region between the NBV and S 1 profiles,
with the formalism introduced in Sect. 2. Even if mixed modes
probe these functions in a limited frequency range around νmax,
the hypothesis that the NBV and S 1 profiles are parallel in the
considered region helps us to derive precise information on stel-
lar interior properties; regardless of the consequence of the de-
crease of νmax with evolution. The hypothesis is finally discussed
in Sect. 5.4.

5.1. Variation with the evolutionary stage

5.1.1. Subgiant – red giant transition

Mosser et al. (2014) have shown that the transition between sub-
giants and redgiants has a clear signature in the ∆Π1 – ∆ν dia-
gram. In the subgiant phase, the relation between these asymp-
totic period and frequency spacings shows a large spread with a
significant mass dependence, whereas the parameters are tightly
bound on the RGB. The coupling factor q is similarly impacted
by the evolution and shows a significant increase at the end of
the subgiant phase (Fig. 6). This increase occurs in parallel with
the first dredge-up, when the base of the convection zone goes
deeper in the envelope. A high value of q indicates that not only
the NBV profile, but also the S 1 profile, is deep in the stellar
interior. Observing high values in the range [0.40–0.65] near
the transition region from subgiants to red giants argues, using
Fig. 2, for a slope β slightly higher than or close to 1.3 with a
ratio α2 larger than about 0.5.

5.1.2. On the RGB

At the beginning of the ascent on the RGB, the stellar core con-
tracts and the envelope expands. The decrease of q means either
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Table 1. Mass dependence of q on the RGB.

M/M� 1.0 1.2 1.4 1.6 1.8 2.0
qM 0.144 0.128 0.126 0.123 0.134 0.134
σq 0.021 0.025 0.026 0.022 0.023 0.027

Notes. The variation of q with ∆ν is modeled as q = qM(∆ν/10)0.096,
with ∆ν in µHz.

Table 2. Mass dependence of q in the red clump.

M/M� 0.9 1.1 1.3 1.5 1.7 2.0
qb 0.301 0.287 0.274 0.272
q̄ 0.363 0.324 0.299 0.289 0.283 0.270
qe 0.339 0.313 0.303 0.290
σq 0.024 0.016 0.011 0.010 0.012 0.022

Notes. The values qb, q̄, and qe measure, respectively, the coupling for
the early, middle, and late stages in the clump, defined in Mosser et al.
(2014); these values are defined by 25% of the stars lying on the first,
middle, and late portion of the mass-dependent evolutionary track, re-
spectively; σq measures the spread of the values; the fits were derived
from high-quality spectra with Q ≥ 50.

that the region between NBV and S 1 expands too, inducing a de-
crease of α, or that the coefficient β increases toward the value
3/2. A simultaneous variation of both terms α and β is possible
too.

For evolved models on the RGB, νmax becomes smaller than
the value of NBV at the base of the convective zone, so that the
hypothesis of parallel variations of NBV and S 1 is no longer valid
for evolved stars on the RGB (e.g., Montalbán et al. 2013). In
fact, the decrease of q with stellar evolution can result either
from the decrease of νmax or from the expansion of the region
between NBV and S 1, so that it is impossible to derive any firm
conclusion in terms of interior structure evolution.

The decrease of q on the RGB plays a non-negligible role
in the difficulty to observe mixed modes at small ∆ν predicted
for high- and low-mass stars (Dupret et al. 2009; Grosjean et al.
2014). In fact, mixed modes that are not in the close vicinity of
the pressure-dominated modes are poorly coupled, so that they
show an important gravity character, hence a high inertia and
tiny amplitude. In practice, measuring low values of q is hard.

In order to estimate the mass dependence of q observed on
the RGB, we first fitted the slope of q(∆ν) as a power law under
the assumption that the exponent does not depend on the stellar
mass. In a second step, we quantified the mass dependence in the
relation q(∆ν). For low-mass stars with a degenerate helium core,
the higher M, the lower q; for stars more massive than 1.8 M�,
the situation is inverted (Table 1). This change occurs near the
limit in mass between the red and secondary clumps, so is likely
related to the degeneracy of helium in the core.

5.1.3. In the red clump

In the red clump, the mass dependance of q is coupled to the
large separation dependence: the lower the mass, the higher the
coupling. This behavior is discussed in the next paragraph, since
it obeys to a general trend in the relationship between q and ∆Π1.

Mean values of the coupling for red clump stars are given
in Table 2. Using the seismic evolutionary tracks depicted in
Mosser et al. (2014), we could measure the evolution of q in
the red clump, at fixed mass. Values at the early, middle, and

Table 3. Seismic properties of 1.3 M� models.

Model Evol. Age νmax ∆ν ∆Π1 q
stage (Gyr) (µHz) (µHz) (s)

M0 subgiant 4.40 670 39.5 182 0.40
M1 RGB 4.59 341 22.9 97 0.20
M2 RGB 4.79 49.0 5.24 63 0.045

Fig. 8. Coupling factor q as a function of the period spacing ∆Π1
for RGB and clump stars. Same symbols as in Fig. 6. A threshold at
Q = 100 reduces the number of stars compared to Fig. 5. The dot-
ted and dashed lines correspond to the fits for RGB and clump stars,
respectively.

late stages in the clump are shown in Table 2. As shown by
Mosser et al. (2015), the evolution of stars in the red clump show
non-monotonous variation of both ∆ν and ∆Π1. Conversely, the
monotonous increase of q indicates either that the ratio α in-
creases along the evolution of low-mass stars in the red clump,
resulting from a small shrinking of the evanescent region, or that
the exponent β decreases. Both effects may simultaneously con-
tribute to the variations.

