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ABSTRACT

We report here on our search for excess power in photometry of Neptune collected by

the K2 mission that may be due to intrinsic global oscillations of the planet Neptune.

To conduct this search, we developed new methods to correct for instrumental effects

such as intrapixel variability and gain variations. We then extracted and analyzed

the time-series photometry of Neptune from 49 days of nearly continuous broadband

photometry of the planet. We find no evidence of global oscillations and place an upper

limit of ∼5 ppm at 1000 µHz for the detection of a coherent signal. With an observed

cadence of 1-minute and point-to-point scatter less than 0.01%, the photometric signal

is dominated by reflected light from the Sun, which is in turn modulated by atmospheric

variability of Neptune at the 2% level. A change in flux is also observed due to the

increasing distance between Neptune and the K2 spacecraft, and solar variability with

convection-driven solar p modes present.

Keywords: methods: observational

1. INTRODUCTION

The Solar System hosts two classes of giant planets: gas giants and ice giants. The ice giants

are lower mass (Uranus and Neptune masses are less than 18 Earth masses) with smaller hydrogen-

helium envelopes, and exhibit strong enrichments in heavier elements. The Kepler Mission has aptly

demonstrated that Neptune- and Uranus-sized planets are common, in fact, much more common

than gas giants outside of the Solar System (e.g., Burke et al. 2015). The radius and bulk density of

Neptune (and Uranus) are often cited as context for the large number of exoplanet discoveries. For

example, exoplanets with a radius between twice the size of Earth and that of Neptune are commonly

calledmini- or sub-Neptunes, and planets similar in size and mass to Neptune are considered Neptune-

like, since at present we cannot ascertain whether or not these distant mysterious objects share similar

compositions, internal structure or evolutionary history with Neptune. Understanding the formation,

internal structure, atmosphere and evolution of Neptune is thus important, not only to investigate
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the physical processes at play during the formation and evolution of our own Solar System, but also

for distant exoplanetary systems.

The Kepler Mission was a four-year observing campaign to search for transiting extrasolar planets,

with a primary goal of determining the frequency of exoplanets with a period less than one year

as a function of radius and distance from their host stars (Borucki et al. 2010). With almost 5 000

exoplanet candidates (Coughlin et al. 2015), over 2 000 confirmed planets (e.g., Lissauer et al. 2014,

Rowe et al. 2014, Morton et al. 2016) and counting, it is safe to say the Kepler Mission has been

a resounding success (e.g., Bedding et al. 2011, Chaplin et al. 2011). The loss of a second reaction

wheel ended the Kepler Mission after four years and one day of primary mission operations. Shortly

thereafter, the K2 Mission was born. The two-wheeled K2 mission points towards fields located

along the orbital plane of the Kepler spacecraft to minimize torque from solar radiation pressure. In

this orientation, it achieves stable pointing using the remaining two reaction wheels supplemented

with semi-periodic thruster firings (Howell et al. 2014). The Kepler Spacecraft, in a ∼371-day orbit

around the Sun has an orbital plane similar to the Earth-Sun orbit, making some Solar System

planets accessible by the K2 imager. Of the giant planets, photometry of Jupiter and Saturn is

problematic due to their apparent brightness which heavily saturates the detector, but Uranus and

Neptune, while still bright enough to saturate the detector, are sufficiently faint that charge bleed

from saturated pixels can be sufficiently recovered from simple aperture photometry as long as the

charge does not reach the edge of the detector. Thus, high quality, photon-limited photometry of

a saturated source can be obtained with the 1-meter aperture Kepler instrument (Gilliland et al.

2010).

Our goal was to monitor Neptune continuously with broadband photometry offered by the Ke-

pler instrument to: study the variability of Neptune’s atmosphere (Simon et al. 2016), study the Sun

as a distant star through reflected light (Gaulme et al. 2016) and, the subject of this paper, to search

for potential oscillations that would enable seismology as a technique to probe the inner structure of

the planet. Seismology has long been considered a potentially powerful tool for probing the interiors

of the giant planets (e.g., Vorontsov et al. 1976). Like the Sun, the fluid nature of giant planets

may naturally lead to the excitation of trapped acoustic modes. The internal heat flow of Jupiter,
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Saturn and Neptune, respectively represent about 67, 78, and 161% of the incident solar flux and the

resulting deep convective motions have the potential to excite modes. Detection and analysis of such

oscillations is a promising technique for constraining the core mass of a giant planet, independent

of the uncertainties that plague standard interior model inversion from the gravitational harmonics.

The basic theory for computing giant planet oscillation frequencies and dispersion relations has been

discussed as far back as Vorontsov et al. (1976) and includes work by Mosser (1990) for Jupiter and

Marley (1991) for Saturn and the more recent work of Le Bihan & Burrows (2013) that covers a

range of planetary masses and radii.

Most of the efforts dedicated to the observation of oscillations of giant planets have involved Jupiter,

as it is the biggest, closest, and brightest target. There have been several attempts to detect Jovian

oscillations using infrared photometry (Deming et al. 1989), Doppler spectrometry (Schmider et al.

