ESEO-Tech est le centre de Recherche, Developpement et Innovation de l'ESEO. L'activité de recherche est centrée sur la thématique des systèmes intelligents et communicants, du capteur à la décision.
ESEO-Tech regroupe 4 équipes de recherche : AGE : Automatique et Génie électrique prend appui sur le développement des énergies renouvelables (EnR) dans le paysage de la production d’énergie électrique et travaille au pilotage et à l’optimisation des réseaux électriques intelligents, en partenariat avec l’IREENA – EA 4642, Institut de recherche en Énergie Électrique de Nantes Atlantique. ERIS : L'équipe de Recherche en Informatique et Systèmes s’articule avec un premier axe autour de l'intelligence artificielle pour créer et améliorer des systèmes d'aide à la décision pour les systèmes d'information. Son deuxieme axe s'interesse à l'ingénierie logicielle et en particulier l'ingénierie des modèles en développant des outils de transformation, synchronisation, interprétation ou éxécution de modèles avec un focus particulier sur les systèmes embarqués. L'équipe est partiellement rattachée au LERIA-EA2645 (Laboratoire d’étude et de recherche en informatique de l’Université d’Angers). GSII : Groupe Signal Image et Instrumentation s’intéresse aux domaines du traitement du signal et de l’image et de l’intelligence artificielle pour la mesure, l’instrumentation et le développement de capteurs, sur des applications en géophysique, contrôle non destructif et biomédical, en lien avec le LAUM UMR 6613 –CNRS, le laboratoire d’Acoustique de Le Mans Université. RF-EMC : L'équipe Radio-Fréquences et Compatibilité Électromagnétique travaille à la fois à l’échelle du composant électronique et du système. Elle crée de nouvelles architectures de systèmes et dispositifs de transmission, de récupération/transmission d’énergie électromagnétique et mène des travaux sur la compatibilité électromagnétique : modélisation et caractérisation prédictive des comportements. Ses membres sont associés à l’IETR - Institut d’Electronique et des Technologies du numérique UMR CNRS 6164.
Le laboratoire accueille 35 permanents, dont 27 enseignants-chercheurs, qui élaborent dans leurs domaines respectifs de nouveaux concepts, expérimentent et mènent leurs projets jusqu’à la démonstration en environnement réel. ESEO-Tech accueille également chaque année une trentaine de doctorants et post-doctorants. |
Mots clés
MDE
Systèmes embarqués
Optimal command
Modélisation
Immunity testing
Mapping
Calf pain
Model Driven Engineering
Malan
Model transformation
Diagnosis
Monitoring
Analytical model
Reliability
Model-checking
Antioxidant activity
IEC
Temperature distribution
Big Data
Radio frequency
Instrument
Interaction
Claudication
Transcutaneous oximetry
Initial conditions
Integrated circuits
Thoracic outlet syndrome
PCB
Metamaterial
Emission
Pathophysiology
Damage detection
Simulation
Modelling
Accelerométrie
OCL
DPI
Prediction
Integrated circuit modeling
Integrated circuit
Equations
UML
Structural health monitoring
Cable shielding
Capacitors
Immunity
Nonlinearity
Vehicle dynamics
Classification
Field-to-trace coupling
GTEM cell
Field-to-line coupling
Malai
Binary sequence
Concrete
Pins
Symmetry
Active transformation
Anticontrol of chaos
Temperature measurement
Aging
Artefact rejection
Machine Learning
Calibration
Machine learning
Accelerometry
Susceptibility
Entropy
Peripheral artery disease
Active Front Steering
Switching piecewise-constant controller
Sleep apnea
Electromagnetic compatibility
Genetic algorithm
Ultrasound
Autonomous Vehicles
Ischemia
Independent chaotic attractors
Action
IC
Modeling
Dairy cows
Coda Wave Interferometry
Microembolus
Optimization
Full-wave simulation
IDM
Bifurcation
FDTD
Accelerometer
Chaos
Near field
Conducting materials
Microstrip
Acoustoelasticity
Bandits-Manchots Combinatoires
EMC
Apprentissage par Renforcement
Anti-diabetic properties
Super-Twisting Sliding Mode Control
|
|
Nos dernières publications
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Lifetime reliability modeling on EMC performance of digital ICs influenced by the environmental and aging constraints: A case study. Microelectronics Reliability, 2024, Microelectronics Reliability 159 (2024), 159, pp.115447. ⟨10.1016/j.microrel.2024.115447⟩. ⟨hal-04622696⟩
-
Jaber Al Rashid, Mohsen Koohestani, Laurent Saintis, Mihaela Barreau. Degradation and Reliability Modeling of EM Robustness of Voltage Regulators Based on ADT: An Approach and A Case Study. IEEE Transactions on Device and Materials Reliability, 2024, 24 (1), pp.2-13. ⟨10.1109/TDMR.2023.3340426⟩. ⟨hal-04334074⟩
-
Lokesh Devaraj, Qazi Mashaal Khan, Alastair Ruddle, Alistair Duffy, Richard Perdriau, et al.. Improvements Proposed to Noisy-OR Derivatives for Multi-Causal Analysis: A Case Study of Simultaneous Electromagnetic Disturbances. International Journal of Approximate Reasoning, 2024, 164, pp.109068. ⟨10.1016/j.ijar.2023.109068⟩. ⟨hal-04301458⟩
-
Safae Ouahabi, Nour Elhouda Daoudi, El Hassania Loukili, Hbika Asmae, Mohammed Merzouki, et al.. Investigation into the Phytochemical Composition, Antioxidant Properties, and In-Vitro Anti-Diabetic Efficacy of Ulva lactuca Extracts. Marine drugs, 2024, 22 (6), pp.240. ⟨10.3390/md22060240⟩. ⟨hal-04616809⟩
-
Nathan Fradet, Nicolas Gutowski, Fabien Chhel, Jean-Pierre Briot. Byte Pair Encoding for Symbolic Music. The 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP 2023), Association for Computational Linguistics, Dec 2023, Singapore, Singapore. pp.2001-2020, ⟨10.18653/v1/2023.emnlp-main.123⟩. ⟨hal-03976252v2⟩