5.2. Variation with the period spacing

The variations of q with the period spacing ∆Π1 depend on the
evolutionary stage. Wether on the RGB or in the clump, the
global variations of q(∆Π1) indicate that the larger ∆Π1, the
larger q (Fig. 8). A large value of ∆Π1 is representative of a small
dense core with high NBV values. So, we come to the conclusion
that high values of NBV and S 1 occur in similar situations, and
that they get close to each other when they increase together. At
fixed β, the ratio α = NBV/S 1 is then correlated with ∆Π1 for
both RGB and clump stars (but not for subgiants).

Since the variations of q are nearly linear in both domains,
the following simple fits can be used as proxies for q (Fig. 8):

qRGB = −0.0034 +
∆Π1

597
, (17)

qclump = 0.082 +
∆Π1

1450
, (18)

where ∆Π1 is measured in seconds. The fit of qRGB is however
not efficient for early RGB stars; the fit of qclump is valid for both
primary and secondary clumps. Such fits are intended to facili-
tate the identification of the mixed-mode pattern, rather than for
explaining the physics of the coupling.
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5.3. Modeling and computation of q

We used stellar models to match the observed coupling fac-
tor. We considered 1.3-M� models at three evolutionary stages
(Table 3) without overshoot or diffusion; their full description
is given in Belkacem et al. (2015). In the strong coupling case
(model M0), we computed q from Eqs. (12)–(14) using the
asymptotic formalism of Takata (2016) and taking the pertur-
bation of the gravitational potential into account. In the inter-
mediate case (model M1), using a similar analysis is question-
able since hypotheses in the calculation of XR are valid when the
evanescent region is very thin. Nevertheless, the strong-coupling
analysis matches the weak-coupling case when the evanescent
region becomes very large, so that we computed q in a simi-
lar way as for the model M0. In the weak coupling case (model
M2), we used the same expression, but with XR = 0 and, fi-
nally, compare these three factors with observations. The factor
q shows in fact small variations with frequency, so that we had
to consider the mean value, defined in a 4-∆ν broad frequency
range centered on νmax. We checked that the term XR introduced
by Eq. (14) significantly reduces the value of q and also con-
tributes to the relative stability of q with frequency. We also no-
ticed that the perturbation of the gravitational potential plays a
non-negligible role not only in the core but also in the evanes-
cent zone and in the inner region of the convective envelope.
This provides evidence that the Cowling approximation is not
appropriate for computing q.

Modeling quantitatively agrees with observations, except for
the most evolved model. The subgiant model M0 close to the
transition to red giants shows a high q; the next model M1 is
on the RGB and has a much lower q. Both agree with the ob-
served values. The coupling factor for model M2, higher on
the RGB, shows however a value that is significantly smaller
than observed. In M2, the evanescent region is in fact above the
base of the convective envelope (e.g., Fig. 2 of Montalbán et al.
2013). This point deserves further work, which is beyond the
scope of this paper.

Modeling red clump stars requires special attention in the
prescription of convection and mixing in the core (Lagarde et al.
2012; Bossini et al. 2015). We could not compare our results
with modeling but used the calculations exposed in Sect. 2. The
high values observed for q in the clump imposes the exponent β
(Eq. (5)) to be less than 3/2 (Fig. 2).

5.4. Variation of q with frequency

For a limited number of stars examined by Vrard et al. (2016),
the asymptotic expansion does not provide a satisfying fit of
the mixed-mode pattern without a direct explanation in terms
of buoyancy glitch. For these stars, a better fit is obtained when
varying q with frequency. Modeling derives similar conclusion,
with different slopes βN and βS (Eq. (5)) or more complicate
variations (e.g., Montalbán et al. 2013).

Since the independence of q with frequency derives from the
hypothesis of parallel variations of NBV and S 1, we have to con-
clude that this hypothesis is not fully correct. The observational
study of the variations of q with frequency appears to be highly
challenging for the same reasons as those explaining the difficul-
ties in measuring q (rotation, glitches, and finite mode lifetimes).
The individual study of bright stars with a high signal-to-noise
ratio is necessary to investigate the frequency dependence of q
in detail. Combined with modeling, this study will help assess to
which extent the mean value of q is a global seismic parameter,

which is as informative for the evanescent region as ∆ν and ∆Π1
for the pressure and radiative cavities, respectively.

6. Conclusions

The new method setup for measuring the coupling factor of
mixed modes in evolved stars has provided the first analysis of
this parameter over a large set of stars. We could determine 5200
values of q, from subgiants to clump stars. Three main results
can be inferred:

– Coupling factors test the region between the Brunt-Väisälä
cavity and the S 1 profile, dominated by the radiative core and
the hydrogen-burning shell. Indeed, while ∆ν is mainly sen-
sitive to the envelope and ∆Π1 provides the signature for the
core, we can directly access the intermediate region with q.

– The variation of q with stellar evolution provides us with new
constraints on stellar modeling. We note that, for both RGB
and clump stars, the coupling factors show simple global
variations with the period spacing. The characterization of
outliers can be used to constrain physical processes inside
stars.

– Strong coupling is observed in stars at the transition
subgiant/red giant and in the red clump. In fact, the
weak-coupling formalism of Unno et al. (1989) fails for a
quantitative use of the observed coupling factors, except for
the most evolved stars on the RGB. In all other cases, the
use of the new formalism proposed by Takata (2016) for
strong coupling is mandatory.

These measurements also open the way to more precise fits of
the mixed-mode pattern to analyze in detail extra features, such
as the rotational splittings and buoyancy glitches.
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