1991; Mosser et al. 1993, 2000), and careful searches for acoustic waves excited by the impact of the

Shoemaker-Levy 9 comet (Walter et al. 1996; Mosser et al. 1996). In most of these campaigns, the

signal-to-noise (SNR) ratio was too low or instrumental artifacts were present that inhibited any

positive detection. The rapid rotation of Jupiter also limits the precision these instruments were able

to obtain. While some studies have presented tantalizing upper limits (e.g, Deming et al. 1989) or

potential detections (Gaulme et al. 2011), no definitive detection has been established. For Saturn,

Marley & Porco (1993) suggested that density perturbations arising from internal oscillation modes

could alter ring particle orbits at resonances between orbital and mode frequencies, thereby launching

waves in the rings. Hedman & Nicholson (2013) and Hedman & Nicholson (2014) confirmed this

prediction, which suggests that at very low frequencies (periods of hundreds of minutes) Saturn is

indeed oscillating . To date, modes have not been observed on Uranus or Neptune, nor have they

been detected in radial velocity or broad band reflected light on any giant planet.

Leibacher & Stein (1981) discussed the possible source of excitation of modes in giant planets.

Based on energetic arguments, Bercovici & Schubert (1987) suggested that the amplitude of Jovian

modes could reach 10 to 100 cm/s. In Deming et al. (1989) demonstrated that the mechanism

proposed by Goldreich & Kumar (1988) for solar oscillations should provide negligible amplitude for

acoustic modes in the case of Jupiter, mainly because of the low vertical velocity of the convection.
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More recently, the different claims for p mode detection on Jupiter and particularly for f modes on

Saturn have led to new investigations in this field, although no definitive results. The most promising

source could be the moist convection, able to generate intermittently vertical velocities up to 100 m/s

inside the storms. A possible coupling mechanism between storms and acoustic modes might exist and

produced at the origin of acoustic oscillations at a detectable level on Jupiter and Saturn. Lightning

is also invoked as a source of acoustic waves. Whether one of these mechanisms could be efficient

on Neptune is an open question. Nevertheless, the absence of a convincing prediction for acoustic

mode amplitudes on this planet doesn’t preclude the possibility to detect them by observations. The

possibility of observations of Neptune with K2 presented an opportunity to try.

To test whether or not global modes are both excited and detectable by the ultra-high precision,

high duty-cycle, integrated disc photometry offered by K2 on Neptune, we proposed to observe the

planet. We present here the results of our photometric observations of the planet. We focus on

searching the relevant portion of frequency space, corresponding to periods of about 5 to 50 min,

for unexpected excess power. For a fixed albedo and radial oscillations, motion of ∼4 cm/sec

at a period of 30 minutes would produce a change in the brightness of Neptune of ∼1 ppm solely

from the changing apparent size of the planet. Another detection mechanism might be feedback

between atmospheric pressure perturbations and albedo, through cloud condensation effects, but

such amplitude and brightness perturbation relations require further detailed analysis. Detections

at ppm levels, in Fourier amplitude, have been routinely reached with Kepler photometry for stars

fainter than Neptune. Our challenge was to attempt to overcome additional noise associated with the

motion of Neptune across the Kepler detector, which introduced significant time-correlated noise.

In §2 we present an overview of the observations and raw photometric data. In §3 we present our

reduction methods used to extract photometric time-series and to correct for instrumental effects.

In particular, we present a novel method to disentangle the intrinsic variability of Neptune and

instrumental effects produced by the high proper-motion of Neptune relative to the background star

field by treating the variability of Neptune as a Gaussian process with correlated noise. In §4 we

examine the photometric time-series to explore variability on timescales of a month to a minute with

the goal of searching for and setting limits on potential oscillations intrinsic to Neptune.
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2. OBSERVATIONS

The K2 C3 field provided the first opportunity to observe the planet Neptune for up to 80 days with

short-cadence (1-minute) sampling1. We were awarded sufficient pixel allocation from Guest Observer

Programs GO3060 (PI: Rowe) and GO3057 (PI: Gaulme) to continuously monitor Neptune for 49

days. K2 observed Neptune near quadrature; thus, Neptune was seen to rapidly move across the K2

field, pause and reverse course, crossing hundreds of pixels in the process. The Kepler spacecraft

was designed to keep a star positioned on the same pixel for long durations. Stable pointing reduces

systematic errors in the measured brightness of a star due to effects such as intrapixel variations.

While we were able to reduce systematics in the extracted photometry the ultimate noise floor

achieved was limited by the motion of Neptune across the detector. Future observations or instrument

design would benefit from maintaining the image of Neptune on a constant set of the pixels.

Short-cadence target pixel files were obtained from MAST2. The Neptune short-cadence subraster

was spread across 161 FITS files. Each file contained 1 column of time-series pixel data. Each target

pixel file contains observations starting on 2014 November 15 and finishing on 2015 January 18. We

used the program kpixread3 (Rowe 2016, Codebase: http://doi.org/10.5281/zenodo.60297)

to extract each column for each sequential observation and to produce a new FITS file containing

the assembly of all pixels for a single exposure. In total 101 579 short-cadence images were generated.

This step was necessary to use extraction and analysis processing tools such as IRAF. The assembled

images had dimensions of 162x98 pixels. An example of an assembled image is shown in the top

panel of Figure 1.

The K2 target pixel files contain a different timestamp for each row of pixels. The difference in

time stamps is to account for different photon arrival times across the detector. We adopted the

mean time of all 161 rows as the reported time-stamp in the assembled FITS images. The average

time difference as reported in the target pixel file headers across the assembled Neptune subraster

is 0.92 seconds. Thus, reported time-stamps for Neptune in our time-series will be off by up to 0.51

1 The C3 campaign had an actual duration of 69.2 days, limited by onboard data storage.

2 Observations from FITS files retrieved from the Mikulski Archive for Space Telescopes (MAST)

3 Available on github.com/jasonfrowe

http://doi.org/10.5281/zenodo.60297
https://github.com/jasonfrowe
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seconds with the precise amount dependent on the position of Neptune. This error is significantly

smaller than the 1-minute integration time.

