Skip to Main content Skip to Navigation
Journal articles

Weak disorder expansion for the Anderson model on a tree

Abstract : We show how certain properties of the Anderson model on a tree are related to the solutions of a non-linear integral equation. Whether the wave function is extended or localized, for example, corresponds to whether or not the equation has a complex solution. We show how the equation can be solved in a weak disorder expansion. We find that, for small disorder strength \\\lambda\, there is an energy \E\ₓ(\\lambda )\ above which the density of states and the conducting properties vanish to all orders in perturbation theory. We compute perturbatively the position of the line \E\ₓ(\\lambda )\ which begins, in the limit of zero disorder, at the band edge of the pure system. Inside the band of the pure system the density of states and conducting properties can be computed perturbatively. This expansion breaks down near \E\ₓ(\\lambda )\ because of small denominators. We show how it can be resummed by choosing the appropriate scaling of the energy. For energies greater than \E\ₓ(\\lambda )\ we show that non-perturbative effects contribute to the density of states but have been unable tell whether they also contribute to the conducting properties.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03285605
Contributor : Bernard Derrida <>
Submitted on : Wednesday, July 21, 2021 - 9:31:23 AM
Last modification on : Wednesday, July 28, 2021 - 5:47:33 PM

File

Weak disorder expansion for th...
Explicit agreement for this submission

Identifiers

Citation

Jeffrey Miller, Bernard Derrida. Weak disorder expansion for the Anderson model on a tree. Journal of Statistical Physics, Springer Verlag, 1994, 75 (3-4), pp.357-388. ⟨10.1007/BF02186867⟩. ⟨hal-03285605⟩

Share

Metrics

Record views

14

Files downloads

11