F. Braga-ribas, A ring system detected around the Centaur (10199) Chariklo, Nature, vol.508, pp.72-75, 2014.

J. L. Ortiz, The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation, Nature, vol.550, pp.219-223, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02190894

J. L. Ortiz, Possible ring material around centaur (2060) Chiron, Astron. Astrophys, vol.576, p.18, 2015.

J. D. Ruprecht, stellar occultation by 2060 Chiron: Symmetric jet-like features, vol.252, pp.271-276, 2011.

L. W. Esposito, Planetary rings, Rep. Prog. Phys, vol.65, pp.1741-1783, 2002.

B. Sicardy, M. El-moutamid, A. C. Quillen, P. Schenk, M. R. Showalter et al., Planetary ring systems, p.135153, 2018.

M. Pan and Y. Wu, On the mass and origin of Chariklo's rings, Astrophys. J, vol.821, p.18, 2016.

R. Hyodo, S. Charnoz, H. Genda, and K. Ohtsuki, Formation of centaurs' rings through their partial tidal disruption during planetary encounters, Astrophys. J. Lett, vol.828, p.8, 2016.

R. A. Araujo, R. Sfair, and O. C. Winter, The rings of Chariklo under close encounters with the giant planets, Astrophys. J, vol.824, p.80, 2016.

J. Wood, J. Horner, T. C. Hinse, and S. C. Marsden, The Dynamical History of Chariklo and Its Rings, Astron. J, vol.153, p.245, 2017.

M. D. Melita, R. Duffard, J. L. Ortiz, and A. Campo-bagatin, Assessment of different formation scenarios for the ring system of (10199) Chariklo, Astron. Astrophys, vol.602, p.27, 2017.

R. Leiva, Size and Shape of Chariklo from Multi-epoch Stellar Occultations, Astron. J, vol.154, p.159, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02191006

M. M. Hedman and P. D. Nicholson, More Kronoseismology with Saturns rings, Mon. Not. R. Astron. Soc, vol.444, pp.1369-1388, 2014.

M. H. Morais and C. A. Giuppone, Stability of prograde and retrograde planets in circular binary systems, Mon. Not. R. Astron. Soc, vol.424, pp.52-64, 2012.

P. Goldreich and S. Tremaine, The excitation of density waves at the Lindblad and corotation resonances by an external potential, Astrophys. J, vol.233, pp.857-871, 1979.

P. Hopkins and E. Quataert, An analytic model of angular momentum transport by gravitational torques: from galaxies to massive black holes, Mon. Not. R. Astron. Soc, vol.415, pp.1027-1050, 2011.

D. N. Lin and J. Papaloizou, Tidal torques on accretion discs in binary systems with extreme mass ratios, Mon. Not. R. Astron. Soc, vol.186, pp.799-812, 1979.

P. Goldreich and S. Tremaine, Disk-satellite interactions, Astrophys. J, vol.241, pp.425-441, 1980.

P. Goldreich and S. Tremaine, The dynamics of planetary rings, Ann. Rev. Astron. Astro, vol.20, pp.249-283, 1982.

N. Meyer-vernet and B. Sicardy, On the physics of resonant disk-satellite interaction, Icarus, vol.69, pp.157-175, 1987.

M. S. Marley and C. C. Porco, Planetary acoustic mode seismology: Saturn's rings Icarus, vol.106, pp.508-524, 1993.

S. Michikoshi and E. Kokubo, Simulating the Smallest Ring World of Chariklo, Astrophys. J. Letters, vol.837, p.13, 2017.

A. Gupta, S. Nadkarni-ghosh, and I. Sharma, Rings of non-spherical, axisymmetric bodies, Icarus, vol.199, pp.97-116, 2018.

M. S. Tiscareno, M. M. Hedman, J. A. Burns, and J. Castillo-rogez, Compositions and Origins of Outer Planet Systems: Insights from the Roche Critical Density, Astrophys. J. Lett, vol.765, p.28, 2013.

C. C. Porco, P. C. Thomas, J. W. Weiss, and D. C. Richardson, Posing X = e cos(? 2/4 ) and Y = e cos(? 2/4 ) (? 2/4 = 2? ? ? A ? ), it can be shown that the origin (X, Y ) = (0, 0) 1/2 (1 + 0.25 ), the coefficient ?0.25 stemming from the particular values of R and q used here, that interval (of width ?25 km for Chariklo and ?375 km for Haumea, vol.318, p.1602, 2007.

, This stems from the fourth-order nature of that resonance. It is noteworthy that both Chariklo and Haumea's rings are close to the 1/3 resonance configuration 2, 12 , possibly leading to yet-to-be explicited more subtle confining effects of a narrow ring at that location, vol.1