We scanned through the time-series of assembled short cadence images to determine when Neptune

entered and left the frame. There are ∼69 days of short cadence observations available but Neptune

is only visible in the subraster for ∼49 days. A movie4 of the images was assembled that showed how

the observed field changed with time. The movie showed the star field, which revealed image jitter

and several main belt asteroids that quickly move through the frame. Neptune appears 15 days after

the start of the data acquisition on 2014 December 1. The Kepler CCD detector has pixels 4x4′′

in size, similar to the apparent size of Neptune. The image of Neptune is heavily saturated, thus

significant bleed along columns covering ∼20 pixels in length was observed.

It is important to note that the charge bleed does not extend outside of the subraster or reach the

edge of the detector; thus, good photometry can be extracted by aperture photometry as charge is

conserved. The motion of Neptune is observed to slow down then pause on day 41, which corresponds

to when Neptune, the Kepler spacecraft and the Sun were at quadrature. After passage through

quadrature, the observed motion increases until Neptune leaves the subraster on day 65. Neptune’s

faint moon Nereid tracks the planet in the movie with an offset of roughly 50 pixels to the left. The

bright moon Triton orbits the planet with separation of a few pixels, roughly every 5.9 days.

3. DATA REDUCTION METHODS

To extract time-series photometry of Neptune from the K2 images we performed the following tasks:

i) measured the positions of field stars on each short cadence image, ii) created a reference image

from images obtained during times when Neptune was not visible, iii) performed image subtraction

using convolution techniques on images with Neptune present to remove field stars and iv) estimate

the position of Neptune. Photometry was measured with an aperture large enough to capture the

image of Neptune, the moon Triton and column bleed from saturation.

3.1. Centroids

4 Available at https://www.youtube.com/watch?v=84LDgk7l7vI

https://www.youtube.com/watch?v=84LDgk7l7vI
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The positions of the field stars were observed to show motion that can be larger than a pixel.

Measuring the positions was important as it allowed for the rejection of frames when significant

motion was detected and also allowed for the decorrelation of photometric variability due to intrapixel

sensitivity changes.

To measure centroid changes we used the program allmost (Rowe et al. 2006, 2008), which was

designed to extract positions and photometry from images from the MOST mission (Walker et al.

2003). The program fits a PSF model to all stars identified in the field-of-view. In total, 81 fields were

identified and tracked. The PSF model was a two-dimensional Gaussian. The PSF was simultaneously

fit to all stars in the field. The shape of the PSF was assumed to be constant across the Neptune

subraster, but allowed to vary for each individual exposure. Saturated pixels were excluded from the

fits. Valid centroids were extracted for 100 928 frames, a success rate of 99.3%. Some images showed

extreme motion that caused the PSF fitting algorithm to fail due to significant blurring of the PSF

across many pixels.

The centroids for each frame were then matched to centroids from the first acquired short-cadence

image (frame 1) with a model to account for shift and rotation,

xi = S1 + S3x1 + S5y1

yi = S2 + S6x1 + S4y1,

(1)

where xi and yi are the column and row of the assembled image. The x direction represents the

primary motion of Neptune across the field of view. The motion of frame, i, is relative to the first

image. The coefficients S1 and S2 are the shifts in position and S3 through S6 determine the scale

and rotation of the image. The shifts in row and column are shown in Figure 2, with the pixel

scale chosen to show the overall scatter and timescale of the motion. The point-to-point scatter in

the centroid positions demonstrates a measurement accuracy of ∼0.02 pixels. The centroids show a

semi-periodic behaviour of slow drift and rapid motion back to a reference position. This behaviour

is indicative of the operation of the two wheeled K2 mission: drift due to slightly unbalanced solar

force until a threshold is reached, followed by thruster operation to correct the drift.

3.2. Reference Image
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We used the first 10 000 short-cadence images (all taken prior to Neptune entering the aperture)

to create a reference image to be used for image subtraction. Images with a centroid shift greater

than 0.5 pixel were excluded to minimize problems with motion smear broadening the PSF in the

reference image. The reference image was created using the software tool montage2 (Stetson 1987),

which handles image resampling to match image centroid changes and to create a median stacked

image.

3.3. Image Subtraction

We used aperture photometry to extract photometry of Neptune. To mitigate dilution of the

photometry from additional stars in the photometric aperture as Neptune traverses the subraster

we used convolution techniques to match a target image to a reference image and then subtract the

reference image from the target image. The subtracted image will have the flux contributions from

constant field stars removed, allowing for clean extraction of photometry of sources not present in

the reference image, specifically, of Neptune.

With a reference and target image, we generated a convolution kernel to match the reference image

to the target image. The kernel is represented as a discrete pixel array based on the method of

Bramich (2008). One then solves for the kernel values directly using linear least squares. The

advantage of this model is that small, subpixel image drift is automatically accounted for in the kernel

solution, thus the problem of interpolation for sub-pixel image registration is fitted simultaneously

with changes in the PSF shape. Pixels that are saturated or within a 15-pixel wide box centred

on the position of Neptune were excluded from the kernel fit. To perform image subtraction, the

reference and target image were co-alligned to the nearest integer pixel. Then the reference image

was convolved to match the target image. The convolved image was then subtracted from the target

image to produce a residual image that was used for photometry.

