Text Classification Using Association Rules, Dependency Pruning and Hyperonymization - Publications Télécom Bretagne du Lab-STICC
Communication Dans Un Congrès Année : 2014

Text Classification Using Association Rules, Dependency Pruning and Hyperonymization

Résumé

We present new methods for pruning and enhancing item- sets for text classification via association rule mining. Pruning methods are based on dependency syntax and enhancing methods are based on replacing words by their hyperonyms of various orders. We discuss the impact of these methods, compared to pruning based on tfidf rank of words.
Fichier principal
Vignette du fichier
Haralambous2014.pdf (289.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01058330 , version 1 (11-10-2022)

Licence

Identifiants

  • HAL Id : hal-01058330 , version 1

Citer

Yannis Haralambous, Philippe Lenca. Text Classification Using Association Rules, Dependency Pruning and Hyperonymization. DMNLP 2014: Workshop on Interactions between Data Mining and Natural Language Processing, Sep 2014, Nancy, France. pp.65-80. ⟨hal-01058330⟩
120 Consultations
97 Téléchargements

Partager

More