Dynamical simplices and Borel complexity of orbit equivalence - Algèbre, géométrie, logique
Journal Articles Israel Journal of Mathematics Year : 2020

Dynamical simplices and Borel complexity of orbit equivalence

Abstract

We prove that any divisible dynamical simplex is the set of invariant measures of some Toeplitz subshift. We apply our construction to prove that orbit equivalence of Toeplitz subshifts is Borel bireducible to the universal equivalence relation induced by a Borel action of a nonarchimedean Polish group.
Fichier principal
Vignette du fichier
1810.08374.pdf (222.08 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-02159944 , version 1 (06-02-2024)

Identifiers

Cite

Julien Melleray. Dynamical simplices and Borel complexity of orbit equivalence. Israel Journal of Mathematics, 2020, 236 (1), pp.317-344. ⟨10.1007/s11856-020-1976-1⟩. ⟨hal-02159944⟩
52 View
26 Download

Altmetric

Share

More