The position of Neptune was determined by an average of all pixel positions with saturated counts.

The column position shows a point-to-point scatter of 0.1 pixels. The row positions show point-to-

point scatter of 0.8 pixels. The row position accuracy is degraded because of column bleed and shows

some correlation with the measured flux of Neptune.
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Figure 1 shows a subtracted image at the bottom and the original image at the top. Neptune is the

bright saturated object seen to the left of each image. The difference image shows that the stars are

cleanly removed. Some of the brightest stars show some systematic residuals in the core of the PSF

that are above the expected shot noise for subtraction by factors between 1.5 and 2. This results

in a potential systematic error of 300 counts at maximum in the aperture photometry of Neptune.

The median flux measured from Neptune in a single exposure was ∼7.6×106 e−, thus, imperfect

residuals from image subtraction have minimal impact on the photometry of Neptune as shot noise

will dominate.

3.4. Aperture Photometry

We extracted Neptune photometry from difference image frame numbers 24103 through 96342,

corresponding to dates 2014 December 1 through 2015 January 18. We used an aperture box with

pixel dimensions of 8×30. The width was chosen to continuously capture the flux of Triton together

with Neptune to avoid the problem of Triton moving in and out of the photometric aperture during

its 5-day orbit. The height was chosen to capture column bleed across all images. The box was

centered on the pixel closest to the measured position of Neptune. Valid photometry was recovered

for 71776 frames. Frames without valid centroids or motion greater than 1 pixel were excluded from

the photometric analysis.

The raw photometry is shown in Figure 3. There is a linear decrease in the flux that is due to the

increasing distance between the Kepler spacecraft and Neptune. The 2% variations with a period of

16 hours are due to the rotation of Neptune, with visible features appearing and disappearing from

view (Simon et al. 2016). A close-up inspection of the data in the bottom panel of Figure 3 showed

a periodic trend with a timescale of ∼0.5 day on day 16. This is due to intrapixel variations and is

well traced by the column position of Neptune. Thus, the timescale of this variation is not constant.

There are also sudden, abrupt changes in the flux that are correlated with column position. We

think that these jumps are due to Neptune crossing a pixel boundary and saturated bleed moving to

adjacent pixels with different gain. Sudden changes in the flux values were not seen for every crossing

event. The bottom panel of Figure 3 shows the observed behaviour we associate with pixel crossings
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centered on the start of day 20 with the corrections described hereafter.

3.5. Corrections for Instrumental Effects

We corrected for the jumps in the photometry due to pixel crossing with a piecewise line segment

model. The model, mi for each observation, can be written as,

mi =















aj + bjx if 0 < x ≤ 1

0 otherwise

(2)

where aj and bj are fitted coefficients for the zero-point and slope for each line segment, j. A

segment is defined as the data points between two identified pixel crossing jump events. The segment

is defined to have a scaled length of unity, with x a measure of the relative distance between the two

observations.

Assuming Gaussian noise statistics the log-likelihood of our model matching the data is given by,

ln p = −1

2
rTK−1r − 1

2
ln detK − N

2
ln 2π (3)

where N is the number of observations and r defined as,

ri = fi −mi, (4)

which is the difference between the photometric measurements, fi, and our pixel jump model, mi,

for each observation index, i. The transpose of r is rT . The co-variance matrix, K, was used to

model the rotation modulation and long term drift observed photometrically as a Gaussian process,

thus each observation was associated to a normally distributed multi-variate random variable. Our

correlated noise model is

Kij = C1 exp

(−(ti − tj)
2

l21

)

+ C2 exp

(−(ti − tj)
2

l22

)

. (5)

The first component was used to model the variability of Neptune driven by rotation. The sec-

ond component models the long-term decrease in flux due to the increasing distance between the

Kepler spacecraft and Neptune. The amplitude of correlated noise components is given by C1 and

C2 for the rotation modulation and drift respectively, and the time scales are given by l1 and l2

respectively.
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The long term drift is due to the increasing distance between Neptune and the Kepler spacecraft.

The Kepler spacecraft has an orbital period of 371 days compared to 60 182 days for Neptune. Over

the 49 days of short-cadence monitoring the position of Neptune can be considered fixed, whereas

Kepler will have traveled approximately 0.8 AU away from Neptune. The distance is continuously

increasing as observations from K2 were obtained near quadrature. This change in distance corre-

sponds to a 5% decrease in the apparent flux, which agrees well with the K2 observations. This

allows us to set the timescale l2 to the Kepler orbital period.

The rotation period of Neptune is ∼16 hours, which corresponds to the 2% variations observed

with the same period. We chose an initial guess of l1 to be one fifth of the rotation period to model

the weather variability and rotation modulation (Simon et al. 2016). This choice of a timescale

was motivated through a Fourier analysis of the times-series photometry showing the detection of

harmonics up to the 5th order of the rotation period and still significantly longer than the sudden

jumps that occur on 1-minute (or even shorter) timescales but short enough to capture the dynamic

variability of Neptune.

Before we fit for the pixel jump model, we identified outliers and the temporal locations of pixel-

jumps. Since not every pixel crossing event produces a jump coupled with errors in the measurement

of the position of Neptune, it was difficult to precisely predict when a sudden jump occurred. Outliers

in the photometry occur due to image motion and cosmic ray hits, or may even be intrinsic to Neptune.

We did not attempt to identify the source of each outlier. We identified outliers by comparing the

change in Neptune’s flux relative to the observation obtained right before or after,

vp = fi − fi+1

vm = fi − fi−1.

(6)

If |vp| and |vm| were greater than a chosen threshold (0.0005) and vp/vm > 0 then the observation

was considered an outlier and discarded from further analysis.

To identify pixel jumps we applied a bandpass filter to the time-series photometry to remove

variability with timescales longer than 0.02 day. This timescale was chosen to remove variability

in the lightcurve, but preserve the pixel jumps as excursions above and below the mean value. To
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identify a jump we scanned through each time step of the detrended time-series and fit a line to the

previous 10 and next 10 observations independently. The two fitted lines give extrapolated estimates

of the current measurement to compare to. If the difference from the forward and backward time

prediction is greater than 3σ then a jump is detected and recorded. We estimated σ as the standard

deviation of the detrended data after the application of the bandpass filter.

In total, we identified 146 jumps and 366 outliers. We then fit our piecewise jump model and

Neptune correlated noise-model to the Neptune photometric observations after the removal of outliers.

There were 296 parameters fitted: 292 parameters controlling the zero points and slopes of the line

segment, two amplitudes for the noise model and two length scales to describe the variability of

Neptune in the noise model. A best-fit model was found using the L-BFGS-B code of Zhu et al.

(1997). This code is a limited memory, quasi-Newton method that approximates the Broyden-

Fletcher-Goldfarb-Shanno algorithm (Press et al. 1992). Our best-fit model was then used to correct

the pixel jumps in the data.

We corrected for intrapixel variations present in the raw time-series photometry. Again, we treated

Neptune variability as correlated noise but used a longer timescale of 0.17 day to avoid degeneracy

between the noise model and the timescale of pixel crossings which varies from stationary to ∼10

pixels/day.

Our intrapixel model describes the photometric flux vs pixel location in row and column. We

indexed the current row and column position as a function of time. Thus, if Neptune returns to the

same pixel later in time, that pixel event is given a unique index. This allows the use of a linear

model to describe the intrapixel variations and pixel-to-pixel gain variations. Our model, pm, is a

series of sinusoids – one for each pixel index, j, which can be written as,

pmj = Aj sin(2πx+ φj) (7)

where j is the pixel index, Aj and φj are the amplitude and phase of the correction and x is the relative

column position. To avoid discontinuities in the model, we linearly interpolated the applied amplitude

between adjacent pixels to create a smooth function. We use the same L-BFGS-B algorithm as above

to find a best-fit intrapixel model.
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The top panel of Figure 3 shows the corrected light-curve for Neptune. The bottom panel of Figure

3 shows a comparison of the raw and corrected light-curves for a small segment of the data. The pixel

jumps and intrapixel variations are well corrected. Table 5 contains our distance-corrected adopted

time-series observations for analysis as plotted in Figure 3.

4. RESULTS

We removed the long-term trend in the corrected photometry due to the distance effect. Our

adopted time-series photometry used for the analysis is presented as the bottom lightcurve in Figure

3. In Figure 4 we show the power density and windowed Fourier transform of the photometric time-

series. The Fourier transform was computed using an FFT. The time-series was resampled onto an

equally spaced grid using linear interpolation, which included accounting for gaps in the time-series.

The data was zero-padded to achieve an oversampling factor of 5. The power density spectrum

(PDS) is presented in the bottom panel of Figure 4 and reveals a few features of the variability

observed from the Neptune observations: 1/ν noise, rotation modulation and solar variability. There

is a clear decrease in PDS with increasing frequency. The red line in Figure 4 is an estimate of the

mean PDS (see §4.2 below) which shows a change in slope around 60 µHz. This change is likely

related to observation of two sources of variability: one intrinsic to the instrument and the other

related to astrophysical processes such as solar granulation and Neptune weather. The 1/ν behaviour

observed for frequencies larger than ∼60 µHz is likely instrumental noise related to the motion of

Neptune across the subraster and the motion of incident flux across hundreds of different pixels. The

windowed Fourier transform shows a time-frequency representation of the data and is shown in the

top panel of Figure 4. The figure was created using a running tapered window with a length of

5 days. For frequencies above ∼60 µHz the amplitude of the noise floor is variable with time and

strongly correlated with the velocity of Neptune across the detector. The lowest levels are observed

near day 41, which corresponds to when the motion of Neptune is minimized. The additional noise

from motion has a 1/ν dependence and ultimately sets the detection limit for frequencies shorter

than ∼60 µHz.

The excess power between 10 and 20 µHz is the rotation modulation from Neptune (See Figure 2
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from (Simon et al. 2016)). Localized bright clouds high in the atmosphere reflect light back towards

the observer before the onset of scattering and absorption due to haze and methane deeper in the

atmosphere. The clouds generally trace the zonal wind velocity and rotation period (Simon et al.

2016). The observed flux is modulated as the clouds evolve or rotate from view. The first through

fifth harmonics of the rotation period were detected, showing the non-sinusoid shape of the rotation

signature. Near 3000 µHz there are a handful of significant frequencies detected and an excess of

power centred on these frequencies is detected. This variability is due to solar p mode oscillations

seen in reflected light. The detection of solar oscillations allows for the study of the Sun as a distant

star as the observed signal represents an integrated disk measurement (Gaulme et al. 2016). There

are two peaks at very high frequency beyond 7000 µHz. These are instrumental features that were

first recognized in short-cadence observations from the 4-year Kepler mission and are thought to be

related to the inverse of the long-cadence (∼30 minute) sample time. The location of these frequencies

measured from K2 observations has changed relative to the Kepler mission, suggesting evolution of

the instrument and the root cause of this signal.

The primary goal of this paper was to search for oscillations from Neptune. The idea is that, as ob-

served in the Sun, convection-driven p modes can have sufficient amplitude and coherence that such

behaviour could be detected in disk-integrated light from Neptune. While p-mode excitation in astro-

physical fluids, such as present in the Sun, is qualitatively understood (e.g., Goldreich & Kumar 1988)

it should be noted that convection in gas-giants may be too slow to drive oscillations (Deming et al.

1989). However, any detection of oscillation frequencies or excess power would enable the study of

the interior of the planet analogous to studies of the Sun’s interior via helioseismology. The detection

or the placing of a significant upper limit is also important for the planning of future instruments

or observations to observe the global oscillations. The existence of resonant modes of oscillations

in a planet requires a trapping mechanism for the waves. As first demonstrated by Vorontsov et al.

(1976), the atmospheres of the giant planets indeed reflect acoustic waves, but only if their frequency

is below a cut-off value. Detailed calculations of the vertical propagation of acoustic waves by Mosser

(1995) show that the level at which the waves are reflected is a strong function of their frequency. In

all four giant planets, it turns out that most waves are reflected just below the tropause and above
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the main cloud deck. In the case of Neptune, the maximum frequency for resonant acoustic modes

is about 3000 µHz (see Gaulme et al. 2015, Fig. 2). The possible acoustic waves excited at larger

frequencies are not trapped by Neptune’s troposphere and get dissipated in the stratosphere. More

precisely, after increasing monotonically in the upper troposphere, the cut-off frequency reaches a

maximum at the tropopause, and decreases to a plateau at about 2000 µHz in the mid-stratosphere.

As analyzed by Mosser (1995) for Jupiter, it means that waves with frequencies between 2000 and

3000 µHz can leak into the troposphere by tunneling effect, making their trapping less efficient. Re-

garding the lower limit, the acoustic cut-off profile shows that waves with frequencies less that 800

µHz are trapped deeper than pressure levels of about 10 bars. Even though radiative transfer in

these planets is not fully constrained, it is very likely that optical observations do not probe that

deep. Waves at frequencies lower than 800 µHz are thus evanescent at altitudes probed by optical

observations. It it therefore reasonable to expect Neptune oscillations’ maximum amplitude to be

between 800 and 2000 µHz.

Regarding the mean frequency spacing between mode overtones, it is expected to range from 198

to 213 µHz according to internal structure models (Gaulme et al. 2015). In addition, because of

Neptune’s rapid rotation, acoustic modes of non-radial oscillations with azimuthal order m not equal

to zero split apart into +m and −m peaks separated by 2m times the inverse rotation period, i.e.

≈ 2m× 17.4 µHz.

4.1. Search for Excess Power

The power spectral density (Fig. 4) does not display any excess power typical of global oscillations

in the [800, 2000] µHz range, and nowhere else except for the solar oscillations. We also searched for

Neptune’s oscillations in the envelope of the autocorrelation (EACF) of the time-series, filtered in

the expected frequency domain (Roxburgh & Vorontsov 2006; Mosser & Appourchaux 2009). This

approach allows for deriving the mean large separation of a solar-like oscillation spectrum in a blind

way without prior information. It has shown to be efficient in cases of low SNR (e.g. Mosser et al.

2009; Gaulme et al. 2010; Mosser et al. 2010). The reliability of the result is given by an H0 test:

when the EACF is above a threshold level, the null hypothesis can be rejected, implying that a signal
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might have been detected.

The envelope of the autocorrelation displays a maximum in between 1.96 and 2.15 hours in the

frequency range [600, 1400] µHz (Fig. 5). From the H0 test, the likelihood for this peak to be a signal

is about 95%. This would correspond with a large frequency spacing ranging from 258 to 283 µHz

if it is the result of Neptune’s oscillations. However, if this excess of power in the autocorrelation

diagram is generated by Neptune’s oscillations, we should find peaks corresponding to its rotation

period (16-17h) and some harmonics, as modes are split by it. Figure 5 does not exhibit significant

maxima at 16 or 8 hours. As a comparison, we displayed the correlation diagram up to frequencies

including the solar oscillations. We clearly detect the Sun’s large separation, as well as secondary

peaks due to the various overtones and the separation between ℓ = 0 and ℓ = 1 modes. Finally,

we investigated whether a structure could be detected in the échelle diagram corresponding with a

≈ 280 µHz and nothing was observed, making it useless to reproduce in the paper. The signal in

the [600, 1400] µHz range does not show similar features, and we conclude this 2-hour signal it is

likely spurious and likely related to incomplete corrections of instrumental signals due to the motion

of Neptune.

4.2. Search for Significant Frequencies

The PDS was observed to significantly drop off the 40-80 µHz region that is dominated by power

leakage and variability associated with weather and rotation of Neptune, thus we conducted our

search for significant frequencies and/or excess power on timescales shorter than 104 s (frequencies

above 100 µHz). The search for individual frequencies assumes that any such signal is coherent over

a few days (as indicated by stellar oscillations, e.g. Appourchaux et al. 2008). The search for excess

power assumes that an envelope of power would be produced that is similar to the observation of

low-power p modes observed in the Sun.

To estimate the significance of any frequency from the Fourier analysis we fit a semi-Lorentzian

model to the observed PDS of the Neptune photometric time-series. The addition of a Gaussian

centred on the observed location of the solar p modes was also used to model excess power in that
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range. The adopted model was,

P (f) = B +

N
∑

i

Ai

1− (θif)αi

+D exp

(−(fmax − f)2

2σ2

)

, (8)

where B is the noise floor (ppm2/µHz), Ai is the amplitude of the semi-Lorentzian, θi is the char-

acteristic timescale and αi is the decay. The Gaussian component has an amplitude, D, centred on

frequency, fmax with width, σ. We found that N = 2 components provided a reasonable fit. Best fit

parameters were obtained with a Levenberg-Marquardt chi-square minimization routine (More et al.

1980). Our best fit parameters are listed in Table 5.

Figure 6 shows the amplitude spectrum after normalization with our power-density model. We

observed that a histogram of normalized power shows a log-linear trend, this means that Gaussian

chi-square statistics can be used to determine the probability of the power associated with any

frequency may be due to noise (Gabriel et al. 2002). Equation 12 from Gabriel et al. (2002) was used

to estimate the probability of a frequency with power m times the mean,

P (m) = 1− (1− e−m)ρN, (9)

with, N=52429, the number of Nyquist sampled frequencies, ρ = 2.6 to account for 5 times oversam-

pling. We solved to find m with P (m) = 1.9× 10−5, which corresponds to a false-alarm detection of

no more than one frequency of significance. We find m = 9.89, which is plotted in Figure 6. There

is a clear detection of individual solar p modes around 3000 µHz and the Kepler instrumental fre-

quencies above 7000 µHz. No other frequencies above 100 µHz are detected. We found no candidate

frequencies that could be due to intrinsic oscillations of Neptune. Using our value for m we can place

an upper limit of ∼5 ppm at 1000 µHz for the detection of a coherent signal5. Our noise limit ranges

from ∼100 ppm at 100 µHz to ∼2.3 ppm at 3000 µHz. The red line in Figure 6 is a running mean

with a bin width of 30 µHz. There is no strong evidence of excess power above 100 µHz. Thus,

we conclude that we do not find any evidence of oscillations in broadband photometry of Neptune

obtained by the K2 mission.

For fixed albedo a brightness change of 5 ppm is equivalent to a change in the radius of Neptune

5 divide by
√
9.89 to get the mean level
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of 62 m. On a 17 minute timescale (∼1000 µHz) such a radius change translates to a radial velocity

semi-amplitude of 38 cm/s. Our intended goal was to probe variability at amplitudes lower than 1

ppm which would set radial upper limits of better 8 cm/s.

5. SUMMARY AND CONCLUSIONS

We have presented 49 days of continuous broadband photometry of the planet Neptune from the

K2 mission. The photometry shows 2% variability associated with the presence of evolving bright

clouds and the rotation of Neptune. There is also a clear detection of solar p mode oscillations

in reflected light which demonstrates the overall data quality and the ability to detect oscillations

with amplitudes of ∼ppm levels in the Fourier domain (Gaulme et al. 2016). Our goal was to detect

oscillations intrinsic to Neptune, but our search was unsuccessful. The noise floor, while impressively

low, was ultimately set by the motion of Neptune across the field of view crossing hundreds of pixels

coupled with pointing jitter and pixel-to-pixel and intrapixel gain variations.

We were able to correct instrumental artifacts present in the raw K2 aperture photometry for a

moving object by using difference imaging to mitigate dilution of the photometric signal from back-

ground stars passing through a photometric aperture centered on the observed position of Neptune.

Additionally, by treating the variability of Neptune as correlated Gaussian noise we were able to

model intrapixel variations and sudden changes in the photometry that were correlated with the

motion of Neptune.

While our search for intrinsic convection-driven pulsations in Neptune was unsuccessful we have

learned valuable lessons that can be applied to future photometric observations Solar System objects.

In 2016, K2 observed the planet Uranus, which provides a rare opportunity to obtain a long un-

interrupted photometric time-series of the planet to repeat our Neptune experiment: to characterize

the weather and cloud timescales, to study the Sun as a distant star through reflected light and to

search for intrinsic Uranus oscillations. Our experience with Neptune photometry has also taught

us how to reduce the impact of instrumental effects from moving objects observed by K2 and how

to plan future missions or photometric campaigns. The obvious conclusion is that it is beneficial

to keep the position of Neptune, or any target, located on the same pixel. The windowed FT in
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Figure 4 shows a clear decrease in the high frequency noise floor around day 25. This corresponds

to when K2 and Neptune passed through quadrature and the planet motion across the detector was

minimized. A Kepler-like instrument capable of tracking Neptune would be capable of probing the

intrinsic variability of Neptune at ppm levels on timescales of 30 minutes and shorter. Our detection

limits in the Fourier domain with 49 days of broadband photometry sets a benchmark for future

experiments to search for oscillation patterns with integrated disk photometry.
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Gaulme, P., Schmider, F.-X., Gay, J., Guillot, T., &
Jacob, C. 2011, A&A, 531, A104

Gaulme, P., Deheuvels, S., Weiss, W. W., et al. 2010,
A&A, 524, A47+

Gaulme et al. 2016, in preparation
Gilliland, R. L., Jenkins, J. M., Borucki, W. J., et al.

2010, ApJL, 713, L160
Goldreich, P., & Kumar, P. 1988, ApJ, 326, 462
Hedman, M. M., & Nicholson, P. D. 2013, AJ, 146, 12
—. 2014, MNRAS, 444, 1369
Howell, S. B., Sobeck, C., Haas, M., et al. 2014, PASP,

126, 398
Le Bihan, B., & Burrows, A. 2013, ApJ, 764, 18
Leibacher, J. W., & Stein, R. F. 1981, NASA Special

Publication, 450
Lissauer, J. J., Marcy, G. W., Bryson, S. T., et al.

2014, ApJ, 784, 44
Marley, M. S. 1991, Icarus, 94, 420
Marley, M. S., & Porco, C. C. 1993, Icarus, 106, 508
More, J., Garbow, B., & Hillstrom, K. 1980, Argoone

National Laboratory Report ANL-80-74
Morton, T. D., Bryson, S. T., Coughlin, J. L., et al.

2016, ApJ, 822, 86
Mosser, B. 1990, Icarus, 87, 198
—. 1995, A&A, 293, 586
Mosser, B., & Appourchaux, T. 2009, A&A, 508, 877
Mosser, B., Maillard, J. P., & Mékarnia, D. 2000,
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Table 1. Adopted Photometry

Time Flux Uncertainty

16.40017500 -0.00317 0.00036

16.40085595 -0.00292 0.00036

16.40153699 -0.00269 0.00036

16.40221805 -0.00265 0.00036

16.40289918 -0.00265 0.00036

Note—Adopted distance corrected photom-

etry. Reported time corresponds to BJD-

2456977.10319595

Table 2. Fitted Parameters

Parameter Value Units

B 2.25×10−2 ppm2/µHz

Table 2 continued on next page



Table 2 (continued)

Parameter Value Units

A1 8.32×104 ppm2/µHz

θ1 2.55 ×101 1/µHz

α1 2.28

A2 6.01×104 ppm2/µHz

θ2 3.63 ×10−2 1/µHz

α2 5.54

D 1.30 ×10−2 ppm2/µHz

fmax 3.25 ×103 µHz

σ 9.23 ×101 µHz

Note—Best fit parameters.
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Figure 1. A typical K2 short-cadence image with Neptune present is shown in the top panel. A difference

image is shown in the bottom panel. The bright saturated target is Neptune. The reference image was

generated using images when Neptune was not captured on the subraster, thus only the background stars

are removed in the difference image enabling photometry of Neptune without dilution effects from background

stars. Star residuals are due to intrapixel sensitivity variations which can be corrected for with centroid

co-detrending.
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Figure 2. The centroid motion of field stars measured in the Neptune SC subraster. Larger outliers, seen

every few days, are due to instrumental effects such as desaturation of reaction wheels and thruster firings,

and can be corrected. The right panel shows a small time segment of PSF centroids spanning 5 days of

spacecraft motion. Red and green markers show motion in orthogonal directions on the CCD. The abrupt

changes in location are due to semi-periodic thruster firings to correct for the roll of the telescope.



28 Rowe et al.

Figure 3. The top panel shows the raw, corrected and distance corrected photometry. The raw and corrected

photometry have been arbitrarily offset by 0.11 and 0.06 in normalized flux for plotting purposes. The time

is relative to the start time of short-cadence acquisition of the Neptune subraster, which corresponds to

BJD=2456977.09331. The bottom panel shows the same photometry as the top panel but from just after

day 16 to day 22, representing the first ∼6 days of short-cadence photometry. The zoom showcases the

corrections of the photometric variations due to intrapixel variations as seen during day 16 and pixel-jumps

as seen near day 20.
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Figure 4. The bottom panel plots the power spectral density (PSD) of the distance corrected photometry.

The calculation is described in §4. The red line shows the fitted PSD model based on Equation 8 which

is an estimate of the mean. The green line is 9.89 times the PSD model and presents our adopted cut to

identify significant frequencies as described in §4.1. The top panel shows a windowed PSD to demonstrate

variability in PSD as a function of time. Light, green colour represent larger values of the PSD and darker

bluer colours correspond to lower values of the PSD.



30 Rowe et al.

T
im

e
(h

o
u
rs

)

Frequency (µ Hz)
500 1000 1500 2000 2500 3000 3500

2

4

6

8

10

12

14

16

18

Figure 5. Envelope of the autocorrelation function (EACF) as function of frequency (x-axis) and time

(y-axis). The EACF was computed every 20 µHz from 500 to 4000 µHz, by filtering the time-series in a

frequency bandpass of 500 µHz. The darker a region is, the larger the correlation. Solar modes are clearly

visible in between 2500 and 3500 µHz at approximately 4, 8 and 13 hours.
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Figure 6. Normalized amplitude spectrum of Neptune photometry based on our power density spectrum

model which includes fitting for excess power due to Solar p modes. The green line marks our confidence

level to have a false-alarm detection of less than one. The red line is a running average with a binwidth of 30

µHz. Significant frequencies are seen a low frequencies (less than 100 µHz) due to weather and rotation of

Neptune, Solar modes near 3000 µHzand high-frequency instrumental signals between 7000 and 8000 µHz.


